An Improved Forest Structure Data Set for Europe
Abstract
:1. Introduction
- to provide an improved gridded forest structure data set on 8 × 8 km resolution across Europe,
- to assess the error components of the new forest structure data,
- to obtain land cover information to generate consistent gridded forest structure maps at 500 m resolution enabling upscaling to regions and/or countries, and
- to evaluate the provided higher resolution maps by calculating country totals and compare these data to the original NFI data and the FAO statistics.
2. Materials and Methods
2.1. National Forest Inventory Data
2.2. Land Cover and Bioregions for Clustering
2.3. Co-Variates for Gap-Filling
2.4. K-Means Clustering and k-Nearest Neighbor Gap-Filling
2.5. Forest Area Mask
2.6. Calculation of Country Sums and Comparison with FAO Statistics
3. Results
3.1. An Improved Gridded Forest Structure Data
3.2. Accuracy of the Improved Data Set
3.3. Upscaling Data
3.4. Evaluate the Results Using FAO Statistics
4. Discussion
4.1. Comparison with FAO Statistics
4.2. Potential Applications
4.3. Room for Improvement
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Forest Europe. State of Europe’s Forests 2015; Forest Europe: Madrid, Spain, 2015. [Google Scholar]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Senf, C.; Pflugmacher, D.; Zhiqiang, Y.; Sebald, J.; Knorn, J.; Neumann, M.; Hostert, P.; Seidl, R. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 2018, 9, 4978. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Schelhaas, M.J.; Rammer, W.; Verkerk, P.J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014, 4, 806–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How much does climate change threaten European forest tree species distributions? Glob. Chang. Biol. 2018, 24, 1150–1163. [Google Scholar] [CrossRef] [PubMed]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013, 3, 203–207. [Google Scholar] [CrossRef]
- McGrath, M.J.; Luyssaert, S.; Meyfroidt, P.; Kaplan, J.O.; Bürgi, M.; Chen, Y.; Erb, K.; Gimmi, U.; McInerney, D.; Naudts, K.; et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 2015, 12, 4291–4316. [Google Scholar] [CrossRef] [Green Version]
- Anderson-Teixeira, K.J.; Herrmann, V.; Rollinson, C.R.; Gonzalez, B.; Gonzalez-Akre, E.B.; Pederson, N.; Alexander, M.R.; Allen, C.D.; Alfaro-Sánchez, R.; Awada, T.; et al. Joint effects of climate, tree size, and year on annual tree growth derived from tree-ring records of ten globally distributed forests. Glob. Chang. Biol. 2022, 28, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Latte, N.; Perin, J.; Kint, V.; Lebourgeois, F.; Claessens, H. ajor changes in growth rate and growth variability of beech (Fagus sylvatica L.) related to soil alteration and climate change in Belgium. Forests 2016, 7, 174. [Google Scholar] [CrossRef] [Green Version]
- Pretzsch, H.; Biber, P.; Schütze, G.; Uhl, E.; Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 2014, 5, 4967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulakowski, D.; Seidl, R.; Holeksa, J.; Kuuluvainen, T.; Nagel, T.A.; Panayotov, M.; Svoboda, M.; Thorn, S.; Vacchiano, G.; Whitlock, C.; et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. For. Ecol. Manag. 2017, 388, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolström, M.; Lindner, M.; Vilén, T.; Maroschek, M.; Seidl, R.; Lexer, M.J.; Netherer, S.; Kremer, A.; Delzon, S.; Barbati, A.; et al. Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests 2011, 2, 961–982. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Forest Resources Assessment 2015; Elsevier B.V.: Rome, Italy, 2015; ISBN 978-92-5-108826-5. [Google Scholar]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. (Eds.) National Forest Inventories; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-3232-4. [Google Scholar]
- Vidal, C.; Alberdi, I.; Redmond, J.; Vestman, M.; Lanz, A.; Schadauer, K. The role of European National Forest Inventories for international forestry reporting. Ann. For. Sci. 2016, 73, 793–806. [Google Scholar] [CrossRef] [Green Version]
- Neumann, M.; Moreno, A.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Achten, W.M.J.; Thivolle-Cazat, A.; Bronisz, K.; et al. Comparison of carbon estimation methods for European forests. For. Ecol. Manag. 2016, 361, 397–420. [Google Scholar] [CrossRef]
- Gschwantner, T.; Alberdi, I.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Breidenbach, J.; Donis, J.; Fischer, C.; et al. Growing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation. For. Ecol. Manag. 2022, 505, 119868. [Google Scholar] [CrossRef]
