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Abstract: Assessment of disease incidence and severity at farm scale or in agronomic trials is
frequently performed based on visual crop inspection, which is a labor intensive task prone to errors
associated with its subjectivity. Therefore, alternative methods to relate disease incidence and severity
with changes in crop traits are of great interest. Optical imagery in the visible and near-infrared
(Vis-NIR) can potentially be used to detect changes in crop traits caused by pathogen development.
Also, cameras on-board of Unmanned Aerial Vehicles (UAVs) have flexible data collection capabilities
allowing adjustments considering the trade-off between data throughput and its resolution. However,
studies focusing on the use of UAV imagery to describe changes in crop traits related to disease
infection are still lacking. More specifically, evaluation of late blight (Phytophthora infestans) incidence
in potato concerning early discrimination of different disease severity levels has not been extensively
reported. In this article, the description of spectral changes related to the development of potato
late blight under low disease severity levels is performed using sub-decimeter UAV optical imagery.
The main objective was to evaluate the sensitivity of the data acquired regarding early changes in
crop traits related to disease incidence. For that, UAV images were acquired on four dates during
the growing season (from 37 to 78 days after planting), before and after late blight was detected in
the field. The spectral variability observed in each date was summarized using Simplex Volume
Maximization (SiVM), and its relationship with experimental treatments (different crop systems)
and disease severity levels (evaluated by visual assessment) was determined based on pixel-wise
log-likelihood ratio (LLR) calculation. Using this analytical framework it was possible to identify
considerable spectral changes related to late blight incidence in different treatments and also to disease
severity level as low as between 2.5 and 5.0% of affected leaf area. Comparison of disease incidence
and spectral information acquired using UAV (with 4–5 cm of spatial resolution) and ground-based
imagery (with 0.1–0.2 cm of spatial resolution) indicate that UAV data allowed identification of
patterns comparable to those described by ground-based images, despite some differences concerning
the distribution of affected areas detected within the sampling units and an attenuation in the signal
measured. Finally, although aggregated information at sampling unit level provided discriminative
potential for higher levels of disease development, focusing on spectral information related to disease
occurrence increased the discriminative potential of the data acquired.
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1. Introduction

Site-specific crop management and characterization of different cultivars in breeding trials
(i.e., phenotyping) are examples of tasks demanding the description of vegetation biochemical and
biophysical properties with high spatial and temporal resolution [1,2]. Recent advances in sensing
solutions and subsequent data analysis targeting these applications can provide alternatives to increase
feasibility of the detailed description of crop traits and plant response to stress [3–5]. In this context,
proximal or remote radiometric measurements of the vegetation canopy spectral response on discrete
wavelength intervals in the visible (Vis), near infrared (NIR), and shortwave infrared (SWIR) have
physically based relationships with leaf and canopy properties, and therefore have potential to be used
for spatially explicit estimation of crop traits.

More specifically concerning biotic stress monitoring, assessment of disease incidence and severity
frequently relies on visual rating, which is a time consuming activity susceptible to errors related to
several factors, such as the complexity of the disease symptoms presented by plants and the level of
experience of the professional performing the evaluation [6]. Alternative solutions for identifying
effects of pathogen development on crop traits based on radiometric measurements in the optical
domain have been introduced for spectra acquired at leaf and canopy levels [7–14]. Although methods
focusing on data acquired at leaf level demonstrate, in general, that a strong relationship between
spectral changes and disease development exists, the same is not always observed in studies based on
measurements acquired at canopy level. This fact is particularly true if discrimination between healthy
and diseased vegetation is intended to be made during early stages of the pathogen development
or under low disease severity levels [15]. As described by Behmann et al. [16], some aspects adding
complexity and decreasing accuracy of early assessment of disease effects on crop traits based on
spectral properties are: multiple factors simultaneously affecting the crop spectral response, besides
disease-related changes (e.g., effects of nutrient and water availability or natural plant senescence);
variability of canopy structure (e.g., leaf inclination), which together with changes in view-geometry
and illumination conditions may have considerable impact on canopy reflectance measurements, in
particular for data with very high spatial resolution; low signal-to-noise ratio for the spectra acquired;
and the fact that changes occurring due to early disease development are subtle (pre-visual), which
makes it difficult to obtain reference data (labels) at a more detailed scale than the plant level or without
being mixed with information corresponding to healthy tissue and background.

Despite these limitations, several authors have reported successful discrimination between healthy
and diseased crop patches and plants based on high resolution imagery acquired at canopy level by
sensors mounted on Unmanned Aerial Vehicles (UAVs) or other airborne platforms. Many of the
studies performed dedicate attention to the discrimination of diseased vegetation in perennial crops
(e.g., Huanglongbing in citrus, leafroll disease and Flavescence dorée in grapevine, verticilum wilt and
Xylella fastidiosa on olive trees, and red leaf blotch on almond orchards), using UAV-acquired multi-
or hyperspectral data in the Vis-NIR, frequently coupled with thermal imagery and measurements
of sun-induced fluorescence [13,14,17–22]. For annual crops, studies have also been conducted,
for example, on yellow rust and powdery mildew in wheat [23,24] and on downy mildew in opium
poppy plants [25] based on airborne or UAV multi- or hyperspectral imagery in the Vis-NIR-SWIR and
thermal infrared domains. In these studies, multiple features derived from the spectral information
acquired have been tested to assess the impacts of disease incidence on crop traits, such as reflectance
in single spectral bands, calculation of spectral distance metrics, derivation of vegetation indices,
and estimation of crop traits from spectral measurements based on radiative transfer model (RTM)
inversion. Usually, the features derived are subsequently used in parametric statistical analysis
(e.g., analysis of variance and groups means test) or in parametric or non-parametric modelling
frameworks for assessment of disease incidence or severity using classification or quantification
methods (e.g., linear and quadratic discriminant analysis, support vector machines, classification and
regression trees, etc.). With the variety of methods and features used, variable performance has also
been reported for the discrimination between healthy and diseased plants and for the quantification of
disease severity in the targeted areas. However, in most cases authors indicate that methods relying
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on optical imagery acquired at canopy level are sensitive enough to allow timely detection of disease
incidence or accurate quantification of its severity.

Besides UAVs or other airborne platforms, ground-based imaging systems have been evaluated
in studies concerning disease assessment based on optical data [26–30]. In this case, the authors also
focused on pathogens affecting different perennial and annual crops (e.g., Huanglongbing in citrus,
cercospora leaf spot in sugarbeet, tulip breaking virus, yellow rust and fusarium head blight in wheat
and barley) and tested several methods for discriminating diseased and healthy plants, or to quantify
disease severity, achieving variable discriminative potential and accuracy. In addition to airborne or
ground-based imaging system, a considerable number of studies have employed point-based spectral
readings (mostly hemispherical-conical reflectance measurements [31]) at canopy level to evaluate
the development of different pathogens, and similarly to other sensing approaches, reported variable
degrees of accuracy or discriminative potential for the information acquired [32–36].

Consequently, considerable evidence exists that canopy based spectral data may provide useful
information for discriminating between diseased and healthy plants or for assessing disease severity
due to the direct impact of pathogen development on biochemical and biophysical properties of
vegetation at leaf and canopy scales [22]. However, disease symptoms, resulting from pathogen
development and from plant response to infection, are to certain extent specific to each crop and
disease considered [9,10]. Therefore, not all results obtained in a specific context can be generalized
to others. Also, many studies performing data acquisition at canopy level do not include a detailed
description of the relationship between disease development and changes in crop spectral response,
or do not discuss the implications of these changes in the results obtained during discrimination of
healthy and diseased areas, or during modeling of disease severity. This fact may be attributed to
the lack of detail in the available datasets, mainly regarding spatial and spectral resolution or timely
assessment of disease development. For example, some studies [14,18,20,24] adopt plants or canopy
patches with up to 5–10% disease severity to characterize low pathogen incidence, which may be
a relatively high value for other crops or pathogens, depending on the management practice to be
implemented and on how early the detection need to be made.

Regarding late blight (Phytophthora infestans) incidence in potato (Solanum tuberosum), only a
few studies are available relating disease development and crop heathy monitoring based on UAV
imagery or other spectral datasets acquired at canopy level. Considering the importance of late blight
assessment for potato management, as emphasized by Cooke et al. [37], this topic is certainly of
interest. Sugiura et al. [38] presented an approach for assessing late blight severity using UAV optical
imagery. This method involves RGB image color transformation and pixel-wise classification based
on a threshold optimization procedure. Results obtained by these authors are relatively accurate,
with reported R2 between the area under the disease progress curve estimated visually and by the
image-based approach, varying between 0.73 and 0.77. Duarte-Carvajalino et al. [39] performed
machine learning-based estimation of late blight severity using very high resolution imagery acquired
over the growing season, with a modified camera registering blue, red, and NIR bands. Despite using
considerably different prediction approaches in comparison with that described by Sugiura et al. [38],
the performance reported was similar in both studies. Other authors only described qualitative
evaluation of late blight incidence using UAV multispectral imagery [40,41] or only assessed effects
of advanced stages of the pathogen development on potato traits and crop spectral response using
data acquired by an hyperspectral imaging system [42,43]. However, studies focusing on UAV or
other sources of very high resolution imagery (with sub-decimeter resolution), including validation by
means of ground truth data (e.g., measurement of crop traits and assessment of disease severity, etc.),
and aiming a detailed description of spectral changes related to early pathogen incidence have not
been made so far for potato infection with late blight.

Therefore, the objectives of the present study can be summarized as follows: (i) identify changes
on the potato canopy reflectance in the optical domain related to late blight development, in different
organic cropping systems (i.e., cultivation with a single cultivar in contrast to a mixture of different
cultivars); (ii) compare alterations in the spectra observed using ground-based imagery (pixel size
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between 0.1 and 0.2 cm) with those detected through UAV data (pixel size between 4 and 5 cm); and (iii)
evaluate the potential of UAV imagery for early discrimination of different late blight severity levels
in potato, in particular identifying possible detectable changes in the canopy reflectance due to early
disease development using sub-decimeter imagery. For that, ground-based and UAV images were
analyzed using an up-to-date analytical framework, involving Simplex Volume Maximization (SiVM)
and pixel-wise log-likelihood ratio (LLR) calculation, as similarly performed by other authors at leaf
and canopy levels [9,44], in order to provide a sound basis for conclusions regarding the objectives of
this research.

2. Materials and Methods

2.1. Study Area and Experimental Set-Up

The data acquisition was realized during the spring and summer of 2016 in an organic
strip-cropping experiment (51.9917◦N, 5.66332◦E; WGS84) started in 2014 at the Droevendaal
experimental farm of the Wageningen University, The Netherlands. In this site, plots cultivated
with potato were followed mainly focusing on the assessment of late blight (Phytophthora infestans)
development and general crop healthy status. Twelve plots, measuring 3 by 10 m (small plots), were
established in a strip along the field (Figure 1), while buffer areas, measuring 3 by 5 m, were placed
before and after each plot, in the same strip, in order to avoid border effects between plots. The same
experimental configuration, but with larger plots (with 6 by 10 m, and buffer areas with 6 by 5 m),
was repeated in a neighboring field.
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Figure 1. Distribution of experimental plots and treatments (T1, non-mixed system; T2, mixed system)
in the study site. Figures correspond to false color composite (735, 631, and 609 nm as RGB bands) for
UAV imagery acquired 37 (a), 50 (b), 64 (c), and 78 (d) days after planting (DAP). White boundaries
indicate small and large experimental plots. Original experimental arrangement is indicated by black
connectors and new blocks used for treatments comparison (as described in Section 2.6) are indicated
in blue.
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Two different treatments were compared within the experiment: (a) plots in which a single
cultivar, susceptible to late blight (“Raja”), was planted (non-mixed system, T1); and (b) plots in which
a mixture of three cultivars (“Raja”, “Connect”, and “Carolus”) with different degrees of resistance
(from low to high, respectively) to late blight were iterated in each crop row (mixed system, T2). It is
worth drawing attention to the fact that in T2, the mixture was made systematically in each row,
iterating the different cultivars during the planting operation, as already mentioned. Considering the
treatments applied to the experimental plots, the minimum comparable area between plots, besides
individual plants, corresponded to sampling units, including three consecutive plants arranged in the
same row. Based on that, each plot was divided in multiple rectangular patches measuring 0.75 by 1 m,
hereafter referred as sampling units (SUs). These SUs were used during ground truth measurements
and also to extract spectral information from UAV imagery.

Crop traits (leaf chlorophyll content and canopy height) were measured (as described in
Section 2.6) in a selection of SUs within each plot in parallel, with acquisitions of UAV and ground-
based spectral imagery (Sections 2.2 and 2.3). Late blight occurrence and severity was visually assessed
every 3 to 5 days after the first symptoms of the disease were detected, following the methodology
described by the European and Mediterranean Plant Protection Organization [45]. For late blight
assessment, four fixed sample units in the small plots (one per crop row) and one sample unit in the
large plots were followed during the growing season. Also, six extra SUs were randomly chosen in
each small experimental plot for disease assessment after late blight was first observed in the field, in
order to better describe intra-plot variability. The final scores obtained at sampling unit level were
summarized in 13 disease severity classes, as follows (bounded in relation to the previous class):
healthy (no disease observed), ≤1.0%, ≤2.5%, ≤5.0%, ≤7.0%, ≤10.0%, ≤15.0%, ≤25.0%, ≤50.0%,
≤75.0%, ≤90.0%, ≤97.5%, and >97.5% of disease severity. It is worth noting that low disease severity,
i.e., below 10% of leaf area affected, was assessed counting lesions observed in the leaves, while higher
severity levels were estimated directly by visual evaluation of the percentage of leaf area affected,
as recommended by the methodology adopted [45]. Scores were given for each plant and final severity
class for a given sampling unit was calculated taking their average, after transforming the scores to
area of affected tissue by area of sampling unit surface.

