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Abstract: The accurate and automated diagnosis of potato late blight disease, one of the most destruc-
tive potato diseases, is critical for precision agricultural control and management. Recent advances
in remote sensing and deep learning offer the opportunity to address this challenge. This study
proposes a novel end-to-end deep learning model (CropdocNet) for accurate and automated late
blight disease diagnosis from UAV-based hyperspectral imagery. The proposed method considers the
potential disease-specific reflectance radiation variance caused by the canopy’s structural diversity
and introduces multiple capsule layers to model the part-to-whole relationship between spectral–
spatial features and the target classes to represent the rotation invariance of the target classes in the
feature space. We evaluate the proposed method with real UAV-based HSI data under controlled and
natural field conditions. The effectiveness of the hierarchical features is quantitatively assessed and
compared with the existing representative machine learning/deep learning methods on both testing
and independent datasets. The experimental results show that the proposed model significantly im-
proves accuracy when considering the hierarchical structure of spectral–spatial features, with average
accuracies of 98.09% for the testing dataset and 95.75% for the independent dataset, respectively.

Keywords: potato late blight; automated crop disease diagnosis; UAV-based hyperspectral imagery;
deep learning; classification

1. Introduction

Potato late blight disease, caused by Phytophthora infestans (Mont.) de Bary, is one
of the most destructive potato diseases, resulting in significant potato yield loss across
the major potato growing areas worldwide [1,2]. The yield loss due to the infestation of
late blight disease is around 30% to 100% [3,4]. The current control measure mainly relies
on the application of fungicides [5], which is expensive and has negative impacts on the
environment and human health due to excessive use of pesticides. Therefore, the early,
accurate detection of potato late blight disease is vital for effective disease control and
management with minimal application of fungicides.

Since late blight disease affects potato leaves, stems and tubers with visible symptoms
(e.g., black lesions with granular regions and green halo) [6,7], the current detection of
late blight disease in practice is mainly based on visual observation [8,9]. However, this
manual inspection method is time consuming and costly and often causes a delay in late
blight disease management, especially at an early stage, across large fields [10]. In addition,
field surveyors diagnose diseases based on their domain knowledge, which may introduce
inconsistency and bias due to individual subjectivity [11]. An automated approach for fast
and reliable potato late blight disease diagnosis is important to ensure effective disease
management and control.
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With the advancements in low-cost sensor technology, computer vision and remote
sensing, machine vision technology based on images (such as red, green and blue (RGB)
images, thermal images, multispectral and hyperspectral images) has been successfully
used in agricultural and engineering fields [12–21]. For example, Wu et al. [20] developed
a deep learning-based model to detect the edge images of flower buds and inflorescence
axes and successfully applied this algorithm to the banana bud-cutting robot for real-time
operation. Cao et al. [21] developed a multi-objective particle swarm optimizer for a multi-
objective trajectory model of the manipulator, which has improved the stability of the fruit
picking manipulator and facilitated nondestructive picking. Particularly, in the area of
automated crop disease diagnosis [22,23], Unmanned Aerial Vehicles (UAVs) equipped
with RGB cameras and thermal sensors have been used for plant physiological monitoring
(e.g., transpiration, leaf water, etc.) [13]. Li et al. [24] acquired the potato biomass-associated
spatial and spectral features from the UAV-based RGB and hyperspectral imagery, respec-
tively, and then they fed them into a random forest (RF) model to predict the potato yield.
Wan et al. [25] fused the spectral and structural information from multispectral imagery
into a multi-temporal vegetation index model to predict the rice grain yield.

In addition, with the advancements in remote sensing technologies, remote sensing-
based vision technology has shown great potential for agricultural control and management,
especially for automatic crop disease diagnosis [22,23]. The existing remote sensing-based
computer vision models were developed based on the characteristics of the images (such
as the red, green and blue (RGB) images, thermal images, multispectral and hyperspectral
images) [12–16]. For instance, Unmanned Aerial Vehicles (UAVs) equipped with RGB
cameras and thermal sensors have been used for plant physiological monitoring (e.g.,
transpiration, leaf water, etc.) [13]. Li et al. [24] acquired potato biomass-associated spatial
and spectral features from the UAV-based RGB and hyperspectral imagery, respectively,
and then they fed them into a random forest (RF) model to predict the potato yield.
Wan et al. [25] fused the spectral and structural information from multispectral imagery
into a multi-temporal vegetation index model to predict the rice grain yield.

Benefiting from many more narrow spectral bands over a contiguous spectral range,
hyperspectral imagery (HSI) provides spatial information in two dimensions and rich
spectral information in the third dimension, capturing detailed spectral–spatial information
of the disease infestation and offering the potential to provide better diagnostic accu-
racy [26,27]. However, extracting effective infestation features from the abundant spectral
and spatial information from hyperspectral images is a key challenge for disease diagnosis.
Currently, based on the features used in HSI-based disease detection, the existing models
can be divided into three categories: spectral feature-based approaches focusing on spectral
signatures composed of the associated radiation signal of each pixel of ab image scene
in various spectral ranges [28–30]; spatial feature-based approaches focusing on features
such as shape, texture and geometrical structures [31–34]; and the joint spectral–spatial
feature-based approaches focusing on a combination of spectral and spatial features [35–42].
A detailed discussion of these methods can be found in Section 2.

Despite the fact that existing works are encouraging, the existing models do not
consider the hierarchical structure of the spectral and spatial information of the crop
diseases (for instance, canopy structural information and reflectance radiation variance
of the ground objects hidden in HSI data), which comprises important indicators for crop
disease diagnosis. In fact, changes in reflectance due to plant pathogens and plant diseases
are highly disease-specific since the optical properties of plant diseases are related to
a number of factors such as foliar pathogens, canopy structural information, pigment
content, etc.

Therefore, to address the issue presented above, the hierarchical structure of the
spectral–spatial features should be considered in the learning process. In this paper, we
propose a novel CropdocNet for the automated detection and discrimination of potato late
blight disease. The contributions of the proposed work include the following:
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• The development of an end-to-end deep learning framework (CropdocNet) for potato
disease detection.

• The proposed introduction of multiple capsule layers to handle the hierarchical struc-
ture of the spectral–spatial features extracted from HSIs.

• Combination of the spectral–spatial features to represent the part-to-whole relationship
between the deep features and the target classes (i.e., healthy potato and the potato
infested with late blight disease).

The remainder of this paper is organized as follows: Section 2 describes the related
work; Section 3 describes the study area, data collection, and the proposed model; Section 4
presents the experimental results; Section 5 provides discussions; and Section 6 summarizes
this work and highlights future works.