- Vidal, C.; Lanz, A.; Tomppo, E.; Schadauer, K.; Gschwantner, T.; Di Cosmo, L.; Robert, N. Establishing forest inventory reference definitions for forest and growing stock: A study towards common reporting. Silva Fenn. 2008, 42, 247–266. [Google Scholar] [CrossRef] [Green Version]
- Gschwantner, T.; Alberdi, I.; Balázs, A.; Bauwens, S.; Bender, S.; Borota, D.; Bosela, M.; Bouriaud, O.; Donis, J.; Gschwantner, T.; et al. Harmonisation of stem volume estimates in European National Forest Inventories. Ann. For. Sci. 2019, 76, 24. [Google Scholar] [CrossRef] [Green Version]
- Tomppo, E.O.; Schadauer, K. Harmonization of national forest inventories in Europe: Advances under Cost Action E43. For. Sci. 2012, 58, 191–200. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Varis, S.; Schuck, A.; Nabuurs, G.J. EFISCEN Inventory Database; European Forest Institute: Joensuu, Finland, 2006. [Google Scholar]
- Vilén, T.; Gunia, K.; Verkerk, P.J.; Seidl, R.; Schelhaas, M.J.; Lindner, M.; Bellassen, V. Reconstructed forest age structure in Europe 1950–2010. For. Ecol. Manag. 2012, 286, 203–218. [Google Scholar] [CrossRef]
- Gallaun, H.; Zanchi, G.; Nabuurs, G.J.; Hengeveld, G.; Schardt, M.; Verkerk, P.J. EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements. For. Ecol. Manag. 2010, 260, 252–261. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Fitzgerald, J.B.; Datta, P.; Dees, M.; Hengeveld, G.M.; Lindner, M.; Zudin, S. Spatial distribution of the potential forest biomass availability in europe. For. Ecosyst. 2019, 6, 5. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Hasenauer, H. Forest structures across Europe. Geosci. Data J. 2017, 4, 17–28. [Google Scholar] [CrossRef]
- Härkönen, S.; Neumann, M.; Mues, V.; Berninger, F.; Bronisz, K.; Cardellini, G.; Chirici, G.; Hasenauer, H.; Koehl, M.; Lang, M.; et al. A climate-sensitive forest model for assessing impacts of forest management in Europe. Environ. Model. Softw. 2019, 115, 128–143. [Google Scholar] [CrossRef]
- Neumann, M.; Godbold, D.L.; Hirano, Y.; Finér, L. Improving models of fine root carbon stocks and fluxes in European forests. J. Ecol. 2020, 108, 496–514. [Google Scholar] [CrossRef] [Green Version]
- Hasenauer, H.; Neumann, M.; Moreno, A.; Running, S. Assessing the resources and mitigation potential of European forests. Energy Procedia 2017, 125, 372–378. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Hasenauer, H. Climate limits on European forest structure across space and time. Glob. Planet. Chang. 2018, 169, 168–178. [Google Scholar] [CrossRef]
- Moreno, A.; Neumann, M.; Mohebalian, P.M.; Thurnher, C.; Hasenauer, H. The Continental Impact of European Forest Conservation Policy and Management on Productivity Stability. Remote Sens. 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Klonner, G.; Rammer, W.; Essl, F.; Moreno, A.; Neumann, M.; Dullinger, S. Invasive alien pests threaten the carbon stored in Europe’s forests. Nat. Commun. 2018, 9, 1626. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Neumann, M.; Moreno, A.; Thurnher, C.; Mues, V.; Härkönen, S.; Mura, M.; Bouriaud, O.; Lang, M.; Cardellini, G.; Thivolle-Cazat, A.; et al. Creating a regional MODIS satellite-driven net primary production dataset for european forests. Remote Sens. 2016, 8, 554. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.; Alberdi, I.A.; Hernández Mateo, L.; Redmond, J.J. (Eds.) National Forest Inventories; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-44014-9. [Google Scholar]
- Department of Agriculture, Food and the Marine. Ireland’s National Forest Inventory 2017 Field Procedures and Methodology; Department of Agriculture, Food and the Marine: Dublin, Ireland, 2017; ISBN 9781406429800. [Google Scholar]
- Schelhaas, M.J.; Clerkx, A.P.P.M.; Daamen, W.P.; Oldenburger, J.F.; Velema, G.; Schnitger, P.; Schoonderwoerd, H.; Kramer, H. Zesde Nederlandse Bosinventarisatie: Methoden en Basisresultaten; Alterra-Rapport 2545; Alterra Wageningen UR (University & Research Centre): Wageningen, The Netherlands, 2014. [Google Scholar]
- Gasparini, P.; Tabacchi, G. L’Inventario Nazionale delle Foreste e dei serbatoi forestali di Carbonio INFC 2005. In Secondo inventario forestale nazionale italiano. Metodi e risultati. Ministero delle Politiche Agricole, Alimentari e Forestali; Corpo Forestale dello Stato; Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Unità di ricerca per il Monitoraggio e la Pianificazione Forestale, Edagricole: Milano, Italy, 2011; p. 650. Available online: https://shop.newbusinessmedia.it/collections/edagricole/products/l-inventario-nazionale-delle-foreste-e-dei-serbatoi-forestali-di (accessed on 30 November 2021).