The experiment followed a generalized randomized block design, with three blocks and two
replicates for each treatment (i.e., cultivation systems) in each block (Figure 1). From the three blocks
included in the experimental site, only the first two were followed in this study (i.e., eight experimental
plots), due to legal restrictions concerning the data acquisition (i.e., UAV flights) in the area of study.
Analysis of the data acquired was adapted to these restrictions as described in Sections 2.6–2.8.

2.2. UAV Optical Imagery with Sub-Decimeter Resolution

Images were acquired on four dates during the growing season (Table 1) using a lightweight
hyperspectral frame camera (Rikola Ltd., Oulu, Finland) on board of a UAV platform in order to follow
the dynamics of crop and disease development over time. The camera used is based on a Fabry-Perot
interferometer (FPI) [46] and was programmatically configured to register 16 narrow bands between
600 and 900 nm (Figure 2). These bands were chosen due to their importance to describe changes in
biochemical (leaf chlorophyll content) and biophysical (e.g., leaf area index, ground cover, etc.) traits
of vegetation at leaf and canopy levels [47].
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Figure 2. Specifications of the data acquired with the hyperspectral imaging system mounted on the
UAV platform (red boxes, 16 spectral bands) and on handheld configuration (green boxes, 31 spectral
bands; Section 2.3). Center line in each box indicate spectral band center and extremities for the full
width at half maximum for each band (FWHM; varying between 13 and 21 nm for UAV data and
between 13 and 23 nm for ground-based images).

Due to intrinsic characteristics of the FPI system used, images corresponding to different
wavelengths were acquired sequentially, since changes in the wavelengths measured depended
on internal camera adjustments. Consequently, a mismatch between images corresponding to different
bands in a given data-cube occurred, an issue solved during photogrammetric processing with a
dedicated software (PhotoScan version 1.3, AgiSoft LLC, St. Petersburg, Russia). This procedure
relied on the implementation of Structure from Motion (SfM) algorithm, with feature matching and
self-calibrating bundle adjustment [48]. During image alignment and derivation of dense point clouds,
imagery with full resolution was used (i.e., setting quality to “high” and “ultra-high” for these steps in
the software processing chain, respectively). Optimization of retrieved camera position and orientation
for each scene was performed based on 4 to 8 ground control points (depending on the acquisition
date, Table 1), with coordinates registered using a RTK-GPS. Before the optimization step, sparse
point clouds were filtered based on residuals and reconstruction uncertainty (10% of points with the
largest values were removed in each case), as performed by Honkavaara et al. [49]. Dense point cloud
depth filtering was set to “mild” to preserve details in the final 3D reconstruction of the crop surface.
Considering the approximate flight height of 80 m, a ground sampling distance between 0.04 and
0.05 m was achieved in the final orthorectified images.

Table 1. General aspects related to the data acquisition using the Unmanned Aerial Vehicle (UAV)
platform and a ground-based sensing setup (Section 2.3). Days after planting (DAP), estimate general
crop growth stage according to the BBCH (‘Biologische Bundesanstalt, Bundessortenamt and CHemical
industry’) scale [50], illumination conditions, and number (nbr.) of ground control points (GCPs) used
during photogrammetric processing.

Date 1 DAP Growth
Stage 2

Ground
Data 3 Illum. 4 Integration

Time (ms)
Nbr. of
GCPs

26/05 37 2–4 I, II Sunny 10 4
08/06 50 4–6 I, II Sunny 10 4
22/06 64 6–7 I, II, III Cloudy 20 8
06/07 78 7–8 I, II, III Sunny 10 7

1 Flights were realized between 10:00 h and 13:00 h (GTM+2) to minimize angular effects of incident radiance on the
measurements. 2 BBCH scale summary: 0 = germination, 1 = leaf development, 2 = formation of basal side shoots,
3 = main stem elongation, 4 = tuber formation, 5 = inflorescence emerging, 6 = flowering, 7 = fruit development,
8 = ripening of fruit and seed, 9 = senescence. 3 I = crop traits (leaf chlorophyll content, canopy height), II = canopy
spectra acquired with camera in handheld mode for a selection of SUs, III = late blight severity assessment. 4 Sunny
illumination conditions corresponds to clear sky while cloudy indicates partially overcast conditions.
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Conversion of digital numbers (registered with 12-bit radiometric resolution) to radiance, in W/m2

sr nm, was performed using camera manufacturer’s proprietary software (HyperspectralImager, v2.0,
Rikola Ltd., Oulu, Finland). This step included the correction for dark current using images taken with
the sensor lens completely covered (dark reference), acquired before each flight, and for flat field using
factory calibration parameters. Radiance was converted into reflectance factor through the empirical
line method using images of a Spectralon reference panel with nominal 50% reflectance (LabSphere
Inc., North Sutton, NH, USA). These images were taken immediately before flight under the same
general illumination conditions observed during data acquisition.

The orthomosaics used to extract the radiometric information corresponding to the monitored
areas were derived taking the average of all reflectance values measured in a given location (pixel).
This product aggregated spectral information from different images, with variable angular properties
due to the combination of UAV movement, overlaps between the images acquired and relatively large
camera field of view. The reason to derive such a product was to mitigate the impact of angular effects
on the radiometric data used to characterize the monitored patches along the field, in agreement with
results obtained by Aasen and Bolten [3]. As introduced in Section 2.1, spectral data was extracted
within the experimental plots for a given number of SUs in each date. Before late blight development
onset, four SUs in each small plot were considered during spectral data extraction, while after the
disease was first detected (i.e., after 64 days after planting—DAP), 10 SUs per small plot were used.
Large experimental plots had only one sampling unit per plot followed throughout the growing season
that were included in the analysis.

2.3. Ground-Based Optical Imagery with Sub-Centimeter Resolution

Besides UAV data, images were acquired at the ground level using the same FPI camera system
(Section 2.2). This allowed a better description of the disease development on plants and leaves
through images with increased spatial (pixel size between 0.1 and 0.2 cm) and spectral resolution from
a perspective comparable to the UAV. Data acquisition with the handheld configuration of the FPI
sensor was made after UAV flights were performed (Table 1). Images were taken in one sampling unit
within each small experimental plot in the field (Figure 1). Illumination conditions constrained data
collection on the third date (64 DAP) and only the first block of the experiment (i.e., first four plots)
was imaged, but in this case two images per plot were acquired. The complete dataset obtained with
the camera in this configuration comprises 32 data-cubes with 31 spectral bands and measurements
from 500 to 900 nm, as described in Figure 2.

The first step for processing the ground-based images was to transform raw digital numbers to
radiance, as described in Section 2.2. After that, correction for camera lens distortion was performed
using an external reference pattern, following the approach described by Zhang [51]. Camera intrinsic
parameters and lens radial and tangential distortion (represented by three and two coefficients,
respectively) were estimated in order to improve geometrical representation of the area covered by
the images.

Due to the characteristics of the FPI sensor system described in Section 2.2, the different
bands measured using the camera in handheld configuration were not recorded simultaneously.
Consequently, despite the fixed position of the camera during data acquisition (pointing to the center
of the sampling unit at approximately one meter from the top of the canopy and oriented towards
the orthogonal to the sun principal plane), small movements of the camera and crop canopy were
still noticeable between bands of the same data-cube. In this case, band-to-band co-registration
was performed to correct possible positioning mismatches between data corresponding to different
wavelengths. For that, an area-based registration approach was implemented within the framework
proposed by Lowekamp et al. [52]. In preparation for the band’s co-registration, the spectral dataset
was divided in three subsets (503–660, 672–750, and 763–893 nm) and one reference band was selected
for each one of them (620, 724, and 803 nm, respectively). After that, all bands were registered to
the reference band in their respective subset. The reference bands were chosen using as criteria their
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intermediary position between the main expected spectral changes in the vegetation spectral response
occurring in the wavelengths included in each subset. Although more objective approaches have been
proposed to divide data-cubes in representative spectral regions and to assign reference bands for
band-to-band registration [53] in similar contexts, the simplified approach implemented here allowed
selection of a relevant reference band sharing spectral similarities with all bands included in a given
subset. The final alignment between bands was obtained registering the first and last subsets to
the central set. This was achieved based on the transformation calculated for the nearest spectral
band on a subset to the bands in the central set. In all cases (i.e., band-to-band alignment within and
between subsets), two types of transformations were calculated, a rigid affine transform and a non-rigid
displacement field transform. Mutual information was used as a metric to optimize the transformations
applied [54]. Fine tuning of the registration parameters (e.g., configuration of multi-level registration
framework and gradient descent line search algorithm) was based on assessment made using a small
sample taken from the dataset before application on all images. Evaluation of the final registration
accuracy was performed using point based automatic feature extraction (SIFT; [55]) and matching
(FLANN; [56]), due to unavailability of control points in the imaged areas that could be used for this
purpose. Registration accuracy of the transformations was evaluated by matching features in each
spectral band with features detected in the reference band of their respective spectral subset. Root
mean squared error (RMSE) was calculated considering all the matched points for a given band, while
final RMSE reported corresponded to the average RMSE for a given spectral subset and transformation
used. A final assessment was made comparing features in the closest band in each set to those in
the reference band of the central set, in order to estimate the final alignment quality between subsets
(Table A1).

2.4. Estimation of Ground Cover for Background Removal from Ground-Based Imagery

Ground cover was estimated for images acquired with the FPI-based camera on handheld mode
using a straightforward approach, similar to that implemented by Behmann et al. [16]. First, the spectra
of all images acquired in each acquisition date was subject to dimensionality reduction through linear
Principal Components Analysis (PCA) in order to mitigate information redundancy and potentially
enhance distinction between vegetation and soil present in the imaged areas. Features derived using
PCA were then used as inputs to unsupervised segmentation through Gaussian Mixtures Modelling
(GMM), which was separately applied to each data-cube. A suitable number of clusters to retain in
each case was selected based on the gap statistic [57], considering up to 20 classes and selecting the
segmentation providing the maximal value for this parameter. Binary classification of each cluster as
background or vegetation was made using a logistic classification model trained, validated, and tested
using pixel-wise manually labelled data. For that, nine regions of interest (ROI) were randomly
selected to be manually labelled within each one of the 32 ground images. These ROIs had dimensions
corresponding to the ground sampling distance estimated for UAV images acquired in the same date.
This allowed derivation of a dataset taking into account resolution obtained in both cases, anticipating
a posterior use of the outputs obtained during ground-based background removal for background
effect mitigation on UAV images (Section 2.5). Ground-based imagery resolution was estimated to be
approximately between 1.17 to 1.59 mm and an approximate factor of 30 to 40 existed in relation to
UAV images. Consequently, each ROI comprised a squared area with approximately 30 to 40 pixels
length in each side, depending on the acquisition date and sampling unit considered. Half of the
manually labelled data was used for model training and validation, while the other half was used as
test dataset in order to verify if the models obtained had a stable performance. In this case, accuracy
was evaluated through the area under the precision versus recall curve, with values above 0.9 obtained
during test for all dates. As input for the logistic classification models, a selection of vegetation indices
(VIs) was tested (Table A2). In order to select only VIs contributing effectively to the distinction
between bare soil and vegetation, the logistic model was coupled with elastic net regularization [58].
Final prediction of each cluster class was made based on the pixel-wise probability estimated using
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the logistic model obtained for each date. Clusters with more than 50% probability for the vegetation
class were retained as foreground. In this case, instead of using the average or median probability
estimate for pixels in a given cluster, different percentiles were calculated (from 0 to 100% in intervals
of 0.5%) and the cluster class was assigned as vegetation if the probability was greater than 50% for the
considered percentile. The most suitable percentile for each date, as well as the accuracy of the overall
segmentation process (Table A3), was obtained by calculating the RMSE of ground cover prediction in
comparison with manually labelled data in the calibration and test datasets (i.e., comparing number of
pixels labelled as vegetation at ROI level with classification outputs after cluster-wise prediction).

2.5. Mitigation of Background Effects on UAV Imagery Using Vegetation Index Threshold

Spectra corresponding to pixels with predominant bare soil fraction or most affected by spectral
mixing of the UAV images were removed based on outputs of the segmentation analysis performed
for the ground level data (Section 2.4). For that, ground-based images were registered to UAV image
patches, manually selecting one corresponding control point between both datasets for each sampling
unit, as well as manually locating the central crop row in each image and determining its direction.
This information allowed performance of ground and UAV image rotation to a common axis (i.e., crop
row), and translation of the ground images to their approximate location in the field based on the
correspondence with the UAV images. After the image-to-image registration, a selection of narrow and
broad band Vis, including bands between 600 and 900 nm (Table A2), were evaluated for background
removal in the UAV images. A threshold for each VI was defined by finding the value providing the
most similar segmentation results (i.e., estimate of vegetation cover) to that derived using ground
images with full spatial and spectral resolution.