2. Related Work in Crop Disease Detection Based on Hyperspectral Imagery

In this section, we mainly discuss related work in crop disease detection based on
hyperspectral imagery (HSI). Based on features used for HSI-based crop disease detection,
there are broadly three main categories: spectral feature-based approaches, spatial feature-
based approaches and joint spectral–spatial feature-based approaches. Table 1 summarizes
the existing models on potato late blight disease detection based on different features used
in the machine learning process, which provides a baseline for hyperspectral imagery-based
late blight disease detection. The detailed reviews of each class are described below.

Table 1. Comparison of the existing models for potato late blight disease detection.

Approach Type Model Name Classification
Accuracy Observation Scale Reference

Spectral feature-based Support vector machine (SVM) 84% Leaf [2]
Partial least square discriminant

analysis (PLSDA) 82.1% Leaf [6]

Multiclass support vector machine
(MSVM) 87.5% Canopy [11]

Spatial feature-based Random forest (RF) 79% Leaf [2]
Texture segmentation (TS) 86% Leaf [8]

Simplex volume maximization
(SiVM) 88.5% Canopy [10]

Spectral–spatial
feature-based Full convolutional network (FCN) 88.9% Leaf [6]

Three-dimensional convolutional
network (3D-CNN) 85.4% Canopy [22]

The category of spectral feature-based approaches exploits the spectral features as-
sociated with plant diseases, which represent the biophysical and biochemical status of
the plant leaves from the spectral domain of HSI [28–30]. For example, Nagasubrama-
nian et al. [43] found that the spectral bands associated with the depth of chlorophyll
absorption are very sensitive to the occurrence of plant diseases, and they extracted the
optimal spectral bands as the input of the Genetic Algorithm (GA)-based SVM for the
early identification of charcoal rot disease in soybean, with a 97% classification accuracy.
Huang et al. [44] extracted 12 sensitive spectral features for Fusarium head blight, which
were then fed into a SVM model to diagnose the severity of Fusarium head blight with
good performance.

The category of spatial feature-based approaches exploits the spatial texture of the
hyperspectral image, which represents the foliar contextual variances, such as the color,
density and leaf angle, and is one of the important factors for crop disease diagnosis [31–34].
For example, Mahlein et al. [45] summarized the spatial features of the RGB, multi-spectral,
and hyperspectral images used in the automatic detection of disease detection. Their
study showed that the spatial properties of the crop leaves were affected by leaf chemical



Remote Sens. 2022, 14, 396 4 of 22

parameters (e.g., pigments, water, sugars, etc.) and light reflected from internal leaf
structures. For instance, the spatial texture of the hyperspectral bands from 400 to 700 nm is
mainly influenced by foliar content, and the spatial texture of the bands from 700 to 1100 nm
reflects the leaf structure and internal scattering processes. Yuan et al. [46] introduced the
spatial texture of the satellite data into the spatial angle mapper (SAM) to monitor wheat
powdery mildew at the regional level.

In the category of joint spectral–spatial feature-based approaches, there are two main
strategies for extracting joint spectral–spatial features to represent the characteristics of crop
diseases in HSI data. The first strategy is to extract spatial and spectral features separately
and then combine them together based on 1D or 2D approaches (e.g., feature stacking,
convolutional filters, etc.) [40–42]. For example, Xie et al. [47] investigated the spectral
and spatial features extracted from hyperspectral imagery to detect early blight disease on
eggplant leaves, and they then stacked these features as the input of an AdaBoost model to
detect healthy and infected samples. The second strategy is to jointly extract the correlated
spectral–spatial information of the HSI cube through 3D kernel-based approaches [48–50].
For instance, Nguyen et al. [51] tested the performance of the 2D convolutional neural
network (2D-CNN) and 3D convolutional neural network (3D-CNN) for the early detection
of grapevine viral diseases. Their findings demonstrated that the 3D convolutional filter
was able to produce promising results compared with the 2D convolutional filter from
hyperspectral cubes. Benefiting from the advanced self-learning performance of the 3D
convolutional kernel, the depth of the 3D convolutional kernel has also been investigated
for crop disease diagnosis [35–39]. For instance, Suryawati et al. [52] compared the CNN
baselines with the depths of 2, 5 and 13 3D convolutional layers, and their findings sug-
gested that the deeper architecture achieved higher accuracy for plant disease detection
tasks. Nagasubramanian et al. [53] developed a 3D deep convolutional neural network
(DCNN) with eight 3D convolutional layers to extract the deep spectral–spatial features to
represent the inoculated stem images from the soybean crops. Kumar et al. [54] proposed a
3D convolutional neural network (CNN) with six 3D convolutional layers to extract the
spectral–spatial features for various crop diseases.

However, these existing methods fail to model the various kinds of reflectance ra-
diation of the crop disease and the hierarchical structure of the disease-specific features,
which are affected by the particular combination of multiple factors, such as the foliar
biophysical variations, the appearance of typical fungal structures and canopy structural
information, from region to region [27]. A reason behind this is that the convolutional
kernels in the existing CNN methods are independent of each other, making it hard to
model the part-to-whole relationship of the spatial–spatial features and to characterize
the complexity and diversity of potato late blight disease on HSI data [36]. Therefore, this
study proposes a novel end-to-end deep learning model to address the limitations under
consideration of the hierarchical structure of the spectral–spatial features associated with
plant diseases.

3. Materials and Methods
3.1. Data Acquisition
3.1.1. Study Site

The field experiments were conducted at three experimental sites (see Figure 1), with
experiments in the first two sites conducted under controlled conditions to collect high-
quality labelled data for model training and the experiment in the third site conducted
under natural conditions to obtain an independent dataset for model evaluation. All of
the experiments were performed in Guyuan county, Hebei province, China. The detailed
information for each experimental site is described below.

Site 1 was located at (41◦41′2.41′′N, 115◦44′47.39′′E). The potato cultivars ‘Yizhangshu
No.12’ and ‘Shishu No.1’ were selected due to their different susceptibility to late blight
infestation. Two control groups and four infected groups of late blight were applied.
Each field group occupied 410 m2 of field campaigns. Seedlings of these cultivars were
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inoculated with late blight on 13 May 2020. A spore concentration of 9 mg 100−1 mL−1

was used. A total of nine 1 m × 1 m observation plots were set for the ground truth data
investigation (see Figure 1). There were two reasons for using 1 m × 1 m observation plots:
(1) they allowed for the collection of the canopy spectral–spatial variations of the potato
leaves; (2) they enabled easy identification of the same patches on hyperspectral images to
ensure the right match between the ground truth investigation patches and the pixel-level
labels. The field observations were conducted on 16 August 2020.

