Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Synthetic Aperture Radar
2.3. Numerical Simulations
2.4. Field Measurements
2.5. Background Physics
3. Results
3.1. Biogenic Slicks Indicate the Presence of a Cyclonic Gyre
3.2. Signature of Pelagic Upwelling Induced by a Cyclonic Gyre
3.3. Submesoscale Eddies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ji, Z.G.; Jin, K.R. Gyres and seiches in a large and shallow lake. J. Great Lakes Res. 2006, 32, 764–775. [Google Scholar] [CrossRef]
- Ishikawa, K.; Kumagai, M.; Vincent, W.F.; Tsujimura, S.; Nakahara, H. Transport and accumulation of bloom-forming cyanobacteria in a large, mid-latitude lake: The gyre-Microcystis hypothesis. Limnology 2002, 3, 87–96. [Google Scholar] [CrossRef]
- Csanady, G.T. Wind-induced barotropic motions in long lakes. J. Phys. Oceanogr. 1973, 3, 429–438. [Google Scholar] [CrossRef]
- Csanady, G.T. Hydrodynamics of large lakes. Annu. Rev. Fluid Mech. 1975, 7, 357–386. [Google Scholar] [CrossRef]
- Rao, D.B.; Murty, T.S. Calculation of the steady state wind-driven circulations in Lake Ontario. Arch. Meteorol. Geophys. Bioclimatol. A 1970, 19, 195–210. [Google Scholar] [CrossRef]
- Zhan, S.; Beck, R.A.; Hinkel, K.M.; Liu, H.; Jones, B.M. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images. Remote Sens. 2014, 6, 9170–9193. [Google Scholar] [CrossRef] [Green Version]
- Beletsky, D.; Saylor, J.H.; Schwab, D.J. Mean circulation in the Great Lakes. J. Great Lakes Res. 1999, 25, 78–93. [Google Scholar] [CrossRef]
- Beletsky, D.; Hawley, N.; Rao, Y.R. Modeling summer circulation and thermal structure of Lake Erie. J. Geophys. Res. Ocean. 2013, 118, 6238–6252. [Google Scholar] [CrossRef] [Green Version]
- Hui, Y.; Farnham, D.J.; Atkinson, J.F.; Zhu, Z.; Feng, Y. Circulation in Lake Ontario: Numerical and physical model analysis. J. Hydraul. Eng. 2021, 147, 05021004. [Google Scholar] [CrossRef]
- Faghmous, J.H.; Frenger, I.; Yao, Y.; Warmka, R.; Lindell, A.; Kumar, V. A daily global mesoscale ocean eddy dataset from satellite altimetry. Sci. Data 2015, 2, 150028. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Troitskaya, E.; Blinov, V.; Ivanov, V.; Zhdanov, A.; Gnatovsky, R.; Sutyrina, E.; Shimaraev, M. Cyclonic circulation and upwelling in Lake Baikal. Aquat. Sci. 2015, 77, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Beletsky, D.; Hawley, N.; Rao, Y.R.; Vanderploeg, H.A.; Beletsky, R.; Schwab, D.J.; Ruberg, S.A. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett. 2012, 39, L06605. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.H.; Ho, C.R.; Zheng, Q.; Kuo, N.J. Statistical characteristics of mesoscale eddies in the North Pacific derived from satellite altimetry. Remote Sens. 2014, 6, 5164–5183. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Yang, J.; Yang, C.; Hu, H.; Jing, W.; Hu, Y.; Li, Y. Performance analysis of ocean eddy detection and identification by L-Band compact polarimetric synthetic aperture radar. Remote Sens. 2021, 13, 4905. [Google Scholar] [CrossRef]
- Shomina, O.; Danilicheva, O.; Tarasova, T.; Kapustin, I. Manifestation of spiral structures under the action of upper ocean currents. Remote Sens. 2022, 14, 1871. [Google Scholar] [CrossRef]
- Karimova, S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data. Adv. Space Res. 2012, 50, 1107–1124. [Google Scholar] [CrossRef]
- Fu, L.L.; Ferrari, R. Observing oceanic submesoscale processes from space. Eos Trans. Am. Geophys. Union 2008, 89, 488. [Google Scholar] [CrossRef]
- Topouzelis, K.; Kitsiou, D. Detection and classification of mesoscale atmospheric phenomena above sea in SAR imagery. Remote Sens. Environ. 2015, 160, 263–272. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Kawamura, H. SAR-imaged spiral eddies in Mutsu Bay and their dynamic and kinematic models. J Oceanogr. 2009, 65, 525–539. [Google Scholar] [CrossRef]
- Xu, G.; Yang, J.; Dong, C.; Chen, D.; Wang, J. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas. Int. J. Remote Sens. 2015, 36, 4621–4631. [Google Scholar] [CrossRef]