Adjustment of VI thresholds was performed using half of the SUs imaged at ground level in
each date (n = 4), while the generalization potential for the values obtained was assessed based on
validation performed with independent data (i.e., applying the thresholds obtained to the other half of
the dataset). The final VI used for background removal in UAV images was chosen based on the lowest
average RMSE for the validation dataset, considering all dates (Figure A1). Therefore, it was expected
that the selected VI and its corresponding thresholds had considerable generalization potential and
stability concerning changes in illumination, view-geometry, and background characteristics, despite
the small sample set size used for threshold optimization in each date. This approach was based on the
method adopted by Jay et al. [59] for background removal applied to ground-based imagery. The final
optimal thresholds by VI and acquisition date can be found in Table A4. OSAVI was finally selected
for background removal due to its frequent use in other studies, instead of NDVI*SR, which provided
slightly lower RMSE values on the overall evaluation (Figure A1).

2.6. Measurements of Crop Traits and Treatments Comprison Based on Linear Mixed Effects Models

Crop traits were measured at each acquisition date to assess direct impacts of disease severity
on plant biophysical and biochemical properties. Besides, these measurements allowed evaluation of
general differences between treatments that could be potentially related not only to disease incidence
but also to cultivar intrinsic characteristics. In addition to the estimation of ground cover (Section 2.5),
leaf chlorophyll content and canopy height were measured. Leaf chlorophyll content was derived based
on SPAD (Soil Plant Analysis Development; [60]) meter readings (SPAD-502; Minolta Corporation Ltd.,
Osaka, Japan). In this case, one measurement was made per plant in each sampling unit selected for
data acquisition. This measurement was made on one leaflet of the most developed leaf of the plant,
totaling three readings in each sampling unit.

Conversion from SPAD units to chlorophyll content per leaf surface area (µg·cm−2) was performed
based on the equation provided by Uddling et al. [61], and the average for three measurements made
within each sampling unit was the final leaf chlorophyll content evaluated. Similarly, canopy height
was measured from the potato ridge to the highest leaf in each plant and the average represented
the final values used to describe the canopy in each sampling unit. It is worth noting that since leaf



Remote Sens. 2019, 11, 224 10 of 47

chlorophyll content and canopy height were measured in three SUs within each small experimental
plot (Figure 1), ground cover was estimated considering the same SUs for all data acquisitions (i.e., from
37 to 78 DAP). Only SUs in the small plots were considered for treatment comparison. It is worth
reminding that a more complete dataset (as indicated in Section 2.2 and comprising observations
made in the small and large plots) was used to evaluate spectral changes over the growing season
(as described in Sections 2.7 and 2.8).

Besides the crop traits listed above, values of Weighted Difference Vegetation Index (WDVI)
were used as proxy to leaf area index (LAI), considering its strong relationship with this specific
crop trait [62]. This approach was necessary to allow a better interpretation of spectral changes
potentially related to the crop canopy structure. Therefore, in this manuscript reference to levels
of LAI are made based purely on the spectral data, assuming that other canopy traits, such as leaf
angle distribution, had lower impact on the results observed in comparison with changes related to
LAI. This way, consideration related to canopy structure refers mainly to changes in LAI, except if
indicated otherwise.

The crop traits, together with vegetation indices providing the greatest discriminative potential
between treatments in the last data acquisition, were used for assessing whether differences between
treatments were significant in each acquisition date. For ranking vegetation indices according to their
discriminative potential, logistic regression was used to classify all pixels within the measured SUs
as corresponding to a given treatment (i.e., non-mixed or mixed systems). C-statistic [63,64] values
were then calculated from the classification outputs for each VI and used for evaluation (larger values
corresponding to greater discriminative potential).

Statistical significance for differences observed between treatments were evaluated based on
linear mixed effects models (LMMs; [65]) fitted separately to each response variable, comprising traits
and VIs. As covariates used for modelling the variables of interest, treatment and acquisition date
together with their interaction were included as fixed effects, while experimental block and sampling
unit (SUs) ID (nested within block) were adopted as random effects in each model. Three blocks were
considered in the analysis after rearranging the initial experimental set-up by excluding two plots
from the last of the original blocks in the field (i.e., last experimental plot for each treatment, shown in
Figure 1). This rearrangement was made in order to better represent the potential variability existent
in the field (by dividing the area to be analyzed in a larger number of blocks), since the complete
experiment could not be sampled. Temporal trends within the groups considered (SUs ID nested
within blocks) were represented through an autocorrelation structure of order 1. Treatment comparison
for each acquisition date was performed deriving marginal means for the models using contrasts
calculated by the package emmeans [66] in R, while the LMMs were fitted using the nlme [67] package
in the same environment. Selection of fixed and random effects for consideration (LMMs structure)
and evaluation of model assumptions was made based on Akaike information criterion (AIC) and on
residuals derived for each model.

2.7. Descrition of Crop Canopy Spectral Variability through Simplex Volume Maximization (SiVM)

The effects of late blight incidence on the potato canopy reflectance, related to pathogen
development and plant defense response, were assessed using the matrix factorization approach
described by Thurau et al. [68,69]. This method has been successfully applied in studies aiming to
relate changes observed on the canopy reflectance with effects of water stress and disease infection in
plants grown under laboratory or field conditions [8,11,44]. The first step of this approach consists of
deriving a series of archetypal spectral signatures from the complete dataset comprising spectra of
healthy and stressed plants in order to describe the variability observed. These archetypes are derived
through convex constrained non-negative matrix factorization, and consequently, correspond to real
measurements within the dataset (e.g., pixels from the images acquired). The general optimization
problem targeted can be described as the minimization of the Frobenius norm between the original
dataset and the reconstructed data through the matrix W of base vectors and the coefficients matrix
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H [8]. This is obtained during analysis by retaining only bases that contribute the most to maximize
the volume of the simplex described by the vectors included in W. As a computing efficient alternative
to this procedure, Thurau et al. [68,69] proposed the so called Simplex Volume Maximization (SiVM)
method, which relies on distance geometry rather than on the simplex volume itself [8,70]. The matrix
H of coefficients is obtained through constrained quadratic optimization and describes the optimal
abundance of each component W for reconstruction of the spectral signatures being modelled.

In this study, the number of archetypes retained in W to represent the ground-based and
UAV–borne datasets to be analyzed was set empirically to 25, as performed by Wahabzada et al. [8]
and Thomas et al. [11]. It was verified that this number of bases provided good reconstruction
accuracy while avoiding the oversampling of the feature space, which may be beneficial considering
reconstruction accuracy [71], but might bring problems during further analysis due to the so called
“curse of dimensionality” [72]. Each dataset (i.e., ground-based and UAV images) for a given acquisition
date was analyzed separately to mitigate impacts of changes in view of geometry and illumination
conditions over time on analysis outputs. As an example, archetypes extracted for the ground-based
and UAV datasets acquired 78 DAP are presented in Figure A2. Two pixels were chosen in a UAV
image patch acquired on that date. Weights derived for reconstructing these pixel spectra from the
archetypes are illustrated for both datasets (UAV- and ground-based images).

The only difference between the steps involved in the application of SiVM to ground and UAV
data was related to the inputs used for the selection of archetypes. While for UAV images all spectra
extracted from the monitored areas were considered, for the ground-based data a pre-selection
of spectra was performed based on the outputs of the segmentation (GMM) performed during
background removal (Section 2.4). For that, the spectral angle [73] between each spectrum in a given
cluster and its “average spectra” (i.e., band-wise reflectance average) was calculated, and spectral
signatures corresponding to the 1st, 25th, 50th, 75th, and 99th percentiles of spectral angle distance
to the average were selected. The cluster-wise pre-selected spectra for all images were then used
as input for the SiVM-based extraction of 25 archetypes, which finally represented the variability
of ground-based spectral data acquired on a specific date. Furthermore, Standard Normal Variate
(SNV) [74] transform was applied to the ground-based spectral dataset before SiVM implementation,
in order to minimize effects of illumination changes within the canopy on the analysis [75].

After the chosen number of bases was derived (W), the abundance coefficients (H) obtained
for pixels from different treatments (i.e., non-mixed and mixed cultivation systems) or disease
severity classes were used to estimate a probability density distribution for each group. In this
study, the multivariate Dirichlet distribution was adopted and its parameters were estimated by
maximum likelihood. With the probability distribution estimated, pixels in the image were mapped
according to specific treatment or severity class based on the Bayes factor (i.e., log-likelihood ratio, in
this case, LLR, since no prior information on the data distribution was taken into account), as described
by Wahabzada et al. [8]. This mapping was performed comparing the difference between the logarithm
of probabilities, for coefficients h corresponding to each spectral signature (i.e., pixel-wise comparison),
within distributions from different treatments or severity classes considered.

The description provided in this section is a simplified overview of the methodology implemented.
For a more comprehensive explanation, including mathematical formulation and notation used,
we refer to Thurau et al. [68,69], Wahabzada et al. [8], and Kersting et al. [70]. For most of the steps
described in this section, open source libraries in Python were used, notably PyMF, to implement
SiVM, and Dirichlet MLE, to estimate parameters for Dirichlet distributions.

2.8. Pixel-wise Comparison Framework to Identify Relevant Spectral Information Assciatedto Late
Blight Development

For assessing the impact of disease development on ground-based and UAV data, two different
approaches were adopted. First, considering the reduced number of images acquired at ground level
only comparison between treatments (“non-mixed” and “mixed” cultivation systems, T1 and T2) was
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possible. In this case, all ground-based images acquired on a given date (n = 8) had their pixel-wise
probability estimated considering distributions of coefficient H for T1 and T2. These probabilities were
then compared using the LLR, as described in Section 2.7. Probability distribution corresponding to
T1 was considered as hypothesis H1 (“group of interest”) and compared to the null hypothesis H0
(“reference”) represented by probability estimated for T2, since healthier plants were expected to be
observed in this treatment. A parallel was made between results obtained for ground data and those
observed for UAV-based imagery. However, the latter case comprised considerably more observations
(as described in Sections 2.2 and 2.3).

Besides the comparison at treatment level, more specific evaluation was made for each disease
severity class observed using data acquired by the UAV platform in the last two acquisitions (64 and
78 DAP). In this case, the healthiest observations were adopted as null hypotheses (H0), during LLR
calculation, for comparison with each severity class (classes with at least 10 observations, Table A5).
Also in this case, only observations from a single treatment were used to represent a given severity
class. Consequently, comparison between hypotheses H0 and H1 could be made within the same
treatment for observation with relatively low disease severity levels (below 5.0% severity). For that,
from observations made 64 DAP, only those from T1 were evaluated on this phase. In addition, for data
acquired 78 DAP, two SUs from each treatment were eliminated from the analysis (as indicated in
Table A5).

To summarize, differences detected during the comparisons, LLR values for SUs from the classes
of interest (H1) were grouped in discrete intervals (e.g., from 0 to 15, in steps of 0.5). This allowed
representation of the gradual spectral changes associated with the increase in the association between
spectral information and the specific group considered. In the case of treatments comparison, only SUs
cultivated with T1 were taken into account to summarize the differences between spectral information
relatively weakly associated with T1 (i.e., LLR values below 0.5) and that with stronger relation with
this treatment (i.e., higher LLR values). Similarly, when focusing on the evaluation of different disease
severity classes only image patches corresponding to SUs scored within the specific class of interest
were evaluated.

To further facilitate the interpretation of the outputs, the ratio between the average reflectance
for each LLR interval and that corresponding to the first interval (i.e., lowest LLR values observed)
was derived. This calculation was expressed in percentage and referred as “ratio”, as performed by
Naidu et al. [76]. Besides this metric, the difference between the percentage of observations (number
of pixels divided by the total) within a given LLR interval for the group of interest was subtracted
from the percentage of observations in the same LLR interval for the reference group, a parameter
referred as delta (∆). In this case, the metric derived allowed visualization of proportional changes
in the frequency of LLR values observed within the discrete intervals, considering the treatment or
disease severity classes of interest in relation to the reference. Also, the cumulative absolute delta
(delta total—∆t; i.e., sum of delta values) was calculated to give a general overview concerning the
changes in LLR value distribution between treatments or between a given disease severity class and
the healthier reference adopted.

3. Results

3.1. Evaluation of Crop Traits and Disease Severity over the Growing Season

The crop development during the period evaluated was characterized by continuous decrease
in leaf chlorophyll content coupled with a general increase in canopy height and ground cover
(Figure 3a–c). Differences between treatments occurred mainly later than 64 days after planting (DAP),
with higher leaf chlorophyll content, canopy height, and ground cover observed on the mixed cropping
system (T2). Despite the higher values of leaf chlorophyll and of traits associated with canopy structure
on T2 later in the growing season, lower values of these traits were observed for plants in this treatment
during early crop development (i.e., first acquisition, 37 DAP), indicating a smaller initial growth rate
for T2.



Remote Sens. 2019, 11, 224 13 of 47

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 46 

 

last two acquisitions, while having comparatively lower discriminative potential for the first 
acquisitions, a desirable feature in the application evaluated in this research since late blight was not 
observed in the field during the initial data collections.  