Site 2 was located at (41◦42′2.4′′N, 115◦47′44.39′′E). The same potato cultivars as in
site 1 were selected. There were 6 control groups, and 30 infected groups of late blight
were applied. Each field group occupied 81 m2 of field campaigns. Seedlings of these
cultivars were inoculated with late blight on 14 May 2020. In the infected groups, a spore
concentration of 9 mg 100−1 mL−1 was used. A total of 18 1 m × 1 m observation plots
were set for the ground truth data investigation. The field observations were conducted on
18 August 2020.

Site 3 was located at (42◦34′1.12′′N, 115◦46′52.39′′E). The potato cultivar ‘Shishu No.1’
was selected. The late blight disease naturally occurred in this experimental site under
natural conditions. A total of 18 1 m× 1 m in-situ observation plots were set for the ground
truth data investigation. The field observations were conducted on 20 August 2020.

Legend Experimental site for training

Investigation plot

Site 1
Site 2

Site 1

Site 2

Experimental site for testing

Site 3

Figure 1. The experimental sites in Guyuan, Hebei province, China.

3.1.2. Ground Truth Disease Investigation

Four types (classes) of ground truth data were investigated: healthy potato, late blight
disease, soil and background (i.e., the roof, road and other facilities). Of these, the classes
of soil and background could be easily labelled based on visual investigation from the
UAV HSI. For the classes of healthy potato and late blight disease, we firstly investigated
the disease ratio (i.e., the diseased area/the total leaf area) of the experiment sites based
on National Rules for Investigation and Forecast Technology of the Potato Late Blight
(NY/T1854-2010). Then, we labeled the diseased ratio in a sampling plot lower than 7% as
a healthy potato class; otherwise, it was labeled as a diseased class. The reason for choosing
the threshold of 7% was mainly because the hyperspectral signal and the spatial texture
of the potato leaves with a disease ratio lower than 7% were indistinguishable from the
healthy leaves in our HSI data (with the spatial resolution of 2.5 cm).
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3.1.3. UAV-Based HSI Collection

The UAV-based HSIs were collected by Dajiang (DJI) S1000 (ShenZhen (SZ) DJI Tech-
nology Co., Ltd., Gungdong, China) equipped with a UHD-185 Imaging spectrometer
(Cubert GmbH, Ulm, Baden-Warttemberg, Germany). The collected HSI imagery covered
the wavelength range from 450 nm to 950 nm with 125 bands. In the measurements, a total
of 23 HSIs (the overlap rate was set as 30% to avoid mosaicking errors [55]) were mosaicked
to cover experiment site 1, and the full size for experimental site 1 was 16,382 × 8762 pixels.
A total of 16 HSIs were mosaicked to cover experiment site 2, and the full size for experimen-
tal site 2 was 8862× 7625 pixels. A total of 14 HSIs were mosaicked to cover experiment site
3, and the full size for experimental site 2 was 15,822 × 6256 pixels. All of the UAV-based
HSI data were collected between 11:30 a.m. and 13:30 p.m. under a cloud-free condition.
The spatial resolution of the HSI was 2.5 cm, with a height of 30 m. HSI data were manually
labeled based on the ground truth investigations. The HSIs for experimental site 1 and site
2 were used as a training dataset for model training and cross-validation, while the HSI for
experimental site 3 was used as an independent dataset for model evaluation.

3.2. The Proposed CropdocNet Model

Since the traditional convolutional neural networks extract spectral–spatial features
without considering the hierarchical structure representations among the features, this may
lead to suboptimal performance in terms of characterizing the part-to-whole relationship
between the features and the target classes. In this study, inspired by the dynamic routing
mechanism of capsules [56], the proposed CropdocNet model introduces multiple capsule
layers (see below) with the aim of modeling the effective hierarchical structure of spectral–
spatial details and generating encapsulated features to represent the various classes and
the rotation invariance of the disease attributes in the feature space for accurate disease
detection.

Essentially, the design rationale behind our proposed approach is that, unlike the
traditional CNN methods, which extract the abstract scalar features to predict the classes,
the spectral–spatial information extracted by the convolutional filters in the form of scalars
is encapsulated into a series of hierarchical class-capsules to generate the deep vector
features, representing the specific combination of the spectral–spatial features for the
target classes. Based on this rationale, the length of the encapsulated vector features
represents the membership degree of an input belonging to a class, and the direction of
the encapsulated vector features represents the consistency of the spectral–spatial feature
combination between the labeled classes and the predicted classes.

Figure 2 shows the proposed framework, which consists of a spectral information
encoder, a spectral–spatial feature encoder, a class-capsule encoder and a decoder.

Specifically, the proposed CropdocNet firstly extracts the effective information from
the spectral domain based on the 1D convolutional blocks and then encodes the spectral–
spatial details around the central pixels by using the 3D convolutional blocks. Subsequently,
these spectral–spatial features are sent to the hierarchical structure of the class-capsule
blocks in order to build the part-to-whole relationship and to generate the hierarchical
vector features for representing the specific classes. Finally, a decoder is employed to
predict the classes based on the length and direction of the hierarchical vector features in
the feature space. The detailed information for the model blocks is described below.

3.2.1. Spectral Information Encoder

The spectral information encoder, located at the beginning of the model, is set to
extract the effective spectral information from the input HSI data patches. It is composed
of a serial connection of two 1D convolutional layers, two batch normalization layers and a
ReLu layer.

Specifically, as shown in Figure 2, the HSI data with H rows, W columns and B bands,
denoted as X ∈ RH×W×B, can be viewed as a sample set with H ×W pixel vectors. Each
of the pixels represents a class. Then, the 3D patches with a size of d× d× B around each
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pixel are extracted as the model input, where d is the patch size. In this study, d is set as 13
so that the input patch is able to capture at least one intact potato leaf. These patches are
labeled with the same classes as their central pixels.

1D-convolutional layers 

Convolutional capsule layers 

Class-capsule layers

Batch normalization

Squashing function

ReLU

3D-convolutional layers 

𝑉1

𝑉2

𝑉𝑁

... ...