- Gurova, E.; Lehmann, A.; Ivanov, A. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia 2013, 55, 687–707. [Google Scholar] [CrossRef] [Green Version]
- Clemente-Colón, P.; Yan, X.H. Observations of east coast upwelling conditions in synthetic aperture radar imagery. IEEE Trans. Geosci Remote Sens. 1999, 37, 2239–2248. [Google Scholar] [CrossRef]
- Clemente-Colón, P. Evolution of upwelling-associated biological features in the Middle Atlantic Bight as captured by SAR, SST, and ocean colour sensors. In IGARSS 2001. Scanning the Present and Resolving the Future, Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, Australia, 9–13 July 2001; IEEE: Manhattan, NY, USA, 2001; Volume 6, pp. 2616–2618. [Google Scholar]
- Gurova, E.S.; Ivanov, A.Y. Appearance of sea surface signatures and current features in the South-East Baltic Sea on the MODIS and SAR images. Issled. Zemli Kosm. 2011, 4, 41–54. [Google Scholar]
- Friehe, C.A.; Shaw, W.J.; Rogers, D.P.; Davidson, K.L.; Large, W.G.; Stage, S.A.; Crescenti, G.H.; Khalsa, S.J.S.; Greenhut, G.K.; Li, F. Air-sea fluxes and surface layer turbulence around a sea surface temperature front. J. Geophys. Res. 1991, 96, 8593–8609. [Google Scholar] [CrossRef]
- Zheng, Q.; Yan, X.H.; Huang, N.E.; Klemas, V.; Pan, J. The effects of water temperature on radar scattering from the water surface: An x-band laboratory study. Glob. Atmos. Ocean. Syst. 1997, 5, 273–294. [Google Scholar]
- Lin, I.I.; Wen, L.S.; Liu, K.K.; Tsai, W.T.; Liu, A.K. Evidence and quantification of the correlation between radar backscatter and ocean colour supported by simultaneously acquired in situ sea truth. Geophys. Res. Lett. 2002, 29, 102-1–102-4. [Google Scholar] [CrossRef] [Green Version]
- Keller, W.C.; Wismann, V.; Alpers, W. Tower-based measurements of the ocean C band radar backscattering cross section. J. Geophys. Res. Ocean. 1989, 94, 924–930. [Google Scholar] [CrossRef] [Green Version]
- Alpers, W.; Zeng, K. On radar signatures of upwelling. J. Geod. Geoinf. Sci. 2021, 4, 17. [Google Scholar]
- Alpers, W.; Huhnerfuss, H. The damping of ocean waves by surface films: A new look at an old problem. J. Geophys. Res. 1989, 94, 6251–6265. [Google Scholar] [CrossRef]
- Marmorino, G.O.; Holt, B.; Molemaker, M.J.; DiGiacomo, P.M.; Sletten, M.A. Airborne synthetic aperture radar observations of “spiral eddy” slick patterns in the Southern California Bight. J. Geophys. Res. Ocean. 2010, 115, C05010. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.L.; Shen, C.Y.; Marmorino, G.O.; Evans, T. Simulated radar imagery of an ocean “spiral eddy”. Trans. Geosci. Remote Sens. 2005, 43, 2325–2331. [Google Scholar] [CrossRef]
- Johannessen, J.A.; Kudryavtsev, V.; Akimov, D.; Eldevik, T.; Winther, N.; Chapron, B. On radar imaging of current features: 2. Mesoscale eddy and current front detection. J. Geophys. Res. 2005, 110, C07017. [Google Scholar] [CrossRef]
- McWilliams, J.C.; Colas, F.; Molemaker, M.J. Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett. 2009, 36, L18602. [Google Scholar] [CrossRef]
- DiGiacomo, P.M.; Holt, B. Satellite observations of small coastal ocean eddies in the Southern California Bight. J. Geophys. Res. 2001, 106, 22521–22543. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, G.; Dong, C.; Yang, J.; Xia, C. Submesoscale eddies in the East China Sea detected from SAR images. Acta Oceanol. Sin. 2021, 40, 18–26. [Google Scholar] [CrossRef]
- Johannessen, J.A.; Shuchman, R.A.; Digranes, G.; Lyzenga, D.R.; Wackerman, C.; Johannessen, O.M.; Vachon, P.W. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. J. Geophys. Res. Ocean. 1996, 101, 6651–6667. [Google Scholar] [CrossRef] [Green Version]
- Dokken, S.T.; Wahl, T. Observations of Spiral Eddies along the Norwegian Coast. In ERS SAR Images; Rep. 96/01463; Norwegian Defence Research Establishment: Kjeller, Norway, 1996. [Google Scholar]
- Alpers, W.; Bignami, F. Small-Scale and Sub-Mesoscale Phenomena Associated with Upwelling Studied by SAR. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3537–3540. [Google Scholar]