- Gasparini, P.; Di Cosmo, L.; Floris, A.; Notarangelo, G.; Rizzo, M.; Guida per i Rilievi in Campo. INFC2015—Terzo Inventario Forestale Nazionale. Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria, Unità di Ricerca per il Monitoraggio e la Pianificazione Forestale (CREA-MPF); Corpo Forestale dello Stato, Ministero per le Politiche Agricole, Alimentari e Forestali: Agordo, Italy, 2016; ISBN 9788899595449. Available online: https://www.inventarioforestale.org/it/node/82 (accessed on 30 November 2021).
- Moreno, A.; Neumann, M.; Hasenauer, H. Optimal resolution for linking remotely sensed and forest inventory data in Europe. Remote Sens. Environ. 2016, 183, 109–119. [Google Scholar] [CrossRef]
- Hasenauer, H.; Eastaugh, C.S. Assessing Forest Production Using Terrestrial Monitoring Data. Int. J. For. Res. 2012, 2012, 961576. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2019. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1/#data-availability (accessed on 4 September 2019).
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Moreno, A.; Hasenauer, H. Spatial downscaling of European climate data. Int. J. Climatol. 2015, 36, 1444–1458. [Google Scholar] [CrossRef]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011, 116, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E.; Nelson, M.D.; Wendt, D.G. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 2002, 82, 457–468. [Google Scholar] [CrossRef]
- Manning, C.D.; Schütze, H. Foundations of Statistical Natural Language Processing. SIGMOD Rec. 2002, 31, 37–38. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015 Country Report Romania; FAO: Rome, Italy, 2014. [Google Scholar]
- FAO. Global Forest Resources Assessment 2015 Country Report Sweden; FAO: Rome, Italy, 2014. [Google Scholar]
- Gabler, K.; Schadauer, K.; Tomppo, E.; Vidal, C.; Bonhomme, C.; McRoberts, R.E.; Gschwantner, T. An enquiry on forest areas reported to the Global forest resources assessment-is harmonization needed? For. Sci. 2012, 58, 201–213. [Google Scholar] [CrossRef]
- FAO. FRA 2015 Terms and Definitions; FAO: Rome, Italy, 2012. [Google Scholar]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Corine Land Cover; European Environment Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Pérez-Hoyos, A.; García-Haro, F.J.; San-Miguel-Ayanz, J. Conventional and fuzzy comparisons of large scale land cover products: Application to CORINE, GLC2000, MODIS and GlobCover in Europe. ISPRS J. Photogramm. Remote Sens. 2012, 74, 185–201. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Pucher, C.; Erber, G.; Hasenauer, H. Assessment of the European forest area and stocking volume harvestable according to level of harvesting mechanization. manuscript in preperation. 2022. [Google Scholar]