Output patch

...

k × k × 𝑲(𝟏)

Z × 1 × 1 ×𝑲(𝟑)

N× Z

k × k × 𝑲(𝟐)

Input patch Spectral 

features

Spectral-

spatial features

Capsule 

features
Class-

capsules

Spectral information 

encoder
Class-capsule encoder

Spectral-spatial 

feature encoder

Decoder 

layer

Figure 2. The workflow of the CropdepcNet framework for potato late blight disease diagnosis (k is
the spatial size of the convolutional kernel, K is the number of the channel of the convolutional kernel,
Z is the dimensionality of the class-capsule, N is the number of the class-capsule, and V represents a
vector of the high-level features).

Subsequently, the joint 1D convolution and batch normalization series, which receive
the data patch from the input HSI cube, are introduced to extract the radiation magnitude
of the central band and their neighboring bands. A total of K(1) convolutional kernels with
a size of 1× 1× Lr f are employed by the 1D convolutional layer, where Lr f is the length
of the receptive field for the spectral domain. The 1D convolutional layer is calculated
as follows:

Cj
p =

Lr f

∑
l=1

W j
l Ip

l (1)

where Cj
p is the intermediate output of the pth neuron with the jth kernel, W j

l is the weight
for the lth unit of the jth kernel, and Ip

l is the feature value of the lth unit corresponding to
the pth neuron.

The second 1D convolution and batch normalization series are used to extract the
abstract spectral details from the low-level spectral features. Finally, a ReLu activation
function is used to obtain a spectral feature output denoted as X1

out ∈ RH×W×K(1)
.

3.2.2. Spectral–Spatial Feature Encoder

The spectral–spatial feature encoder is located after the spectral information encoder
and aims to arrange the extracted spectral features in X1

out into the joint spectral–spatial
features that are fed to the subsequent capsule encoder. Firstly, a total of K(2) global
convolutional operations are used on the X1

out with a kernel size of c× c× K(1), where c is
the kernel size, which is set as 13 in order to match the size of the input patch. Then, the
batch normalization step and a ReLu activation function are used to generate the output
volume X2

out ∈ RH×W×K(2)
.

3.2.3. Class-Capsule Encoder

The class-capsule encoder, the most important module of the proposed network, is
introduced to generate the hierarchical features to represent the translational and rotational
correlations between the low-level spectral–spatial information and the target classes of
healthy and diseased potato. It comprises two layers: a feature encapsulation layer and a
class-capsule layer.
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Specifically, the feature encapsulation layer consists of Z convolutional-based capsule
units, where each of the capsule units is composed of K convolutional filters, and the size of
each filter is k× k× K(3). In the training process, the X2

out from the spectral–spatial feature
encoder os input into a series of capsules units to learn the potential translational and rota-
tional structure of the features in X2

out. An output vector u(m) ∈ RK = [u(m)
1 , u(m)

2 , · · · , u(m)
K ]

is generated by the K convolutional kernel of the mth capsule. The orientation of the output
vector represents the class-specific hierarchical structure characteristics, while its length
represents the degree to which a capsule corresponds to a class (e.g., healthy or diseased).
To measure the length of the output vector as a probability value, a nonlinear squash
function is used as follows:

ŭm =
||um||2

1 + ||um||2
· um

||um||
(2)

where ŭ(l)
m is the scaled vector of X2

out. This function compresses the short vector features to
zero and enlarges the long vector features to a value close to 1. The final output is denoted
as X3

out ∈ RZ×1×1×K.
Subsequently, the class-capsule layer is introduced to encode the encapsulated vector

features in X3
out to the class-capsule vectors corresponding to the target classes. The length

of the class-capsule vectors indicates the probability of belonging to corresponding classes.
Here, a dynamic routing algorithm is introduced to iteratively update the parameters
between the class-capsule vectors with the previous capsule vectors. The dynamic routing
algorithm provides a well-designed learning mechanism between the feature vectors,
which reinforces the connection coefficients between the layers and highlights the part-to-
whole correlation relationship between the generated capsule features. Mathematically, the
class-capsule û(l)

n|m is calculated as

û(l)
n|m = W(l)

m,n · ŭ
(l−1)
m + B(l)

n (3)

where W(l)
m,n is a transformation matrix connecting layer l − 1 with layer l, where ŭ(l−1)

m

is the mth feature of layer l − 1 and B(l)
n is the biases. This function allows the vector

features at a low level to make predictions for the rotation invariance of high-level features
corresponding to the target classes. After that, the prediction agreement can be computed
by a dynamic routing coefficient c(l)m,n:

s(l)n =
z(l−1)

∑
m

c(l)m,n · û
(l)
n|m (4)

where c(l)m,n is a dynamic routing coefficient measuring the weight of the mth capsule feature
of layer l− 1 activating the nth class-capsule of layer l; the sum of all the coefficients would
be 1, and the dynamic routing coefficient can be calculated as

c(l)m,n =
ebm,n

∑z(l)
i ebm,i

(5)

where bm,n is the log prior representing the correlation between layer l − 1 and layer l,
which is initialized as 0 and is iteratively updated as follows:

bl
m,n = bl−1

m,n + vl−1
n · û(l−1)

n|m (6)

where vl
n is the activated capsule of layer l, which can be calculated based on the function

as follows:

vl
n =

||s(l)n ||2

1 + ||s(l)n ||2
· s(l)n

||s(l)n ||
(7)
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Updated by the dynamic routing algorithm, the capsule features with similar predic-
tions are clustered, and a robust prediction based on these capsule clusters is performed.
Finally, the the loss function (L) is defined as follows:

Lmargin =
nclass

∑
i

Ti max (0, edge+ − ||vl
n||2)+

µ(1− Ti)(max(0, ||vl
n|| − edge−)2)

(8)

where Ti is set as 1 when class i is currently classified in the data; otherwise, it is 0. The
edge+, set as 0.9, and edge−, set as 0.1, are defined to force the vl

n into a series of small
interval values to update the loss function. µ, defined as 0.5, is a regularization parameter
used to avoid over-fitting and to reduce the effect of the negative activity vectors.

3.2.4. The Decoder Layer

The decoder layer, composed of two fully connected layers, is designed to reconstruct
the classification map from the output vector features. The final output of this model
is regarded as Ỹ ∈ RH×W . To update the model, the model loss aims to minimize the
difference between the labeled map, Ȳ, and the output map, Ỹ. The final loss function is
defined as follows:

Lend = Lmargin + θ · Lreconstruction (9)

where Lreconstruction = ‖Ỹ− Ȳ‖ is the mean square error (MSE) loss between the labelled
map and the output map, and θ is the learning rate, in this study, θ is set to 0.0005 in order
to trade-off the contribution of Lmargin and Lreconstruction, and an Adam optimizer is used to
optimize the learning process.