The relationship between crop traits and spectral information (vegetation indices) is further 
explored in Figure A3. The indices selected (CIre and REP) were both affected by changes in leaf 
chemistry and canopy structure and were not able to indicate alterations strictly associated to a single 
crop property. Besides CIre and REP, results for WDVI were also evaluated in the Figure 3f due to its 
close relationship with leaf area per unit of ground surface (i.e., LAI), an important trait related to 
canopy structure. While comparable trends are observed in the last two acquisitions between WDVI 
and the measured canopy properties (i.e., crop height and ground cover), in the initial evaluations 
(i.e., 37 and 50 DAP) the trend observed for WDVI is in part the opposite of that described by these 
crop traits (Figure 3, b–c). This indicates that ground cover and canopy height might not have been 
sufficient to describe all differences between treatments regarding canopy architecture (i.e., other 
canopy traits, such as LAI, varied between treatments), in particular for these first two data 
acquisitions. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Leaf chlorophyll content (a), canopy height (b), ground cover (c), and vegetation indices 
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Figure 3. Leaf chlorophyll content (a), canopy height (b), ground cover (c), and vegetation indices
(Table A2), namely, CIre (Chlorophyll Index red edge, d), REP (Red Edge Position, e), and WDVI
(Weighted Difference Vegetation Index, f) derived from UAV imagery, describing crop growth under
different cultivation systems (T1 and T2, “non-mixed” and “mixed” treatments, respectively). Points
indicate within plot measurements (n = 3 sampling units per plot), while each cross represent the
average at plot level. Lines connect the average for each treatment over time. Numbers in blue
correspond to the p-value for each acquisition date. Asterisks communicate the same p-values,
indicating contrasts significant at 0.05 (*), 0.01 (**), and 0.001 (***).

Contrasts between treatments were not significant for chlorophyll content, while being more
frequently significant for traits related to canopy structure (Figure 3a–c). In all cases, differences
observed were generally larger and more significant in the last two evaluation dates (i.e., 64 and
78 DAP). Differences observed for vegetation indices with relatively good discriminative potential
for the different treatments (according to results presented in Table A6) followed similar patterns to
those described by the crop traits (Figure 3d–f). It is worth noting that CIre (Chlorophyll Index red
edge, Table A2) was selected due to its good discriminative potential for data corresponding to the last
two acquisitions, while having comparatively lower discriminative potential for the first acquisitions,
a desirable feature in the application evaluated in this research since late blight was not observed in
the field during the initial data collections.

The relationship between crop traits and spectral information (vegetation indices) is further
explored in Figure A3. The indices selected (CIre and REP) were both affected by changes in leaf
chemistry and canopy structure and were not able to indicate alterations strictly associated to a single
crop property. Besides CIre and REP, results for WDVI were also evaluated in the Figure 3f due to its
close relationship with leaf area per unit of ground surface (i.e., LAI), an important trait related to
canopy structure. While comparable trends are observed in the last two acquisitions between WDVI
and the measured canopy properties (i.e., crop height and ground cover), in the initial evaluations
(i.e., 37 and 50 DAP) the trend observed for WDVI is in part the opposite of that described by these crop
traits (Figure 3b,c). This indicates that ground cover and canopy height might not have been sufficient
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to describe all differences between treatments regarding canopy architecture (i.e., other canopy traits,
such as LAI, varied between treatments), in particular for these first two data acquisitions.

Changes on ground cover over time for sampling units (SUs) imaged using ground-based and
UAV sensors during the growing season are presented in Figure A4. Values of vegetation index
(OSAVI) in both cases agree with results presented in Figures 3d–f and A3d, with a general reduction
in chlorophyll content and in canopy structure-related traits on the last acquisition, in particular for
the “non-mixed” system (T1). In addition, the visual correspondence between the datasets acquired by
both sensing methods (Figure A4) indicate that despite potential image-to-image residual registration
errors and view-geometry dissimilarities, comparison between images is valid in the context of this
research. Figure A5a provides a quantitative comparison of OSAVI median values in the SUs evaluated
corresponding to both sensing approaches (i.e., ground-based and UAV). Disagreement between the
values observed are found mainly in the first acquisition (38 DAP), which may be related to residual
background effects on the data corresponding to the UAV imagery due to its coarser resolution.

Assessments of disease incidence and severity indicated considerable differences between
treatments over time (Figure 4 and Table A5). Since the first late blight symptoms were identified in
the field (64 DAP), SUs cultivated with the T1 presented higher levels of disease incidence or severity.
Assessments made on the same dates in which UAV and ground-based data were acquired indicate that
these datasets provide a good description of the early stages of disease development (up to 15% disease
severity). The last assessment made together with a UAV flight (i.e., performed 78 DAP) corresponds
to the date with the largest contrasts between treatments concerning leaf chlorophyll content and
traits related to canopy structure, amongst all dates having UAV and ground-based imagery available
(Figures 3 and 4). Therefore, crop traits followed the observed levels of disease severity and changes on
vegetation biochemical and biophysical properties observed 64 and 78 DAP were potentially related
to disease development. The association between disease severity and crop traits was also verified
through the rank correlation coefficients calculated between disease severity classes and vegetation
indices derived from UAV imagery acquired 64 and 78 DAP (Table A7). For instance, a negative
correlation of approximately −0.55 was observed between disease severity and REP, a vegetation
index related to leaf and canopy properties (Figure A3), indicating a considerable relationship between
disease severity and canopy properties in this specific assessment date. Correlations between disease
severity and vegetation indices corresponding to 64 DAP are substantially less strong and not
significant in comparison with those obtained for 78 DAP (Table A7), which can be attributed to
the lower levels of disease incidence and severity observed on this date.
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Figure 4. Distribution of visual disease scores into specific classes of late blight severity (according to
approximate percentage of affected leaf area at sampling unit level) for each assessment date. T1 and T2
correspond to systems cultivated with a single cultivar (“non-mixed”) and with a mixture of different
cultivars (“mixed”), respectively. Only assessments made 64 and 78 Days After Planting (DAP) were
followed by acquisition of ground-based and UAV data (*).
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3.2. Assessment of General Spectral Changes Related to Different Cropping Systems and Late Blight Infection

In Figure 5, average reflectance is presented for pixels grouped in discrete intervals of LLR. In this
case, higher LLR values indicate higher probability for coefficients h in distribution estimated for
T1 in comparison to distribution estimated for T2. Although differences in spectra with relatively
stronger relationship with T1 (i.e., higher probability in the distribution for T1), in comparison with
spectra having weaker association with this treatment, could be detected by both sensing approaches,
the relationship observed between spectral information and the treatment of interest (T1) using UAV
imagery was generally less intense. For example, in results corresponding to the first data acquisition
(37 DAP), considerable differences in the visible and near-infrared are observed when comparing the
first LLR interval (Figure 5a, blue line) with other intervals (Figure 5a, color scale), for ground-based
data. However, these differences were attenuated (i.e., lower variation indicated by ratio values and
smaller range of LLR) in UAV images (Figure 5b).
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Figure 5. Average reflectance for pixels from T1 (“non-mixed” system) grouped according to
log-likelihood ratio (LLR) in discrete intervals, between 0 to 15, in steps of 0.5. LLR, compares
pixel-wise probability estimated for T1 (H1) in contrast to T2 (H0; “mixed” system). Ground (a,c,e,g)
and UAV-based (b,d,f,h) data are presented for all acquisition dates. Colors of the average spectral
signatures indicate the average LLR value for pixels included in a given interval. Ratio indicates the
results for the division of the reflectance (band-wise) corresponding to a given LLR interval by that
from the interval with the lowest LLR values (i.e., pixels with LLR below 0.5; indicated by blue dashed
line). Delta (∆) corresponds to the percentage of observations (pixels) within a given LLR interval for
T1 subtracted from the percentage of observations in the same LLR interval for T2 (reference group).
Delta is plotted in front of the average spectral signatures representing each LLR interval. Delta total
(∆t) indicates absolute cumulated delta values.

In addition, spectral variation observed for both data sources in the first acquisition (37 DAP)
indicate that plants from T1 had potentially smaller leaf area index in comparison with those from T2
(i.e., lower reflectance in the NIR). This trend follows the values of WDVI observed at the sampling
unit level on this date (Figure 3f). For images acquired 50 DAP (second data acquisition; Figure 5c,d),
results obtained using camera on-board of the UAV platform differ from those observed at ground
level. While the patterns derived from UAV data (Figure 5d) indicate mainly that plants from T1 had
relatively larger leaf area index, results aligned with the ground truth (Figure 3f), ground-based images
indicated in general a larger variability for plants in T1, i.e., with some areas of the canopy on T1
characterized by larger leaf area index (i.e., higher reflectance in the NIR) and others by the opposite
characteristic. The third data acquisition (64 DAP) was characterized by small spectral differences
between pixels with stronger and relatively weak association with T1, for both datasets (ground
and UAV images) (Figure 5e,f). However, larger differences were detected between T1 and T2 by
ground-based data in this date. Finally, comparable outputs between ground-based and UAV images
(Figure 5g,h) were obtained for the last data acquisition (78 DAP). Both sensing approaches measured
lower reflectance in the NIR together with higher reflectance in the visible for spectra with a stronger
relationship with T1, following trends described by the ground truth observations (Figures 3 and 4),
i.e., potentially smaller leaf area index and lower leaf chlorophyll content coupled with higher levels
of disease severity for plants in T1.

In Figure A6, the pixel-wise LLR is presented for areas imaged using both sensing approaches
(i.e., camera on handheld mode and on-board of UAV platform) from 37 to 78 DAP. Differences between
treatments in the first two acquisitions (37 and 50 DAP) are small and related to cultivar intrinsic
characteristics concerning mainly canopy structure, as already observed in Figure 5. Although late
blight development started to be observed in the third acquisition (64 DAP), with higher disease
incidence in plants cultivated with T1, spectral differences detected between treatments were small
(Figures 5 and A6). In the last acquisition (78 DAP), late blight incidence and severity increased
on plants cultivated with T1, affecting the canopy spectral response in comparison to T2. Pixels
indicated with relatively higher LLR values on ground-based images can be found spread across
different parts of the canopy, but especially in areas with reduction in canopy (i.e., LAI) or leaf
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structure (i.e., compact layers originating the interface between air and cells within the mesophyll,
as described by Jacquemoud et al. [77]) due to disease development (Figures 5g and A6g). Changes
in leaf chlorophyll content also potentially occurred in areas affected by the disease, as indicated
by variations observed in the green, red, and red-edge spectral regions in Figure 5g. UAV data
followed the same patterns observed for ground-based images, with higher values of LLR for spectra
corresponding to areas with smaller canopy and leaf structure, as well as lower leaf chlorophyll
content, although differences between T1 and T2 are attenuated in the lower resolution UAV imagery
(Figures 5h and A6h). A general quantitative assessment of the correspondence between ground- and
UAV-derived LLR values is provided in Figure A5b. From the patterns described by the median LLR
values, it is possible to observe that in general both data sources provided similar outputs, despite
some differences concerning the distribution of the LLR values within the sampling units and the
attenuation of the disease effects detected by the UAV imagery in comparison with the ground-based
data (as described in Figures 5 and A6).

Figure A7 illustrates the identification of areas from the canopy affected by late blight based on
log-likelihood ratio for images acquired at ground level. It is worth noting that UAV imagery followed
similar patterns observed on ground-based data, as observed in Figure A6, but the relationship with
disease development was less pronounced and areas of the canopy potentially affected by the pathogen
were eventually removed after background classification, since these areas were normally characterized
by smaller leaf area index and ground coverage, which could result in higher spectral mixing between
vegetation and background components. This may have affected the analysis outputs, however it was
preferred to remove this information from the dataset to be analyzed, since otherwise the potential of
the method implemented could be overestimated.

3.3. Effects of Specific Late Blight Severity Levels on the Crop Spectral Response

Different late blight severity classes were observed within each treatment. Therefore, a more
specific evaluation of progressive effects of the diseased development on the canopy reflectance are of
interest in order to better describe changes strictly related to the infection by the pathogen.

In Figure 6, average reflectance for pixels within discrete intervals of LLR are described. In this
case, LLR values correspond to the evaluation of SUs classified according to a specific disease severity
level (H1) against healthier SUs used as reference (H0). Only small differences between spectra with
relatively stronger relationship with diseased areas in contrast with those weakly associated with
these patches are observed for disease severity up to 1.0% or between 1.0% and 2.5% (Figure 6a,b).
Conversely, larger differences were detected for disease severity levels starting between 2.5% and
5.0% until between 10.0% and 15.0% (Figure 6c–f). In these cases, differences are mainly observed in
the red-edge and NIR spectral regions, indicating that wavelengths in this interval may have greater
discriminative potential concerning reflectance measured for healthy and diseased areas.