Country | Sampling Method | Basal Area Factor (m²/ha) | Plot Area (m²) | Min. DBH (cm) | Number of Plots | Sampling Date Range | Arrangement of Sample Plots | Distance between Plots (km) |
---|---|---|---|---|---|---|---|---|
Albania | FAP | - | 25, 200 and 400 | 7 | 911 | 2003 | Clusters of 5 plots | 1 × 1 |
Austria | ACS + FAP | 4 | 21.2 | 5 | 9562 | 2000–2009 | Clusters of 4 plots | 3.889 × 3.889 |
Belgium | FAP | - | 15.9–1017.9 | 7 | 5091 | 1996–2014 | Single plots | 1 × 0.5 |
Croatia | FAP | - | 38.5–1256.6 | 5 | 7136 | 2005–2009 | Clusters of 4 plots | 4 × 4 on avg. |
Estonia | Survey | - | Undefined | 0 | 19,836 | 2000–2010 | Random | Random |
Finland | ACS | 2 (south) 1.5 (north) | - | 0 | 6806 | 1996–2008 | Clusters of 14–18 | 6–8 (south) 6–11 (north) |
France | FAP | - | 113–706 | 7.48 | 48,182 | 2005–2013 | Single plots | 2 × 2 |
Germany | ACS | 4 | - | 7 | 56,295 | 2001–2012 | Clusters of 4 plots | 4 × 4 or 8 × 8 |
Ireland | FAP | - | 500 | 7 | 1597 | 2016 | Single plots | 2 × 2 |
Italy | FAP | - | 50 and 530 | 5 | 21,958 | 2000–2009 | Single plots | Random |
Netherlands | FAP | - | 50–1256 | 5 | 3966 | 1998–2013 | Single plots | Random |
Norway | FAP | - | 250 | 5 | 9200 | 2002–2011 | Single plots | 3 × 3 |
Poland | FAP | - | 200–500 | 7 | 28,158 | 2005–2013 | Cluster of 5 plots | 4 × 4 |
Romania | FAP | - | 200–500 | 5.6 | 18,784 | 2008–2012 | Cluster of 4 plots | 4 × 4 or 2 × 2 |
Spain | FAP | - | 78.5–1963.5 | 7.5 | 69,483 | 1997–2007 | Single plots | 1 × 1 |
Sweden | FAP | - | 154 | 0 | 37,225 | 2000–2013 | Cluster of 12 plots | 10 × 10 |
350,489 | 1996–2016 |
Aggregated NFI Data | Leave-One-Out | Country-Wise | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variable | N | Mean | SD | CI | Mean | SD | MBE | MAE | RMSE | Mean | SD | MBE | MAE | RMSE |
Carbon (tC/ha) | 38,987 | 69.7 | 45.1 | 33.1 | 69.9 | 45.1 | 0.2 | 32.4 | 46.8 | 63.6 | 53.0 | −6.1 | 40.1 | 57.3 |
Volume (m3/ha) | 38,962 | 176.9 | 132.0 | 86.5 | 177.2 | 131.8 | 0.4 | 86.1 | 126.5 | 163.9 | 150.6 | −13.0 | 109.3 | 159.9 |
Height (m) | 36,320 | 14.7 | 5.8 | 3.4 | 14.7 | 5.8 | 0.0 | 3.7 | 4.9 | 12.9 | 7.7 | −1.7 | 5.8 | 7.6 |
Diameter at breast height (cm) | 38,967 | 21.9 | 8.7 | 6.6 | 21.9 | 8.7 | 0.0 | 6.9 | 9.8 | 18.9 | 11.2 | −3.0 | 9.8 | 13.4 |
Most frequent Age class (-) | 37,118 | 3.1 | 1.6 | NA | 3.1 | 1.6 | 0.0 | 1.5 | 2.1 | 2.6 | 1.8 | −0.5 | 1.8 | 2.4 |
Basal Area (m²/ha) | 38,987 | 20.9 | 11.1 | 8.6 | 20.9 | 11.0 | 0.0 | 8.2 | 11.5 | 18.8 | 13.9 | −2.1 | 10.6 | 15.2 |
Stand Density Index (-) | 38,967 | 559.8 | 543.6 | 284.2 | 560.3 | 522.4 | 0.4 | 270.6 | 619.5 | 465.4 | 567.0 | −94.4 | 356.6 | 780.8 |