3.3. Model Evaluation for the Detection of Potato Late Blight Disease
3.3.1. Experimental Design

In order to evaluate the performance of the proposed CropdocNet on the detection of
potato late blight disease, three experiments were conducted: (1) determining the model’s
sensitivity to the network depth, (2) an accuracy comparison study between CropdocNet
and the existing machine/deep learning models for potato late blight disease detection and
(3) accuracy evaluation at both pixel and patch scales. The detailed experimental settings
are described as follow.

(1) Experiment 1: Determining the model’s sensitivity to the depth of the network

The depth of the network is an important parameter that determines the model’s
performance in spectral–spatial feature extraction. To investigate the effect of the depth of
the network, we change the number of the 1D convolutional layers and the 3D convolutional
layers in the proposed model to control the model depth. For each of the configurations,
we compare the model’s performance in potato late blight disease detection and show the
best accuracy.

(2) Experiment 2: An accuracy comparison study between CropdocNet and the existing
machine/deep learning models

In order to evaluate the effectiveness of the hierarchical structure of the spectral–
spatial information in our model for the detection of potato late blight disease, we compare
the proposed CropdocNet considering the hierarchical structure of the spectral–spatial
information with the existing representative machine/deep learning approaches using (a)
spectral features only, (b) the spatial features only and (c) joint spectral–spatial features
only. Based on the literature review, SVM, random forest (RF) and 3D-CNN are selected as
existing representative machine learning/deep learning models for comparison study. For
the spectral feature-based models, the works in [43,44,57] have reported the support vectors
machine (SVM) to be an effective classifier for plant disease diagnosis based on spectral
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features. For the spatial feature-based models, the works in [27,33,34] have demonstrated
that random forest (RF) is an effective classifier for the analysis of plant stress-associated
spatial information in disease diagnosis. For joint spectral–spatial feature based models, a
number of deep learning models have been proposed to extract the spectral–spatial features
from the HSI data, among which 3D convolutional neural network (3D-CNN)-based
models [39,50,53] are the most commonly used in plant disease detection. All these existing
methods do not consider the hierarchical structure of the spectral–spatial information.

(3) Experiment 3: Accuracy evaluation at both pixel and patch scales

To evaluate the model’s performance regarding the mapping of potato blight disease
occurrence under different observation scales, two evaluation methods were used: (1)
pixel-scale evaluation, which focuses on the performance evaluation of the proposed model
for the detection of the detailed late blight disease occurrence at the pixel-level based on
the pixel-wised ground truth data—in addition, to validate the model’s robustness and
generalizability, we also compared the classification maps of all four models based on the
independent dataset—and (2) patch-scale evaluation, which focuses on performance evalu-
ation at the patch level by the aggregation of the pixel-wised classification into the patches
with a given size. For instance, in our case, the field is divided into 1 m× 1 m patches/grids,
and the disease predictions at the pixel level are aggregated into the 1 m × 1 m patches,
which are compared against the corresponding real disease occurrence within that given
patch area. In this study, the patch size of 1 m × 1 m was used for two reasons: (1) to enable
easy pixel-level data labeling and (2) to enable the easy identification of the patches on
HSIs to ensure the right match between the ground truth investigation patches and the
pixel-level labels. This patch-scale evaluation further indicates the classification robustness
of the disease detection at different observation scales.

3.3.2. Evaluation Metrics

A set of widely used evaluation metrics was introduced to evaluate the accuracy of the
detection of potato late blight disease: the confusion matrix, sensitivity, specificity, overall
accuracy (OA), average accuracy (AA), and Kappa coefficient. These evaluation metrics
were computed based on the statistics of the positive condition (P), negative condition
(N), true positive (TP), false positive (FP), true negative (TN) and false negative (FN).
Specifically, for a given class (e.g., late blight disease), the real P indicates the samples
labeled as late blight disease and the real N indicates the samples labeled as non-late blight
disease. TP, TN, FP and FN are obtained from the model output. The detailed definition of
the metrics are set in Table 2 and their mathematic formats are listed as follows.

Sensitivity = TP/TP + FN (10)

Speci f icity = TN/TN + FP (11)

OA = TP + TN/TP + TN + FP + FN (12)

AA = 1/2× (
TP

TP + FN
+

TN
TN + FP

) (13)

Observation = TP + TN (14)

Expect =
((TP + FP) ∗ (TP + FN) + (TN + FP) ∗ (TN + FN))

(TP + TN + FP + FN)
(15)

Kappa =
Observation− Expect

(TP + TN + FP + FN)− Expect
(16)
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Table 2. The definition of the confusion matrix: P = positive condition; N = negative condition; TP
= true positive; FP = false positive; TN = true negative; FN = False Negative; UA = user’s accuracy;
PA = producer’s accuracy. The producer’s accuracy refers to the probability that a certain class is
classified correctly, and the user’s accuracy refers to the reliability of a certain class.

P N UA (%)

P TP FP TP/(TP + FP)× 100%
N FN TN TN/(TN + FN)× 100%

PA (%) TP/(TP + FN)× 100% TN/(TN + FP)× 100%

3.3.3. Model Training

In this study, a slide window approach was used to extract the input samples for
model training. Here, the slide window size was set as 13× 13. A total of 3200 (i.e., 800
for each class) HSI blocks with a size of 13× 13× 125 were randomly extracted from the
HSI data collected from the controlled field conditions (i.e., experimental site 1 and 2). In
order to prevent over-fitting in the training process, five-fold cross validation was used.
For model optimization, an Adam optimizer, with a batch size of 64, was used to train the
proposed model. The learning rate was initially set as 1× 10−3 and iteratively increased
with a step of 1× 10(−6).

The hardware environment for model training consisted of an Intel (R) Xeon (R) CPU
E5-2650, NVIDIA TITAN X (Pascal) and 64 GB memory. The software environment was
the Tensorflow 2.2.0 framework with Python 3.5.2 as the programming language.