Spectral signatures corresponding to pixels with higher LLR for each severity class (i.e.,
“characteristic” spectral signatures of each class) change as disease intensity increases, in particular
when severity levels between 2.5% and 7.0% (Figure 6c,d) are compared with those between 7.0% and
15.0% (Figure 6e,f). These differences indicate that characteristic spectra of lower disease intensities
(between 2.5% and 7.0%; Figure 6c,d) correspond mainly to areas with potentially smaller leaf area
index, since reflectance in the NIR region is especially low in these cases. As disease severity increases,
reflectance in the NIR also increases for characteristic spectra of diseased patches, which indicates
that in part these spectral signatures correspond to areas with larger canopy architecture (i.e., LAI) in
comparison with lower disease intensity areas.
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severity class, in SUs imaged 64 and 78 DAP. Crop patches with disease severity between 2.5% and 
7.0% (Figure 7c,d) have higher LLR values concentrated in regions with low leaf area index, mainly 
in the boundary of the region retained during background removal. Conversely, patches with 
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Figure 6. Average reflectance for pixels within discrete intervals of log-likelihood ratio (LLR) between
0 and 5.5, in steps of 0.5. LLR, in this case, compares pixel-wise probability estimated for diseased
sampling units (SUs; H1; ≤1.0%, ≤2.5%, ≤5.0%, ≤7.0%, ≤10.0% and ≤15.0% disease severity, in a–f,
respectively) in contrast to healthier SUs (H0; only healthy plants for 64 DAP or disease severity below
1.0% for 78 DAP). Colors of the spectral curves indicate the average LLR value for pixels included in
a given interval. Ratio indicates the division of reflectance corresponding to a given LLR interval by
that from the interval with the lowest LLR values (i.e., for pixels with LLR below 0.5; indicated by the
blue line). Delta (∆) corresponds to the percentage of observations (pixels) within a given LLR interval
for SUs from a specific disease severity class subtracted from the percentage of observations in the
same LLR interval for the healthier SUs used as reference. Delta is plotted in front of each average
spectral signature for the corresponding LLR interval. Delta total (∆t) indicates absolute cumulated
delta values.

These trends are confirmed by Figure 7, which shows the distribution of LLR values for each
severity class, in SUs imaged 64 and 78 DAP. Crop patches with disease severity between 2.5% and
7.0% (Figure 7c,d) have higher LLR values concentrated in regions with low leaf area index, mainly in
the boundary of the region retained during background removal. Conversely, patches with severity
between 7.0% and 15.0% (Figure 7e,f) have pixels with higher LLR values spread in different areas of
the sampling unit, although segments with low canopy structure (i.e., low LAI) in the boundary of the
vegetated area are still frequently identified as strongly related to late blight infected plants.

Pixels with the highest values of LLR for SUs with disease severity between 1.0% and 2.5%
(low severity level; Figure 7b) are mostly concentrated in specific parts of the canopy. Since this
severity class was exclusively observed in SUs cultivated with T2 (“mixed” system), areas with higher
LLR in this case may be related to specific potato cultivar(s) with lower resistance to late blight.
Therefore, characteristic traits for these cultivars may be the reason why differences between average
spectra for diseased in contrast to healthier plants indicate potentially larger leaf area index (i.e., higher
reflectance in the NIR) for areas related to disease incidence.
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severity class considered (i.e., up to 1.0% severity; Figure 7a) are associated with areas with smaller 
leaf area index in the boundary between vegetation and background, or eventually spread in different 
parts of the sampling unit. Despite the fact that the characteristics observed are typical of disease 
development, the small spectral differences observed and low LLR values obtained indicate that these 
differences were small and of difficult detection (i.e., weak evidence of considerable contrast between 
healthy and diseased areas).  
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(according to results in Table A8) concerning the discrimination between SUs with very low late 
blight incidence (≤ 1.0%; reference) from those with higher disease severity levels (between 2.5 and 

Figure 7. Distribution of log-likelihood ratio (LLR) within sampling units (SUs) scored for late blight
development 64 and 78 DAP. Date of UAV image acquisition and corresponding disease severity class
(DS) are indicated above the images representing eight SUs selected from those observed for each
class. Crop patches cultivated with T1 (“non-mixed” system) are indicated by red frames and those
cultivated with T2 (“mixed” system) by black frames (images chosen for illustration were randomly
selected from those observed in each disease severity class, as indicated in Table A5). Diseased severity
classes from up to 1.0% until between 10.0% and 15.0% are represented in images (a–f). Scale bars in
the left upper corner of each image represent 25 cm.

Finally, the distribution of pixels with relatively higher LLR values in SUs with the lowest severity
class considered (i.e., up to 1.0% severity; Figure 7a) are associated with areas with smaller leaf area
index in the boundary between vegetation and background, or eventually spread in different parts of
the sampling unit. Despite the fact that the characteristics observed are typical of disease development,
the small spectral differences observed and low LLR values obtained indicate that these differences
were small and of difficult detection (i.e., weak evidence of considerable contrast between healthy and
diseased areas).

In Figure 8, distribution of values from vegetation indices with relatively good performance
(according to results in Table A8) concerning the discrimination between SUs with very low late
blight incidence (≤1.0%; reference) from those with higher disease severity levels (between 2.5 and
5.0% and between 10.0 and 15.0% severity) are presented, for data acquired 78 DAP. It is possible
to notice that considering all pixels for each disease severity class (Figure 8a,d,g), differences with
respect to the healthier reference are observed only for the highest level of disease severity (≤15.0%).
After selecting spectra according to their association with a given severity class (i.e., based on LLR
values), differences between reference and other classes only increased for SUs within the ≤15.0%
disease severity category when vegetation indices used were sensitive to chlorophyll content at leaf
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and canopy level (i.e., CIre and REP; Figure 8b,c,e,f). Discrimination between reference and relatively
low disease severity (≤5.0% disease severity class) is only observed for vegetation index associated
with canopy structure (i.e., WDVI; Figure 8g–i). This discrimination was improved after selecting
spectral information more intensely related to the specific disease severity classes considered.
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Figure 8. Distribution of vegetation indices (VIs; CIre (a–c); REP (d–f); WDVI (g–i)) values for 
sampling units within different disease severity (DS) classes. Only selected VIs providing relatively 
good discriminative potential between healthier references, and the DS classes considered (Table A8) 

Figure 8. Distribution of vegetation indices (VIs; CIre (a–c); REP (d–f); WDVI (g–i)) values for sampling
units within different disease severity (DS) classes. Only selected VIs providing relatively good
discriminative potential between healthier references, and the DS classes considered (Table A8) for
UAV imagery acquire 78 DAP are presented. Green dots indicate pixels within a given DS class (from
≤1.0% up to between 10.0% and 15.0%), while red dots and red error bars correspond to median
and standard deviation for these observations. Values in parentheses indicate the log-likelihood ratio
(LLR) threshold used to selected pixels in a given percentile. Black dashed lines separate healthier
observations (references—*) from other DS classes. Blue dashed lines indicate the average VI value for
pixels included in the references. It is worth noting that for the percentiles, two distinct sets of pixels
represent the reference, one for each DS class above 1.0% DS.
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Therefore, increased discriminative potential of selected spectra according to LLR values is
observed, not only for higher disease severity levels but also for relatively low disease incidence
(i.e., with disease severity between 2.5 and 5.0%). These results illustrate the increased potential for
late blight severity assessment based on selected spectral information related to disease incidence.

3.4. Spatial Patterns of Visual Disease Assessment Compared with Outputs of Simplex Volume Maximization
(SiVM) and Log-Likelihood Ratio Applied to UAV Imagery

The distribution of disease severity scores for SUs assessed 78 DAP are presented in Figure 9.
As also indicated in Figure 4, experimental plots cultivated with T1 were in general characterized by
more intense development of late blight. SUs with relatively high disease severity levels (i.e., above
10.0%) were generally located in patches with potentially lower leaf chlorophyll content and smaller
canopy structure, as indicated by lower OSAVI values, which might be related with disease incidence,
as also indicated by rank correlation between VIs and disease severity (Table A7). Association between
disease severity and crop general vitality is less evident for lower disease severity levels, in particular
for SUs with late blight severity below 5.0%.
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Figure 9. Distribution of visual scores into specific classes of late blight severity (according to the
approximate percentage of affected leaf area) in SUs evaluated 78 DAP. Experimental plots 1–8 are
indicated by figures (a–h). Background images include values of OSAVI (Optimized Soil Adjusted
Vegetation Index; VI) for pixels retained after vegetation segmentation and a false color composite (833,
663, and 609 nm as RGB bands).
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The corresponding LLR values for SUs assessed 78 DAP are presented in Figure 10, in this case
considering 7.0% of late blight severity as hypothesis H1. SUs with higher disease severity levels
(i.e., above 10%) were characterized by pixels with higher LLR values spread in different parts of the
canopy, as also indicated in Figure 7. In contrast, SUs with lower severity levels have pixels with
higher LLR values concentrated in patches with smaller leaf area index, in the boundary between the
crop canopy and background.
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Figure 10. Log-likelihood ratio (LLR) for UAV data acquired 78 DAP (i.e., last data acquisition).
LLR represents the comparison of pixel-wise probability considering distributions for diseased SUs
(H1: ≤ 7.0% severity) and a healthy reference (H0: up to 1.0% late blight severity). OSAVI values are
indicated in grey scale (VI). Experimental plots 1–8 are represented in figures (a–h).

Visually comparing Figures 9 and 10, the association between LLR values and disease severity can
be observed, notably with higher disease incidence in plots 1 (Figure 9a), 3 (Figure 9c), 7 (Figure 9g),
and 8 (Figure 9h), followed by higher LLR values in SUs located in these plots (Figure 10a,c,g,h). This
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trend can be verified in Table 2, which describes the rank correlation between LLR values and disease
severity classes for the last two data acquisitions (i.e., 64 and 78 DAP).

Table 2. Kendall-tau correlation coefficients between disease severity classes (as ordinal variable) and
median of log-likelihood ratio (LLR as continuous variable) at sampling unit level for assessment made
64 and 78 DAP. Values are given for each disease severity class used to derive probability distributions,
which were compared with the distribution for the reference class (only healthy patches for 64 DAP
and ≤1.0% severity for 78 DAP) during estimation of pixel-wise LLR.

Dataset
Disease Severity Class Considered for LLR Calculation

64 DAP 2 78 DAP 2

≤1.0 1 ≤2.5 1 ≤5.0 1 ≤7.0 1 ≤10.0 1 ≤15.0 1

All pixels 0.249 * 0.020 0.321 *** 0.592 *** 0.519 *** 0.522 ***
Upper 20th percentile of LLR 0.286 * −0.029 0.106 0.562 *** 0.534 *** 0.524 ***
Upper 10th percentile of LLR 0.313 * −0.038 0.074 0.556 *** 0.537 *** 0.516 ***

1 Significant at 0.05 (*), 0.01 (**) or 0.001 (***) level; 2 only observations from T1 considered for 64 DAP while data
corresponding to both treatments were used for 78 DAP.

For 78 DAP, it is possible to notice that while distributions for low disease severity levels (below
5.0% severity) result in LLR values loosely correlated with disease severity, relatively high disease
severity classes yield distributions with corresponding LLR values better correlated with disease
severity. This is probably due to the similarity observed between characteristic spectra (i.e., spectra
from pixels with relatively high LLR) for disease severity classes above 5.0% severity, as described
in Figure 6, which lead to a relatively good correlation between LLR values and disease severity for
observations within these classes. It is worth noting that considering information corresponding to
upper percentiles of LLR values did not improve the relationship between LLR and disease severity
classes. This may be related to the same factor cited before, i.e., similarity between characteristic spectral
response corresponding to SUs with higher disease severity levels and their relative dissimilarity with
spectra characteristic of patches having lower disease incidence, which was not altered after selecting
observations within upper percentiles of LLR.

A quantitative overview of the LLR values distribution according to the late blight incidence
levels is provided in Figure 11. It is possible to notice that for low severity levels (i.e., below 5.0%,
Figure 11a–c) the number of pixels with relatively high LLR is larger for the SUs scored with the severity
level considered (black lines in Figure 11). At the same time, the number of pixels with relatively
high LLR values is smaller for SUs with lower or higher disease severity than the class considered
(green and red lines in Figure 11). This indicates that characteristic spectral signatures for diseased
SUs (i.e., corresponding to pixels with high LLR values) were relatively specific to each severity level
in this case. Conversely, for SUs scored with higher severity levels (i.e., above 5%, Figure 11d–f),
the number of pixels with relatively high LLR values increases progressively from SUs with lower
disease severity levels (i.e., green lines) to SUs with higher disease severity levels (i.e., red lines) than
the class considered. This indicates that characteristic spectral signatures for diseased areas are similar
for severity classes corresponding to higher infection levels, considering the progression observed in
the LLR distribution.

Results presented in Figure 11 reflect outputs already presented before in Figures 6–10 and Table 2,
which indicate that lower disease severity classes had pixels with higher LLR values concentrated in
patches with smaller leaf area index (Figures 7, 9 and 10), differing from SUs with higher late blight
incidence, which were characterized by distribution of pixels with higher LLR values in different parts
of the canopy.
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5.0%, ≤ 7.0%, ≤ 10.0% and ≤ 15.0% of disease severity in a–f, respectively), while comparing with 
healthier plants (H0, completely healthy for 64 DAP and ≤ 1.0% severity for 78 DAP). Green lines 
indicate the distribution of LLR values for SUs with lower severity levels than the class considered in 
each case (e.g., all sampling units with disease severity ≤ 1.0% in b). Red lines illustrate the distribution 
of LLR values for SUs with higher severity levels than the class considered in each case (e.g., all 
sampling units with > 2.5% of disease severity in b). 
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Figure 11. Distribution of log-likelihood ratio (LLR) values derived for patches of UAV images acquired
64 and 78 DAP. Black lines correspond to LLR extracted from sampling units (SUs) within the late
blight severity level (disease severity (DS)) considered as hypothesis H1 (≤1.0%, ≤2.5%, ≤5.0%, ≤7.0%,
≤10.0% and≤15.0% of disease severity in a–f, respectively), while comparing with healthier plants (H0,
completely healthy for 64 DAP and ≤1.0% severity for 78 DAP). Green lines indicate the distribution of
LLR values for SUs with lower severity levels than the class considered in each case (e.g., all sampling
units with disease severity ≤1.0% in b). Red lines illustrate the distribution of LLR values for SUs with
higher severity levels than the class considered in each case (e.g., all sampling units with >2.5% of
disease severity in b).