Leave-One-Out | Country-Wise | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Country | Carbon | Volume | Height | DBH | BA | SDI | Age | Carbon | Volume | Height | DBH | BA | SDI | Age |
Albania | −2.1 | 45.1 | 14.0 | −6.6 | 37.9 | 48.0 | 1.5 | 16.5 | 126.2 | 27.7 | −6.6 | 104.1 | 128.6 | 1.6 |
Austria | −2.1 | −0.7 | −1.9 | −1.1 | −3.2 | −3.7 | 1.9 | −3.9 | −1.6 | −9.4 | −4.9 | −6.1 | −7.9 | 1.9 |
Belgium | −13.5 | −14.0 | −7.5 | −12.3 | −7.1 | −5.4 | 1.3 | −19.9 | −18.9 | −8.7 | −16.3 | −9.2 | −6.2 | 1.6 |
Croatia | 8.9 | 11.0 | 0.9 | −0.1 | 13.6 | 1.7 | NA | 24.3 | 28.3 | −3.1 | 0.9 | 25.7 | 4.7 | NA |
Estonia | −0.5 | −4.4 | −3.5 | −0.8 | −0.1 | 0.3 | 1.0 | −9.1 | −39.4 | −30.6 | −6.3 | −6.5 | −2.6 | 1.6 |
Finland | 7.0 | 0.1 | −3.1 | 1.4 | 1.6 | 24.6 | 1.9 | 12.5 | 2.3 | −8.7 | 1.2 | 0.8 | 93.5 | 2.0 |
France | 8.5 | 7.8 | 1.4 | 0.2 | 5.5 | 5.4 | 1.8 | 7.8 | −3.2 | −13.0 | −16.0 | 1.1 | 4.4 | 2.0 |
Germany | −5.5 | −9.8 | −6.0 | −5.2 | −6.9 | −5.5 | 1.6 | −17.4 | −28.8 | −16.8 | −15.3 | −23.0 | −19.5 | 1.6 |
Ireland | 3.0 | −0.5 | 4.9 | 3.6 | −0.9 | −1.7 | 0.8 | −47.2 | −46.6 | 0.8 | −14.2 | −56.6 | −60.1 | 1.3 |
Italy | 9.0 | 7.9 | 6.2 | 13.6 | 4.9 | 0.9 | 1.0 | 12.6 | 8.6 | 15.1 | 32.5 | 5.4 | −5.4 | 1.3 |
Netherlands | −1.0 | 12.3 | 13.1 | 73.1 | 76.0 | 62.2 | 1.3 | −5.0 | 16.9 | 25.1 | 114.4 | 111.0 | 96.4 | 1.4 |
Norway | 3.3 | 4.6 | 4.5 | 0.9 | 2.2 | 9.2 | 2.1 | −15.5 | −6.8 | 30.5 | −6.5 | −13.3 | 7.1 | 2.6 |
Poland | −5.3 | −2.9 | 2.4 | −1.3 | −3.7 | −1.9 | 1.2 | −17.3 | −7.2 | 10.7 | −3.1 | −10.1 | −5.8 | 1.4 |
Romania | 3.5 | −0.8 | NA | 5.0 | 2.8 | 3.4 | 1.1 | 2.2 | −9.2 | NA | 10.9 | 1.1 | 4.5 | 1.3 |
Spain | −2.2 | 0.8 | −0.1 | −0.8 | −0.8 | 0.3 | 1.1 | −60.8 | −54.1 | −26.1 | −40.0 | −46.3 | −38.4 | 1.8 |
Sweden | −2.4 | 0.0 | −0.7 | −0.2 | −0.9 | −15.0 | 1.9 | −27.6 | −23.9 | −15.4 | −10.7 | −18.7 | −69.1 | 2.1 |
EU | 0.2 | −0.2 | 0.1 | 0.1 | −0.1 | 0.1 | 1.5 | −13.9 | −16.2 | −8.8 | −8.6 | −11.8 | −14.0 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pucher, C.; Neumann, M.; Hasenauer, H. An Improved Forest Structure Data Set for Europe. Remote Sens. 2022, 14, 395. https://doi.org/10.3390/rs14020395
Pucher C, Neumann M, Hasenauer H. An Improved Forest Structure Data Set for Europe. Remote Sensing. 2022; 14(2):395. https://doi.org/10.3390/rs14020395
Chicago/Turabian StylePucher, Christoph, Mathias Neumann, and Hubert Hasenauer. 2022. "An Improved Forest Structure Data Set for Europe" Remote Sensing 14, no. 2: 395. https://doi.org/10.3390/rs14020395
APA StylePucher, C., Neumann, M., & Hasenauer, H. (2022). An Improved Forest Structure Data Set for Europe. Remote Sensing, 14(2), 395. https://doi.org/10.3390/rs14020395