4. Results
4.1. The CropdocNet Model’s Sensitivity to the Depth of the Convolutional Filters

In the proposed method, we need to set the parameters K(1), K(2) and K(3), which
represent the depth of the 1D convolutional layers for the spectral feature extraction, the
depth of the 3D convolutional layers for the spectral–spatial feature extraction and the
number of the capsule vector features, respectively. Due to the fact that, in our model, the
high-level capsule vector features are derived from the low-level spectral–spatial scalar
features, the depth of the convolutional filters is the main factor that influences this process.
Therefore, we firstly set the K(3) to a fixed value of 16 to evaluate the effect of using different
depths of K(1) and K(2) for spectral–spatial scalar feature extraction. Figure 3a shows the
overall accuracy of the potato late blight disease classification using the the various K(1)

and K(2) values from 32 to 256 with a step of 16. It can be seen that both K(1) and K(2) have
positive effects on the classification accuracy. The accuracy convergence is more sensitive to
K(2) than to K(1). This is because K(2) controls the joint spectral–spatial features with more
correlation with the plant stress and affects the final disease recognition accuracy. Overall,
the classification accuracy reaches convergence (approximately 85.05%) when K(1) = 128
and K(2) = 64. Thus, in the following experiments, we set K(1) = 128 and K(2) = 64 for
optimal model performance and computing efficiency.

Subsequently, we test the effect of the parameter K(3) with the fixed K(1) and K(2)

values of 128 and 64. Figure 3b shows that the classification accuracy increases when K(3)

increases from 8 to 32 and then converges to approximately 97.15% when K(3) is greater
than 32. These findings suggest that the number of 32 capsule vector blocks is the minimum
configuration for our model for the detection of potato late blight disease. Therefore, in
order to achieve a trade-off between the model performance and computing performance,
K(3) is set as 32 in the subsequent experiments.
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Figure 3. The model’s sensitivity to the depth of the convolutional filters. (a) Overall accuracy of
using different K(1) and K(2) values with a fixed K(3) of 16. (b) Overall accuracy of using different
K(3) values under the fixed K(1) and K(2) values of 128 and 64. Here, K(1) is the depth of the 1D
convolutional layers for the spectral feature extraction, K(2) is the depth of the 3D convolutional
layers for the spectral–spatial feature extraction, and K(3) is the number of the capsule vector features.

4.2. Accuracy Comparison Study between CropdocNet and Existing Machine Learning-Based
Approaches for Potato Disease Diagnosis

In this experiment, we quantitatively investigated the performance of the proposed
model considering the hierarchical structure of the spectral–spatial information and the
representative machine/deep learning approaches without considering it (i.e., SVM with
the spectral features only, RF with the spatial features only and 3D-CNN with the joint
spectral–spatial features only) for potato late blight disease detection with different feature
extraction strategies. In contrast, for SVM, we used the Radial Basis Function (RBF) kernel
to learn the non-linear classifier, where the two kernel parameters C and γ were set to
1000 and 1, respectively [43,44]. For RF, a quantity of 500 decision trees was employed
because this value has been proven to be effective in crop disease detection tasks [33,34].
For 3D-CNN, we employed the model architecture and configurations reported in Naga-
subramanian et al. [53]’s study. All of the models were trained on the training dataset and
validated on both of the testing and independent datasets.

Table 3 shows the accuracy comparison between the proposed model and the com-
petitors using the test dataset and the independent dataset. The results suggest that the
proposed model using the hierarchical vector features consistently outperforms the rep-
resentative machine/deep learning approaches with scalar features in all of the classes.
The OA and AA of the proposed model are 97.33% and 98.09%, respectively, with a Kappa
value of 0.82 on the test dataset, which is 7.8% on average higher than the second-best
model (i.e., the 3D-CNN model with joint spectral–spatial scalar features). In addition,
the classification accuracy of the proposed model is found to be 96.14%, which is 11.8%
higher than the second-best model. For the independent test dataset, the OA and AA of the
proposed model were found to be 95.31% and 95.73%, respectively, with a Kappa value of
0.80, which is the best classifier. The classification accuracy is found to be 93.36%, which is
9.88% higher than the second best model. These findings demonstrate that the proposed
model with the hierarchical structure of the spectral–spatial information outperforms scalar
spectral–spatial feature-based models in terms of the classification accuracy of late blight
disease detection.

To further explore the classification difference significance between the proposed
method and the existing machine models, the McNemar’s Chi-squared (χ2) test was con-
ducted between two-paired models. The significant statistics are shown in Table 4. Our
results show that the overall accuracy improvement of the proposed model is statisti-
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cally significant with χ2 = 32.92(p ≤ 0.01) for SVM, χ2 = 31.52(p ≤ 0.01) for RF and
χ2 = 29.34(p ≤ 0.01) for 3D-CNN.

Moreover, a sensitivity and specificity comparison of detailed classes is shown in
Figure 4. Similar to the classification evaluation results, the proposed model achieves the
best sensitivity and specificity on all of the ground classes, especially for the class of potato
late blight disease.

Table 3. The accuracy comparison between the proposed model and existing representative ma-
chine/deep learning models in potato late blight disease detection.

Models on Test Dataset Models on Independent Test Dataset

Class Proposed SVM RF 3D-CNN Proposed SVM RF 3D-CNN

Healthy potato 97.21 86.82 90.64 94.24 96.32 82.25 88.92 85.21
Late blight disease 96.14 80.15 82.31 85.51 93.36 71.76 79.01 83.48

Soil 99.85 89.91 92.19 93.31 98.44 87.42 83.78 85.12
Background 99.14 90.31 93.52 91.16 94.88 89.85 86.35 83.85

OA(%) 97.33 84.89 87.77 90.32 95.31 79.45 83.97 90.32
AA(%) 98.09 86.8 89.67 91.06 95.75 82.82 84.52 91.06
Kappa 0.822 0.549 0.614 0.728 0.801 0.512 0.595 0.699

Table 4. The McNemar’s Chi-squared test of the proposed model and the existing representative
machine/deep learning models for potato late blight disease detection (** means p < 0.05).

Class Proposed vs. SVM Proposed vs. RF Proposed vs. 3D-CNN

Healthy potato 31.82 ** 30.25 ** 28.82 **
Late blight disease 35.91 ** 33.24 ** 32.31 **

Soil 33.25 ** 32.12 ** 30.33 **
Background 32.15 ** 30.14 ** 27.42 **

Overall 32.92 ** 31.52 ** 29.34 **

Figure 4. A comparison of (a) sensitivity and (b) specificity of each class from different models.

4.3. The Model’s Performance When Mapping Potato Late Blight Disease from UAV HSI Data

In order to show the model’s performance and generalizability for the detection of
potato late blight disease, Figure 5 illustrates the classification maps of all four models for
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the independent testing dataset (collected under natural conditions). Here, to highlight the
display of healthy potato and late blight, we show the classes of soil and background in
the same color. We find that the potato late blight disease area produced by the proposed
CropdocNet is located in a hot-spot area, which is consistent with our ground investigations.
In comparison, there are noticeable “salt and pepper” noises found in the classification
maps produced by SVM, RF and 3D-CNN. More importantly, the proposed CropdocNet
method outperforms the competitors in the classification of the mixed pixels located in the
potato field edge and low density area; thus, a clear boundary between the plant (i.e., the
class of healthy potato) and bare soil (i.e., the class of background) can be observed in the
classification map of CropdocNet (see Figure 5e), but the pixels in the potato field edge
and low density area are misclassified as late blight disease in the maps of SVM, RF and
3D-CNN (see Figure 5b–d).