4. Discussion

Measurements of crop traits, described in Section 3.1 (Figures 3 and A3), indicate that the first
three data acquisitions (from 37 to 64 days after planting—DAP) were performed while crop growth
progressed towards full canopy development, which occurred between 50 and 64 DAP. During this
period, the main changes observed in crop traits were related to increase in leaf area index for plants
cultivated in both treatments. Differences between treatments that were observed in early stages
(between 37 and 50 DAP) can be attributed mainly to cultivar intrinsic characteristics. At 64 DAP,
more substantial differences between treatments, concerning leaf chlorophyll content and canopy
structural traits (e.g., ground cover), were observed, which may be related to initial stages of late
blight development (Figure 4). In the last data acquisition (78 DAP), differences between treatments
increased following the increase in disease severity in particular for T1 (i.e., “non-mixed” system),
which confirms trends observed 64 DAP.
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The variability in crop development observed during the growing season, related to disease
development or not, could be detected through optical imagery acquired using ground-based or
UAV imaging setups. For most of the acquisition dates, patterns observed for ground-based data are
comparable to those derived from UAV (Figures 5 and A6). However, in some cases disagreement was
observed, in particular in the second and third data collection (50 and 64 DAP). Differences between
analysis outputs resulting from ground-based and UAV data are mainly related to the higher spatial
resolution of the ground-based imagery. The increased resolution allowed a better description of the
variability present within the crop canopy, together with a better retention of this variability after
background removal due to the potential lower degree of spectral mixing for this dataset.

In addition, spectral variability related to disease incidence could be well described by ground-
based imagery (Figures 5 and A6a,c,e,g). On the other hand, UAV data indicated trends similar to
those observed in the ground-based images, in particular for relatively high disease severity levels,
but these trends were attenuated on this data source (Figures 5 and A6b,d,f,h). A potential limitation
in sensitivity for data acquired at canopy level, and even at leaf level, if spatial resolution is reduced
has been indicated by other authors [15,78]. However, in the present study it was observed that
even at low levels of disease severity (between 2.5 and 5% severity), spectral information related to
the disease incidence could be derived from radiometric measurements made by sensors on-board
of a UAV platform (Figures 5–7 and A6), with relatively low spatial resolution (approximately 4–5
cm of ground sampling distance) in comparison with ground-based information (with 0.1–0.2 cm
of spatial resolution). This indicates that spectral data acquired at canopy level with sub-decimeter
resolution has potential to describe spectral changes related to disease incidence, in particular if
analysis targeting the most related spectral information with diseased patches is used (Figure 8).
Similar results have been reported in other studies regarding the use of UAV optical imagery to
assess disease incidence in other crops [14,18,22]. Generally, in these studies, parametric statistical
frameworks (e.g., analysis of variance and groups means test) are used to evaluate the discriminative
potential of spectral information regarding disease incidence. This was performed here to compare
treatments (Figure 3) but not to evaluate specific changes related to different disease severity levels.
Implementing such analysis for evaluating the impact of different disease severity classes on the
canopy reflectance was not possible in this research since the distribution of disease incidence classes
differed between treatments and experimental blocks, which could lead to a biased evaluation in this
case. On the other hand, the evaluation reported in Figures 3 and 8 indicates that discrimination
between treatments and different disease severity levels based on aggregate information at sampling
unit level (i.e., distribution of vegetation indices for the imaged patches), as frequently performed
in other studies, is possible for relatively higher disease severity levels, although focusing on the
identification of specific spectral information related to diseased areas improved the characterization
of lower levels of disease severity through the spectral information gathered.

An interesting method for late blight monitoring in potato based on optical imagery with very high
resolution has been presented by Sugiura et al. [38]. The solution introduced by these authors provided
accurate disease severity prediction based on RGB color transformation and pixel-wise classification
through threshold optimization procedure. However, these authors relied on color features rather than
on reflectance measurements, which may reduce the flexibility of the approach proposed regarding
its application under diverse data acquisition conditions (i.e., with changes in illumination and field
of view, etc.), and when disease incidence occurs simultaneously with other abiotic or biotic stress
factors. In this sense, optimization for different datasets acquired would be required. Therefore,
using reflectance information rather than color-based features could allow mitigation of some of these
limitations, in particular if coupled with methods proposed to compensate for illumination changes and
to perform BRDF effects correction, as those described by Honkavaara et al. [47]. Also, using multi- or
hyperspectral datasets may allow improvement of discrimination potential concerning the classification
of healthy and diseased areas due to increased availability of features potentially related to the effects
of disease incidence on the crop canopy traits. More recently, Duarte-Carvajalino et al. [39] performed
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machine learning-based retrieval of late blight severity in potato, using a very high resolution camera,
similarly to Sugiura et al. [38] but using a modified set-up (acquiring images in blue, green, and NIR
wavelengths instead of conventional RGB). They performed radiometric calibration for the acquired
imagery, despite the limitations of the sensor system used, and included in their analysis datasets
corresponding to different dates over the growing season. Performance comparable to that obtained
by Sugiura et al. [38] was reported, in particular for models derived using Convolutional Neural
Networks, indicating potential for similar applications in this context.

In the present research, in contrast to results previously reported in the literature, an attempt is
made to effectively relate disease development over time with spectral changes in a dataset composed
of sub-decimeter resolution UAV optical imagery. From the spectral differences observed between
treatments and disease severity classes (Figures 5–7 and A6), it is possible to conclude that disease
incidence, even at relatively low levels, has direct effects on the canopy spectral response measured
by sensors similar to that used in the study. On the other hand, intrinsic characteristics of different
potato cultivars may potentially affect the spectral response observed and lead to spurious correlation
between spectral data and disease severity observations, in particular for low late blight severity levels.
This can be an important aspect to consider during the development of future modelling approaches,
especially if based on data acquired in agronomic experiments with multiple cultivars.

Spectral changes that could be associated with late blight development, mainly based on
measurements realized on the last data acquisition (78 DAP), were characterized by reduced reflectance
on all spectral bands measured using the UAV sensor (Figure 6). This indicates that changes detected
were strongly related to alterations in the canopy and leaf structure [19]. In general, as the relationship
between the spectral information and the disease severity levels became stronger (i.e., as LLR values
increased), the reflectance decreased in all spectral bands for disease classes above 2.5% severity.
Expected spectral changes related to pigment content at leaf and canopy levels could mainly be
identified in the red-edge region, which is also associated with canopy and leaf structural traits.
Deviations in the red region, more directly related to changes in chlorophyll content (i.e., increase
in reflectance for diseased vegetation due to lower chlorophyll content), were less evident even for
higher levels of disease severity (i.e., above 2.5% severity). These facts indicate that the main areas
that could be related to disease development were those with reduced canopy (i.e., LAI) and leaf
(i.e., number of layers specifying air/wall interfaces within the leaf mesophyll) structure. Changes
related to pigment content at leaf and canopy levels were less pronounced than changes related to
canopy and leaf structural alterations. Figures 7–11 confirm these observations and indicate that
extremely early alterations related to pigment content degradation in the infected tissues may be
more difficult to detect using UAV imagery with the same characteristics as those used in this study.
Conversely, alterations in the red and green regions could be observed on ground-based spectral
measurements 64 and 78 DAP while, as already described, only small changes could be detected using
the UAV imagery for very low disease severity levels on these dates (Figures 5 and 6). It is worth
noting that for very early infection stage (≤1.0% disease severity) alterations in the visible part of
the spectrum were observed in the UAV data (Figure 6a), but LLR values for the changes observed
were very small, indicating that these alterations would probably be difficult to detect in more general
applications. Also, changes observed for disease severity between 1.0 and 2.5% (Figure 6b) followed
the opposite trend of that expected, with overall increased reflectance in the Vis-NIR region for spectra
related to the disease incidence (i.e., higher LLR values). This is probably due to the association
between traits of specific susceptible cultivars(s) to disease incidence, which is indicated by higher
values of LLR concentrated in specific spots within the crop canopy (Figure 7b), explaining the inverse
trend observed.

An important final aspect to consider is the relationship between the type of spectral information
derived from the UAV imagery acquired and the outputs of the analysis relating spectral information
with disease incidence and severity. The UAV data used as input for analysis, with results described
in Section 3, combines all data collected in a given location in the field during the UAV flight. This
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combined information was derived taking the pixel-wise average for the complete dataset acquire,
i.e., considering all scenes obtained over each imaged area. This “average spectral data product”,
as thoroughly discussed by Aasen and Bolten [3], is characterized by reduced influence of angular
properties on the reflectance representing a given crop surface. While this is a desirable feature for
spectral datasets used to detect very subtle changes in the canopy reflectance, as those related to
early disease detection, some sensitivity may be lost regarding the characterization of lower parts of
the crop canopy. This can potentially be a reason for the relatively low association between spectral
information and disease incidence (i.e., low LLR values) for some image patches with relatively high
disease severity (Figure 7).

Studies focusing on the relationship between reflectance angular properties and crop trait
estimation, as those performed by Roosjen et al. [5] using UAV imagery and Kong et al. [79] using
point-based multi-angular spectral measurements, indicate that considering multiple view-angles may
increase the potential for crop trait characterization, and that estimation of properties at lower parts of
the crop canopy are better performed based on slightly off-nadir reflectance measurements. The latter
is attributed to the fact that off-nadir measurements may have greater probability to correspond to
reflected light having interacted with lower parts of the canopy, especially for wavelengths in the
visible part of the spectrum. This fact may be particularly relevant for early late blight assessment,
since the disease onset generally occurs in lower parts of the canopy, and therefore nadir oriented
measurements, may miss the local changes in pigment content occurring in these areas.

5. Conclusions

In this study, the potential of radiometric readings in the optical domain to describe visual
ratings regarding the development of potato late blight was evaluated from a perspective of the
sensitivity of the spectral information to describe early changes occurring in the infected canopy areas.
It was verified that optical data acquired at canopy level with sub-decimeter resolution has potential
to provide useful information for detecting late blight incidence and assessing its severity in early
stages of disease development (i.e., between 2.5 and 5.0% disease severity). Despite these positive
outputs, the main changes detected were related to crop canopy structural traits, and to a lesser extent,
to pigment content.

The evaluation performed here focused on post-visual disease symptoms and its relationship with
changes in spectral response at canopy level. It was observed that although aggregated information
at sampling unit level (i.e., distribution of vegetation indices values) allowed, to a certain extent,
to differentiate contrasting treatments and disease severity levels, early detection of late blight might
be difficult based on frameworks involving similar approaches. Conversely, better descriptive potential
was observed when specific spectral information regarding a given treatment or disease severity level
was identified through SiVM and LLR calculation. Based on these last methods, it was possible to
identify patterns of spectral changes and their spatial arrangement in the imaged patches. These
patterns were related to disease symptoms and their spatial distribution observed in ground-based,
very-high resolution imagery. In this regard, the main detectable changes observed by UAV imagery
concerned canopy and leaf structural traits, and to a minor degree, pigment content also at leaf
and canopy levels. These facts indicate that late blight detection and severity assessment based on
UAV imagery in the optical domain with sub-decimeter resolution may rely in particular on the
identification of affected areas characterized by reduction in leaf and canopy structure. Relationship
with leaf and canopy pigment content was less perceptible than changes related to structural traits.
These observations are of interest if one intends to develop a specific framework for late blight
detection and severity assessment based on optical imagery acquired at canopy level. In this case,
including off-nadir spectral data and reflectance measurements in wavelengths in other spectral
regions (i.e., green region), besides red and near-infrared, may increase sensitivity of the approach
used, in particular concerning detection of changes in pigment content, considering the saturation effect
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normally observed in reflectance measurements in the red region under relatively high chlorophyll
content levels.
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Appendix A

Table A1. Band-to-band registration accuracy (RMSE in pixels) within and between spectral band
subsets for ground-based images. Results are summarized for each acquisition date indicating
average (Avrg.) and range of RMSE values observed for the images acquired in a given date (n = 8
sampling units).