Table 5 shows the confusion matrix of the proposed model and the existing models
for the pixel-scale disease classification by using the independent testing dataset from site
3. Our results demonstrate that, compared with the accuracies based on the test dataset
mentioned in Section 4.2, the proposed model performs a robust classification on the
evaluation dataset with an overall accuracy of 98.2% and Kappa of 0.812. In comparison,
the competitors that only considered spectral (i.e., SVM) or spatial information (i.e., RF)
showed a significant degradation in terms of classification accuracy and robustness. The
execution time of the proposed model is 721 ms, which is faster than the 3D-CNN but slower
than SVM and RF. This findings suggest that the proposed model has better performance
in terms of both accuracy and computing efficiency compared to 3D-CNN.

Table 5. The confusion matrix of the proposed model and the existing models on the pixel-scale
detection of potato late blight disease. Here, UA is the user’s accuracy, PA is the producer’s accuracy.

Healthy
Potato

Late Blight
Disease Soil Background U (%) OA (%) Kappa Computing

Time (ms)

Healthy
potato 81 1 0 0 98.8

Late blight
disease 2 82 0 0 97.6 98.2 0.812 721

CropdocNet Soil 0 2 89 0 97.8
Background 0 0 1 72 98.6

P(%) 97.6 96.5 98.9 100

Healthy
potato 69 11 2 0 84.1

Late blight
disease 10 70 3 5 79.5 82.7 0.571 162

SVM Soil 3 5 75 8 82.4
Background 1 0 11 59 83.1

P(%) 83.1 81.4 82.4 81.9

Healthy
potato 65 11 2 2 81.3

Late blight
disease 12 66 4 4 76.7 78.8 0.615 117

RF Soil 3 5 73 8 82
Background 3 3 11 56 76.7

P(%) 78.3 77.6 81.1 80

Healthy
potato 73 6 0 0 92.4

Late blight
disease 5 75 2 3 88.2 88.8 0.771 956

3D-CNN Soil 1 2 80 4 92
Background 1 1 8 65 86.7

P(%) 91.3 89.3 88.9 90.3
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In addition, a patch-scale evaluation between the ground truth and classification
result is significant for guiding agricultural management and control in practice. Figure 6
shows the patch-scale test for the classification maps of healthy potato and potato late
blight disease overlaid on the UAV HSI in experimental site 1 and site 2, respectively. The
percentage rate revealed in each patch is the ratio of the late blight disease pixels and the
total pixels of the patch. For experimental site 1, nine patches with a size of 1 m × 1 m
are ground truth data. Our results illustrate that the average difference in the disease
ratio within the patches between the ground truth data and the classification map is 2.6%.
The maximum difference occurring in patch 8 is 5%. For experimental site 2, there are 16
1 m × 1 m ground truth patches. Our findings suggest that the average difference in the
disease ratio within the patches between the ground truth patches and the patches from
the classification map is 1%, and the maximum difference occurring in patch 1 is 3%.

a

b

c

d

e

Healthy potato
Potato late

blight disease

Soil and 

background

Figure 5. A comparison of the classification maps for the independent testing dataset from four
models. (a) RGB composition map of the raw data, (b–e) Classification maps of SVM, RF, 3D-CNN
and the proposed CropdocNet model.
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Figure 6. The patch-scale test for the classification maps of healthy potato and potato late blight
disease in (a) experimental site 1 and (b) experimental site 2. Here, the example patches on the
right side illustrate the accuracy comparison between the ground truth (GT) investigations and the
predicted levels (PL) of the late blight disease. Each value inside the patch represents the disease
ratio (the late blight disease pixels/the total pixels).

5. Discussion

The hierarchical structure of the spectral–spatial information extracted from HSI data
has been proven to be an effective way to represent the invariance of the target entities
on HSI [36]. In this paper, we propose the CropdocNet model to learn the late blight
disease-associated hierarchical structure information from the UAV HSI data, providing
more accurate crop disease diagnosis at the farm scale. Unlike the traditional scalar fea-
tures used in the existing machine learning/deep learning approaches, our proposed
method introduces the capsule layers to learn the hierarchical structure of the late blight
disease-associated spectral–spatial characteristics, which allows the capture of the rota-
tion invariance of the late blight disease under complicated field conditions, leading to
improvements in terms of the model’s accuracy, robustness and generalizability.

To trade off between the accuracy and computing efficiency, the effects of the depth
of the convolutional filters are investigated. Our findings suggest that there is no obvious
improvement in accuracy when the depth of 1D convolutional kernels K(1) = 128 and the
depth of 3D convolutional kernels K(2) = 64. We also find that, by using the multi-scale
capsule units (K(3) = 32), the model’s performance on HSI-based potato late blight disease
detection could be improved.

To investigate the effectiveness of using the hierarchical vector features for accurate
disease detection, we have compared the proposed model with three typical machine
learning models considering only the spectral or spatial scalar features. The results illustrate
that the proposed model outperforms the traditional models in terms of overall accuracy,
average accuracy, sensitivity and specificity on both the training dataset (collected under
controlled field conditions) and the independent testing dataset (collected under natural
conditions). In addition, the classification differences between the proposed model and the
existing models are statistically significance based on the McNemar’s Chi-squared test.

5.1. The Assessment of the Hierarchical Vector Feature

To further visually demonstrate the benefit of using hierarchical vector features in
the proposed CropdocNet model, we have compared the visualized feature space and the
mapping results of the healthy (see the first row of Figure 7) and diseased plots (see the
second row of Figure 7) from three models: SVM, 3D-CNN and the proposed CropdocNet
model. Our quantitative assessment reveals that the accuracy of the potato late blight
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disease plots is 76.8%, 83.2% and 94.2% for SVM, 3D-CNN and CropdocNet, respectively.
Specifically, for the SVM-based model, which only maps the spectral information into the
feature space, a total of 81% of the areas in the healthy plots are misclassified as potato late
blight disease (see the left subgraph of Figure 7b), and the feature space of the samples in
the yellow frame, as shown in the right subgraph of Figure 7b, explains the reason for these
misclassifications. Thus, no cluster characteristics can be observed between the spectral
features in the SVM-based feature space, indicating that the inter-class spectral variances
are not significant in the SVM decision hyperplane.

In contrast, the spectral–spatial information based on 3D-CNN (Figure 7c) performs
better than the SVM-based model. However, looking at the edge of the plots, there are
obvious misclassifications. The right subgraph of Figure 7c reveals the averages and the
standard deviations of the activated high-level features of the samples within the yellow
frame. It is worth noting that, for the healthy potato (the first row of Figure 7c), the average
values of the activated joint spectral–spatial features for different classes are quite close,
and the standard deviations are relatively high, illustrating that the inter-class distances
between the healthy potato and potato late blight disease are not significant in the features
space. Similar results can be found in the late blight disease (see second row of Figure 7c).
Thus, no significant inter-class separability can be represented in the joint spectral–spatial
feature space owning to the mixed spectral–spatial signatures of plants and the background.

In comparison, the hierarchical vector features-based CropdocNet model provides
more accurate classification because the hierarchical structural capsule features can express
the various spectral-spatial characteristics of the target entities. For example, the white
panels in the diseased plot (see the second row of of Figure 7d) are successfully classified as
the background. The right subgraphs of Figure 7d demonstrate the average, direction and
standard deviations of the activated hierarchical capsule features of the samples within the
yellow frame. It is noteworthy that the average length and direction of the activated features
for different classes are quite different, and the standard deviations (see the shadow under
the arrows) do not overlap with each other. These results fully demonstrate the significant
clustering of each class in the hierarchical capsule feature space; thus, the hierarchical vector
features are capable of capturing most of the spectral–spatial variability found in practice.

Healthy potato

Potato late blight disease

(a) Plot in 

RGB color
(b) SVM (c) 3DCNN (d) Proposed

H

D

B

H

D
B

Healthy potato

Late blight disease

Misclassification

Healthy potato

Late blight disease

Misclassification

Figure 7. The visualized feature space and the mapping results of the healthy and diseased plots
based on the different machine learning/deep learning methods: (a) the original RGB image for the
healthy potato (H), diseased potato (D) and background (B). (b) The classification results and the
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visualized spectral feature space of SVM, (c) the classification results and the averages and the
standard deviations of the activated high-level spectral–spatial features of 3D-CNN, and (d) the clas-
sification results and the visualized hierarchical capsule feature space of the proposed CropdocNet.

5.2. The General Comparison of CropdocNet and the Existing Models

For an indirect comparison between the proposed CropdocNet model and the existing
case studies, we have drawn Table 6 and present the accuracy and computing efficiency.
As shown in Table 6, our proposed CropdocNet model has the best accuracy (95.75%)
compared to the existing works. For computing efficiency, due to the deep-layered network
architecture and large scale samples, the deep learning models (3D-CNN and CropdocNet)
require more computing time compared to traditional machine learning methods (such as
SVM, RF) which only use fewer samples.

Table 6. The performance comparison of the proposed CropdocNet model with the existing study
cases. Note: “-” means no record found in the relevant literature.

Model Name Studied Crop
and Disease

Classification
Accuracy

Number of
Training
Samples

Number of
Parameters

Model
Execution

Time
Reference

Potato late
blight 84.01% 892 - - [2]

SVM Grape leaf
disease 88.89% 137 - 182 ms [58]

Tomato leaf
disease 92.01% 708 - - [59]

Tomato leaf
disease 95.20% 882 - - [60]

RF Rice leaf blight 69.44% 423 - 104 ms [61]
Potato late

blight 79.02% 892 - - [2]

Tea leaf blight 89.90% 13,262 770 k - [62]

3D-CNN Tomato leaf
disease 91.83% 3852 600 k 687 ms [49]

Tomato leaf
disease 90.30% 7176 840 k 871 ms [63]

Potato late
blight 85.40% 5142 560 k 564 ms [22]

CropdocNet Potato late
blight 95.75% 3200 690 k 721 ms This study

5.3. Limitations and Future Works

Benefiting from the hierarchical capsule features, the proposed CropdocNet model
performs better for potato late blight disease detection than the existing spectral-based
or spectral–spatial based deep/machine learning models, and the generalizability of the
network architecture is better than the existing models. The previous experimental evalu-
ation has demonstrated the robustness and generalizability of our proposed model. Our
model can be adapted to the detection of other crop diseases since our proposed method
introduces the capsule layers to learn the hierarchical structure of the disease-associated
spectral–spatial characteristics, which allows for the capture of the rotation invariance of
diseases under complicated conditions. However, it is worth mentioning that our current
input data for model training are mainly based on the full bloom period of potato growth,
when the canopy closure reaches maximum and the field microclimate is mostly suitable
for the occurrence of late blight disease; thus, the direct use of the pre-trained model may
lead to limited performance. The reason is that the hyperspectral imagery is generally
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influenced by the mixed pixel effect, which depends on the crop growth and stress types.
Therefore, in future studies, we will validate the proposed model on more UAV-based HSI
data with various potato growth stages and various diseases. Specifically, we will further
test the receptive field of CropdocNet and fine-tune the model on HSI data for performance
enhancement under various field conditions.

6. Conclusions

In this study, a novel end-to-end deep learning model (CropdocNet) is proposed to
extract the spectral–spatial hierarchical structure of late blight disease and automatically
detect the disease from UAV HSI data. The innovation of CropdocNet is the deep-layered
network architecture, which integrates the spectral–spatial scalar features into the hierar-
chical vector features to represent the rotation invariance of potato late blight disease in
complicated field conditions. The model has been tested and evaluated on controlled and
natural field data and compared with the existing machine/deep learning models. The
average accuracies for the training dataset and independent testing dataset are 98.09% and
95.75%, respectively. The experimental findings demonstrate that the proposed model is
able to significantly improve the accuracy of potato late blight disease detection with HSI
data.

Since the proposed model is mainly based on data collected from the limited potato
growth stage and one type of potato disease, to further enhance the proposed model, future
work will include two aspects: (1) we will validate the proposed model on more UAV-
based HSI data with various potato growth stages and various diseases under various field
conditions. This is important for UAV-based crop disease detection and monitoring at the
canopy and regional levels since the hyperspectral imaging is generally influenced by the
mixed pixel effect, which is highly dependent on the canopy geometry associated with the
crop growth and stresses. (2) We will also investigate whether the size of the receptive field
of CropdocNet is able to characterize the spectral–spatial hierarchical features of different
crop diseases.
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