Regist.
Method 1

Subset 2 1 Subset 2 1–2 Subset 2 2 Subset 2 2–3 Subset 2 3

Avrg. Range Avrg. Range Avrg. Range Avrg. Range Avrg. Range

37 DAP

Raw 4.50 0.67–12.73 1.51 0.83–2.62 2.12 0.77–5.93 2.44 0.72–5.41 3.39 0.57–16.99
I 1.16 0.58–2.98 0.91 0.78–1.05 0.94 0.60–3.31 0.85 0.77–0.95 0.93 0.55–1.77
II 0.87 0.51–2.10 0.76 0.55–1.39 0.87 0.55–3.38 0.63 0.56–0.75 0.72 0.51–1.81

50 DAP

Raw 7.23 0.61–27.08 2.19 0.95–4.62 2.90 0.92–18.30 2.17 1.00–3.47 5.14 0.89–18.03

I 1.67 0.55–4.01 0.96 0.85
–1.27 1.14 0.78–2.44 1.02 0.88–1.30 1.24 0.65–2.51

II 0.97 0.53–2.27 0.73 0.58–1.08 1.01 0.71–2.97 0.74 0.60–1.06 0.73 0.56–1.24

64 DAP

Raw 4.94 0.52–18.32 1.99 0.72–3.29 2.29 0.70–7.53 1.91 1.14–3.28 3.33 0.61–10.57
I 1.46 0.57–2.66 1.00 0.83–1.26 1.15 0.68–1.96 0.95 0.82–1.26 1.00 0.64–1.99
II 1.10 0.54–2.18 1.37 0.67–2.17 1.34 0.66–3.40 0.68 0.59–0.84 0.76 0.58–1.28

78 DAP

Raw 8.24 0.72–30.01 1.05 0.58–1.74 2.21 0.66–5.31 2.18 0.87–3.12 5.59 0.60–24.51
I 2.07 0.58–4.56 0.98 0.67–1.22 1.30 0.68–3.52 1.07 0.90–1.28 1.52 0.65–2.97
II 1.21 0.59–2.21 0.89 0.66–1.41 1.13 0.69–2.10 0.80 0.61–1.08 0.82 0.57–1.63

1 –Registration (Regist.) methods: without registration (Raw); affine (I); displacement field (II). 2 –Subset 1 comprises
12 bands, between 503 and 660 nm; subset 2 is six bands, between 672 and 750; and subset 3 is ten bands, from 763
to 893 nm.
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Table A2. Vegetation indices used in this study.

Vegetation Index (VI)
Formulation 2 Acq.

Level 3
Sensitivity

(Scale) 4 Ref. 5

Name Acron. 1

Anthocyanin Reflectance Index ARI
(

1
R550

− 1
R700

)
R770 G ant (L) [80,81]

Carotenoids Index green Carg
(

1
R515

− 1
R565

)
R770 G car (L) [80,82]

Car red edge Carre
(

1
R515

− 1
R700

)
R770 G car (L) [80,82]

Chlorophyll Index green CIg
R780
R550
−1 G chl (L) [80,82]

CI red edge CIre
R780
R710
−1 A, G chl (L) [80,82]

Chlorophyll Vegetation Index CVI
R870/R550
R670/R550

G chl (L) [83]

Difference Vegetation index DVI R800−R680 A, G chl (L) [84]
Double Difference Index DD (R749−R720)− (R701−R672) A, G chl (L) [85]

Greenness Index GI
R554
R677

G chl, LAI, chl
x LAI (L, C) [86]

Green Normalized Difference Vegetation Index GNDVI1 to 3
R875−R560
R875+R560

;
R800−R550
R800+R550

;
R750−R550
R750+R550

G chl, LAI, chl
x LAI (L, C) [87]

Greenness Vegetation Index GVI
R682−R553
R682+R553

G chl, LAI, chl
x LAI (L, C) [88]

Lichtenthaler Index LIC
R800−R680
R800+R680

A, G chl, LAI, chl
x LAI (L, C) [89]

Modified Chlorophyll Absorption in
Reflectance Index MCARI [(R700−R670)−0.2(R700−R550)]

(
R700
R670

)
G chl (L) [90]

MCARI red edge MCARIre [(R750−R705)−0.2(R750−R550)]

(
R750
R705

)
G chl (L) [91]

– MCARI2
1.5[2.5(R800−R670)−1.3(R800−R550)]√
(2R800+1)2 −

(
6R800−5

√
R670

)
−0.5

G LAI (C) [92]

– MCARI/
OSAVI

[(R700−R670)−0.2(R700−R550)]

(
R700
R670

)
(1 + 0.16)

(R800−R670)

(R800+R670+0.16)

G chl (L) [90]

MCARI/OSAVI red edge MCARI/
OSAVIre

[(R750−R705)−0.2(R750−R550)]

(
R750
R705

)
(1 + 0.16)

(R750−R705)

(R750+R705+0.16)

G chl (L) [91]
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Table A2. Cont.

Vegetation Index (VI)
Formulation 2 Acq.

Level 3
Sensitivity

(Scale) 4 Ref. 5

Name Acron. 1

– Maccioni
R780−R710
R780−R680

A, G chl (L) [93]

Modified Simple Ratio MSR1 and 2
(

R800
R670
−1
)

/
(

R800
R670

)0.5
+1;

(
R750
R705
−1
)

/
(

R750
R705

)0.5
+1 A, G chl (L) [91,94]

MERIS Terrestrial Chlorophyll Index MTCI
R754−R709
R709−R681

A, G chl, LAI, chl
x LAI (L, C) [95]

Modified Triangular Vegetation Index MTVI 1.2[1.2(R800−R550)−2.5(R670−R550)] G chl, LAI, chl
x LAI (L, C) [92]

Normalized Difference Red Edge Index NDRE
R790−R720
R790+R720

A, G chl (L) [96]

Normalized Difference Vegetation Index NDVI
R800−R670
R800+R670

A, G chl, LAI, chl
x LAI (L, C) [97]

NDVI red edge NDVIre
R750−R705
R750+R705

A, G chl, LAI, chl
x LAI (L, C) [98]

– NDVI * SR
R2

800−R670

R800+R2
670

A, G LAI (C) [99]

Optimized Soil Adjusted Vegetation Index OSAVI (1 + 0.16)
(R800−R670)

(R800+R670+0.16)
A, G chl, LAI, chl

x LAI (L, C) [100]

OSAVI red edge OSAVIre (1 + 0.16)
(R750−R705)

(R750+R705+0.16)
A, G chl, LAI, chl

x LAI (L, C) [91]

Photochemical Reflectance Index PRI
R570−R531
R570+R531

G
xan, car,

car/chl, LAI
(L, C)

[101]

Pigment Specific Normalized Difference PSND
R800−R635
R800+R635

A, G chl, LAI, chl
x LAI (L, C) [102]

Plant Senescence Reflectance Index PSRI
(R680−R500)

R750
G chl, car,

car/chl (L) [103]

Pigment Specific Simple Ratio PSSR1 and 2
R800
R650

;
R800
R635

A, G chl (L) [102]

– PSSR3
R800
R500

G car (L) [102]

Ratio Analysis of Reflectance Spectra RARS1 and 2
R675
R700

;
R675

(R650 × R700)
A, G chl (L) [104]

– RARS3
R760
R500

G car (L) [104]

Renormalized Difference Vegetation Index RDVI
R800−R670

(R800+R670)
2 A, G chl, LAI, chl

x LAI (L, C) [105]
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Table A2. Cont.

Vegetation Index (VI)
Formulation 2 Acq.

Level 3
Sensitivity

(Scale) 4 Ref. 5

Name Acron. 1

Red Edge Position REP 700 + 40
[(R670+R780)/2]−R700

R740−R700
A, G chl, LAI, chl

x LAI (L, C) [106]

Red Green Index RGI
R690
R550

G car (L) [86]

Structure Insensitive Pigment Index SIPI
R800−R450
R800+R650

G chl (L) [107]

Simple Ratio SR1
R752
R690

A, G chl (L) [98,
108]

– SR2 to 6
R800
R675

;
R750
R700

;
R750
R550

;
R700
R670

;
R690
R655

G chl (L)
[84,98,
108–
110]

Transformed Chlorophyll Absorption Ratio
Index TCARI 3

[
(R700−R670)−0.2(R700−R550)

(
R700
R670

)]
G chl (L) [111]

TCARI red edge TCARIre 3
[
(R750−R705)−0.2(R705−R550)

(
R750
R705

)]
G chl (L) [91]

– TCARI/
OSAVI

3
[
(R700−R670)−0.2(R700−R550)

(
R700
R670

)]
(1 + 0.16)

(R800−R670)

(R800+R670+0.16)

G chl (L) [111]

TCARI/OSAVI red edge TCARI/
OSAVIre

3
[
(R750−R705)−0.2(R750−R550)

(
R750
R705

)]
(1 + 0.16)

(R750−R705)

(R750+R705+0.16)

G chl (L) [91]

Triangular Chlorophyll Index TCI 1.2(R700/R550)−1.5(R670/R550)×
√

R700/R670 G chl (L) [112]

– TCI/OSAVI
1.2(R700/R550)−1.5(R670/R550)×

√
R700/R670

(1 + 0.16)
(R800−R670)

(R800+R670+0.16)
G chl (L) [112]

Triangular Vegetation Index TVI 0.5[120(R750−R550)−200(R670−R550)] G chl, LAI, chl
x LAI (L, C) [113]

Weighted Difference Vegetation Index WDVI
R870 − (C × R670);

C =
RSoil870
RSoil670

A, G LAI (C) [114]

1 Acron. = Acronyms for VIs names; 2 Rw = reflectance in the spectral band centered in w, RSoilw = reflectance of bare soil in the spectral band centered in w. 3 Acquisition (Acq.) level of
the data used for calculation: airborne (A) or ground-based (G); 4 chl = leaf chlorophylls content, LAI = leaf area index, chl x LAI = canopy chlorophylls content, xan = xantophylls, car =
carotenoids, car/chl = ratio between carotenoids and chlorophylls, L = leaf scale, C = canopy scale; 5 References in the literature (Ref.) for the VIs formulations.
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Table A3. Overview of vegetation segmentation procedure for ground-based images.

DAP

Pixels Labelled as Vegetation in the
Training Data (%) Retained Vegetation Indices (Table A2)

Used for Binary Classification after
Regularization

Ground Cover Estimates after Image Clustering

Calibration Dataset Test Dataset
Percentile (%) of Probability
Estimate (for Cluster-Wise

Class Assignment)

Root Mean Squared Error
(% of Ground Cover)

Calibration Dataset Test Dataset

37 29.1 20.7 CVI, PSSR1, PSSR2, PSSR3, RARS3, REP,
SR1, SR3, TVI 37.5 2.07 2.56

50 73.0 64.8 CVI, PSSR1, PSSR2, PSSR3, RARS2,
RARS3, REP, SR1, SR3, TVI 59.0 2.41 2.09

64 67.1 92.0 CVI, PSSR1, RARS2, RDVI, REP, SR1, TVI 60.0 3.51 2.48

78 82.1 81.8 CVI, MTCI, PSSR1, PSSR2, PSSR3, RARS2,
RARS3, REP, SR1, TVI 85.0 1.56 2.95
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Figure A1. RMSE for ground cover retrieval at SU level by applying vegetation index (VI) threshold to
the UAV images. Values after VI labels in the graph indicate the median RMSE for the respective index,
considering the validation dataset (i.e., four sampling units per acquisition date).

Table A4. Vegetation indices (VIs; Table A2) thresholds obtained after optimization for background
removal in UAV images. Different values were derived for each acquisition date in order to adapt
background removal to crop development and measurement conditions. Results are ordered following
the segmentation performance presented in Figure A1.

VI 37 DAP 50 DAP 64 DAP 78 DAP

NDVI*SR 0.064 0.287 0.204 0.192
OSAVI 0.493 0.679 0.647 0.623

DD 0.057 0.107 0.085 0.067
DVI 0.202 0.342 0.259 0.269

WDVI 0.182 0.340 0.252 0.253
NDVI 0.620 0.779 0.828 0.783
PSSR1 4.269 8.088 10.630 8.245
MSR1 2.582 3.490 3.952 3.520
PSND 0.616 0.764 0.802 0.738
PSSR2 4.214 7.491 9.114 6.637

SR1 3.384 5.893 7.863 6.186
LIC 0.563 0.722 0.783 0.730

OSAVIre 0.247 0.393 0.364 0.288
MTCI 2.234 2.640 2.348 1.414
REP 712.885 719.069 720.956 718.168

Maccioni 0.717 0.740 0.712 0.601
RARS1 0.826 0.794 0.784 0.782

CIre 0.925 1.673 1.694 1.052
NDRE 0.316 0.455 0.458 0.345
MSR2 1.621 1.967 1.989 1.701

NDVIre 0.296 0.435 0.443 0.331
RDVI 1.410 1.803 2.598 2.111

RARS2 10.172 16.311 29.685 20.889
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Figure A2. Archetypes derived for ground-based (b) and UAV (e) images acquired 78 DAP (color 
coded from green to red according to average reflectance in the NIR). In the same graphs (a,e) spectra 
for two pixels selected from a UAV image patch corresponding to T2 (mixed system) are also 
described (green and red dashed lines with dots). The weighting for reconstruction of these spectra 
based on the archetypes are described in the radar plots for the ground-based (c) and UAV (f) data. 
The areas (green and red squares) corresponding to the selected UAV pixels (d) in the ground-based 
image (a) had their spectra and weights extracted and averaged to represent comparable information 
to that obtained for UAV data. Colors on (a) and (d) indicate values of OSAVI (Vegetation Index, 
Table A2; VI) for the segmented vegetation. 

Table A5. Distribution of scores given at sampling unit level during disease assessment. Number of 
sampling units (SUs) assigned to a given class are indicated for each acquisition date, together with 
the number of imaged SUs using the spectral sensor in handheld mode (in parentheses). Numbers in 
red indicate SUs not used for evaluating the effects of different disease severity classes on the crop 
spectral response (see section 2.8). 

Tr
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t.1  Disease severity class (%) 

0 ≤ 1 ≤ 2.5 ≤ 5 ≤ 7 ≤ 10 ≤ 15 ≤ 25 ≤ 50 ≤ 75 ≤ 90 ≤ 97.5 > 97.5 

 37 DAP 
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Figure A2. Archetypes derived for ground-based (b) and UAV (e) images acquired 78 DAP (color
coded from green to red according to average reflectance in the NIR). In the same graphs (a,e) spectra
for two pixels selected from a UAV image patch corresponding to T2 (mixed system) are also described
(green and red dashed lines with dots). The weighting for reconstruction of these spectra based on
the archetypes are described in the radar plots for the ground-based (c) and UAV (f) data. The areas
(green and red squares) corresponding to the selected UAV pixels (d) in the ground-based image (a)
had their spectra and weights extracted and averaged to represent comparable information to that
obtained for UAV data. Colors on (a) and (d) indicate values of OSAVI (Vegetation Index, Table A2; VI)
for the segmented vegetation.
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Table A5. Distribution of scores given at sampling unit level during disease assessment. Number of
sampling units (SUs) assigned to a given class are indicated for each acquisition date, together with the
number of imaged SUs using the spectral sensor in handheld mode (in parentheses). Numbers in red
indicate SUs not used for evaluating the effects of different disease severity classes on the crop spectral
response (see Section 2.8).

Treat. 1 Disease Severity Class (%)

0 ≤1 ≤2.5 ≤5 ≤7 ≤10 ≤15 ≤25 ≤50 ≤75 ≤90 ≤97.5 >97.5

37 DAP

I 20
(4) – – – – – – – – – – – –

II 20
(4) – – – – – – – – – – – –

50 DAP

I 20
(4) – – – – – – – – – – – –

II 20
(4) – – – – – – – – – – – –

64 DAP

I 28
(3)

16
(1) – – – – – – – – – – –

II 35
(4) 9 – – – – – – – – – – –

70 DAP

I 9 32 3 – – – – – – – – – –
II 32 12 – – – – – – – – – – –

73 DAP

I – – 14 11 9 6 – – – – – – –
II 5 14 16 5 – – – – – – – – –

78 DAP

I – – – 2 16
(1)

11
(1)

14
(2) – 1 – – – –

II 2 8
(1)

24
(1)

8
(2) 2 – – – – – – – –

83 DAP

I – – – – – – 2 2 9 11 19 1 –
II – – 1 1 1 4 9 13 12 3 – – –

86 DAP

I – – – – – – – – – – 8 29 –
II – – – – – – – 1 39 – – – –

1 Treat. I—plots with one single cultivar (“non-mixed”); Treat. II—plots with a mix of cultivars (“mixed”).
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Table A6. C-statistic for pixel-wise binary classification according to T1 (“non-mixed” system) or T2
(“mixed” system) in each acquisition date using vegetation indices (VIs; Table A2) as independent
variables. Only results concerning UAV-derived spectra and sampling units selected for validation of
the logistic regressions are reported. Results are ordered (parentheses) according to values of C-statistic
for the last acquisition (78 DAP).

VI 37 DAP 50 DAP 64 DAP 78 DAP

Group I—VIs optimized to estimate leaf chlorophyll content

MSR2 0.642 (7) 0.516 (12) 0.601 (4) 0.761 (1)
SR1 0.716 (3) 0.528 (9) 0.605 (1) 0.756 (2)
CIre 0.62 (9) 0.523 (10) 0.604 (3) 0.752 (3)

NDRE 0.62 (10) 0.523 (11) 0.604 (2) 0.752 (4)
PSSR1 0.712 (5) 0.555 (7) 0.598 (5) 0.739 (6)
MSR1 0.712 (4) 0.555 (6) 0.598 (6) 0.739 (5)
MAC 0.565 (12) 0.564 (5) 0.588 (7) 0.728 (7)
PSSR2 0.752 (2) 0.549 (8) 0.559 (8) 0.713 (8)

DD 0.596 (11) 0.567 (4) 0.507 (11) 0.617 (9)
DVI 0.641 (8) 0.571 (3) 0.497 (12) 0.608 (10)

RARS2 0.803 (1) 0.584 (2) 0.553 (9) 0.604 (11)
RARS1 0.67 (6) 0.608 (1) 0.52 (10) 0.527 (12)

Group II—VIs optimized to estimate canopy traits

REP 0.693 (5) 0.513 (11) 0.632 (1) 0.767 (1)
NDVIre 0.642 (6) 0.516 (10) 0.601 (3) 0.761 (2)

LIC 0.71 (4) 0.525 (9) 0.61 (2) 0.755 (3)
OSAVIre 0.533 (10) 0.533 (8) 0.565 (6) 0.749 (4)

MTCI 0.529 (11) 0.558 (5) 0.584 (5) 0.739 (5)
NDVI 0.712 (3) 0.555 (6) 0.598 (4) 0.739 (6)
PSND 0.752 (2) 0.549 (7) 0.559 (7) 0.713 (7)
OSAVI 0.545 (9) 0.573 (4) 0.515 (9) 0.654 (8)

NDVI*SR 0.576 (8) 0.574 (1) 0.495 (11) 0.619 (9)
WDVI 0.62 (7) 0.573 (3) 0.508 (10) 0.614 (10)
RDVI 0.789 (1) 0.573 (2) 0.517 (8) 0.538 (11)

Table A7. Kendall-tau correlation coefficients between disease severity classes (as ordinal variable)
and median of vegetation indices (VIs; as continuous variable) for UAV data at sampling unit level for
assessment made 64 and 78 DAP.

Dataset CIre 1 REP 1 WDVI 1

64 DAP 2

All pixels −0.172 −0.151 −0.132
Upper 20th percentile of VI values −0.147 −0.144 −0.071
Upper 10th percentile of VI values −0.147 −0.141 −0.098

78 DAP 2

All pixels −0.534 *** −0.549 *** −0.479 ***
Upper 20th percentile of VI values −0.509 *** −0.518 *** −0.461 ***
Upper 10th percentile of VI values −0.486 *** −0.499 *** −0.464 ***

1 Significant at 0.05 (*), 0.01 (**) or 0.001 (***) level; 2 only observations from T1 considered for 64 DAP while data
corresponding to both treatments were used for 78 DAP.
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Figure A3. Linear regression (fitted by ordinary least squares) between crop traits and vegetation
indices (VIs = CIre, REP, WDVI, and OSAVI; a–d) and between WDVI and other VIs (e). Prediction
and confidence intervals (95%) are presented in blue dashed lines. Colors from green to red indicate
time of acquisition (from 37 to 78 DAS). Dots and triangles correspond to the non-mixed and mixed
cropping system, respectively. Only the last three acquisitions are taken into account for evaluating
the relationship between traits and VIS (a–d), all the data are considered for the comparison between
WDVI and other VIs (e).
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Figure A4. Ground-based (a,c,e,g) and UAV (b,d,f,h) imagery for SUs over the growing season. SUs
cultivated with T1 (“non-mixed”) are represented in red frames and images corresponding to T2
(“mixed”) in black frames. False color composites (828, 660, and 607 nm as RGB for ground-based and
nearest bands for UAV images) are displayed on the background and foreground shows OSAVI (VI)
after vegetation segmentation. Scale bars (left upper corners) indicate 25 cm. For 64 DAP, frames in
dashed lines indicate SUs not measured during other acquisitions.
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Figure A5. Linear regression (fitted by ordinary least squares) between ground-based and UAV data
(OSAVI, a; LLR, b) corresponding to the median values for eight SUs followed during the growing
season. Prediction and confidence intervals (95%) are presented in blue dashed lines. Red dashed line
indicate the 1:1 diagonal line. Dots correspond to the non-mixed treatment and triangles to the mixed
cropping system. Colors from green to red indicate time of acquisition (from 37 to 78 DAS).

Table A8. C-statistic for pixel-wise binary classification according to two specific disease severity (DS)
classes (DS between 2.5 and 5.0% and between 10.0 and 15.0%) in contrast to a healthier reference (DS
up to 1.0%), for the last acquisition date (78 DAP). Only results concerning UAV-acquired spectra and
sampling units (SUs) selected for validation of the classification approach are reported. Results are
ordered (parentheses) according to values of C-statistic for all pixels within the SUs considered. Results
concerning the selection of pixels within the upper 20th and 10th percentiles of log-likelihood ratio
(LLR) values indicating association with a given DS class are also presented.

Vegetation
Index

All Data 20th Percentile of LLR 10th Percentile of LLR
DS ≤ 5.0% DS ≤ 15.0% DS ≤ 5.0% DS ≤ 15.0% DS ≤ 5.0% DS ≤ 15.0%

Group I—leaf chlorophyll content related

MSR2 0.583 (5) 0.839 (1) 0.550 (7) 0.936 (1) 0.568 (4) 0.944 (3)
NDRE 0.546 (10) 0.828 (2) 0.450 (12) 0.928 (3) 0.431 (12) 0.948 (1)
CIre 0.552 (9) 0.828 (3) 0.466 (11) 0.933 (2) 0.433 (11) 0.945 (2)

MAC 0.598 (3) 0.802 (4) 0.540 (9) 0.912 (4) 0.441 (10) 0.943 (4)
SR1 0.574 (6) 0.802 (5) 0.583 (5) 0.844 (5) 0.529 (7) 0.786 (5)

PSSR1 0.574 (7) 0.771 (6) 0.568 (6) 0.803 (8) 0.521 (8) 0.746 (6)
MSR1 0.572 (8) 0.769 (7) 0.584 (4) 0.820 (6) 0.513 (9) 0.744 (7)

DD 0.609 (2) 0.756 (8) 0.693 (2) 0.703 (10) 0.616 (2) 0.722 (9)
DVI 0.622 (1) 0.726 (9) 0.715 (1) 0.806 (7) 0.641 (1) 0.562 (12)

PSSR2 0.494 (11) 0.72 (10) 0.548 (8) 0.763 (9) 0.534 (6) 0.733 (8)
RARS2 0.592 (4) 0.509 (11) 0.654 (3) 0.572 (11) 0.583 (3) 0.669 (10)
RARS1 0.482 (12) 0.484 (12) 0.537 (10) 0.556 (12) 0.546 (5) 0.603 (11)

Group II—canopy traits related

OSAVIre 0.495 (10) 0.849 (1) 0.567 (8) 0.971 (1) 0.503 (11) 0.962 (1)
REP 0.518 (9) 0.837 (2) 0.532 (11) 0.901 (4) 0.518 (8) 0.883 (4)

NDVIre 0.582 (6) 0.837 (3) 0.556 (9) 0.939 (2) 0.548 (7) 0.952 (2)
MTCI 0.637 (1) 0.812 (4) 0.606 (5) 0.929 (3) 0.576 (5) 0.942 (3)
LIC 0.580 (7) 0.804 (5) 0.598 (6) 0.855 (5) 0.572 (6) 0.804 (5)

NDVI 0.572 (8) 0.768 (6) 0.574 (7) 0.806 (6) 0.508 (10) 0.742 (6)
OSAVI 0.615 (4) 0.752 (7) 0.692 (4) 0.752 (8) 0.656 (2) 0.631 (8)
WDVI 0.627 (2) 0.747 (8) 0.746 (1) 0.722 (9) 0.708 (1) 0.589 (9)

NDVI*SR 0.614 (5) 0.732 (9) 0.700 (3) 0.721 (10) 0.649 (3) 0.580 (10)
PSND 0.484 (11) 0.721 (10) 0.547 (10) 0.768 (7) 0.515 (9) 0.730 (7)
RDVI 0.615 (3) 0.669 (11) 0.719 (2) 0.609 (11) 0.632 (4) 0.517 (11)
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Figure A6. Log-likelihood ratio (LLR) for ground-based (a,c,e,g) and UAV imagery (b,d,f,h). LLR, in 
this case, indicates the comparison of pixel-wise probability estimated for T1 (H1; “non-mixed” 
system) in contrast to T2 (H0; “mixed” system). SUs cultivated with T1 are represented with red 
frames and scale bars in the left upper corner of each image correspond to 25 cm. For 64 DAP, frames 
represented in dashed lines indicate SUs not measured during other acquisitions and which cannot 
be compared over time. 

 

Figure A6. Log-likelihood ratio (LLR) for ground-based (a,c,e,g) and UAV imagery (b,d,f,h). LLR, in
this case, indicates the comparison of pixel-wise probability estimated for T1 (H1; “non-mixed” system)
in contrast to T2 (H0; “mixed” system). SUs cultivated with T1 are represented with red frames and
scale bars in the left upper corner of each image correspond to 25 cm. For 64 DAP, frames represented
in dashed lines indicate SUs not measured during other acquisitions and which cannot be compared
over time.
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Figure A7. Imaged patch relatively highly affected by late blight 78 DAP (i.e., first sampling unit 
represented in Figure A6g). Image (a,b) corresponds to false color composite for ground image after 
background removal (620, 542, and 503 nm as RGB bands) and image (c) indicates log-likelihood ratio 
for pixels in the highlighted area in (a, red square), also depicted in (b). 
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