- Ẑutić, V.; Ćosović, B.; Marčenko, E.; Bihari, N.; Kršinić, F. Surfactant production by marine phytoplankton. Mar. Chem. 1981, 10, 505–520. [Google Scholar] [CrossRef]
- Kurata, N.; Vella, K.; Hamilton, B.; Shivji, M.; Soloviev, A.; Matt, S.; Tartar, A.; Perrie, W. Surfactant-associated bacteria in the near-surface layer of the ocean. Sci. Rep. 2016, 6, srep19123. [Google Scholar] [CrossRef] [Green Version]
- Kujawinski, E.B.; Farrington, J.W.; Moffett, J.W. Evidence for grazing-mediated production of dissolved surface-active material by marine protists. Mar. Chem. 2002, 77, 133–142. [Google Scholar] [CrossRef]
- Hunter, K.A.; Liss, P.S. Organic Sea Surface Films. In Marine Organic Chemistry; Duursma, E.K., Dawson, R., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 31, pp. 259–298. ISBN 0422-9894. [Google Scholar]
- Tsai, W.; Liu, K.-K. An assessment of the effect of sea surface surfactant on global atmosphere-ocean CO2 flux. J. Geophys. Res. Ocean. 2003, 108, 3127. [Google Scholar] [CrossRef] [Green Version]
- De Santi, F.; Luciani, G.; Bresciani, M.; Giardino, C.; Lovergine, F.P.; Pasquariello, G.; Vaiciute, D.; De Carolis, G. Synergistic use of synthetic aperture radar and optical imagery to monitor surface accumulation of cyanobacteria in the Curonian Lagoon. J. Mar. Sci. Eng. 2019, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Friedman, K.S.; Li, X.; Pichel, W.G.; Clemente-Colon, P.; Walker, N.; Veenstra, T. Eddy Detection Using RADARSAT-1 Synthetic Aperture Radar. In Proceedings of the IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; Volume 7, pp. 4707–4710. [Google Scholar]
- Ivanov, A.Y.; Ginzburg, A.I. Oceanic eddies in synthetic aperture radar images. J. Earth Syst. Sci. 2002, 111, 281–295. [Google Scholar] [CrossRef]
- McKinney, P.; Holt, B.; Matsumoto, K. Small eddies observed in Lake Superior using SAR and sea surface temperature imagery. J. Great Lakes Res. 2012, 38, 786–797. [Google Scholar] [CrossRef]
- Hamze-Ziabari, S.M.; Razmi, A.M.; Lemmin, U.; Barry, D.A. Detecting submesoscale cold filaments in a basin-scale gyre in large, deep Lake Geneva (Switzerland/France). Geophys. Res. Lett. 2022, 49, e2021GL096185. [Google Scholar] [CrossRef]
- Hamze-Ziabari, S.M.; Lemmin, U.; Soulignac, F.; Foroughan, M.; Barry, D.A. Basin-scale gyres and mesoscale eddies in large lakes: A novel procedure for their detection and characterization, assessed in Lake Geneva. Geosci. Model. Dev. 2022, 1–33, submitted. [Google Scholar]
- Foroughan, M.; Lemmin, U.; Barry, D.A. Effects of natural surfactants on the spatial variability of surface water temperature under intermittent light winds on Lake Geneva. J. Limnol. 2022, 81, 2048. [Google Scholar] [CrossRef]
- Lemmin, U. Insights into the dynamics of the deep hypolimnion of Lake Geneva as revealed by long-term temperature, oxygen, and current measurements. Limnol. Oceanogr. 2020, 65, 2092–2107. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Guan, C.; Sun, J.; Xie, L. A wind speed retrieval model for Sentinel-1A EW mode cross-polarization images. Remote Sens. 2019, 11, 153. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Xie, T.; Perrie, W.; Zhang, G.; Yang, J.; He, Y. Comparison of C-band quad-polarization synthetic aperture radar wind retrieval models. Remote Sens. 2018, 10, 1448. [Google Scholar] [CrossRef] [Green Version]
- Filipponi, F. Sentinel-1 GRD Preprocessing Workflow. Proceedings 2019, 18, 11. [Google Scholar]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Cimatoribus, A.A.; Lemmin, U.; Bouffard, D.; Barry, D.A. Nonlinear dynamics of the nearshore boundary layer of a large lake (Lake Geneva). J. Geophys. Res. Ocean. 2018, 123, 1016–1031. [Google Scholar] [CrossRef] [Green Version]
- Cimatoribus, A.A.; Lemmin, U.; Barry, D.A. Tracking Lagrangian transport in Lake Geneva: A 3D numerical modeling investigation. Limnol. Oceanogr. 2019, 64, 1252–1269. [Google Scholar] [CrossRef]
- Reiss, R.S.; Lemmin, U.; Cimatoribus, A.A.; Barry, D.A. Wintertime coastal upwelling in Lake Geneva: An efficient transport process for deepwater renewal in a large, deep lake. J. Geophys. Res. Ocean. 2020, 125, e2020JC016095. [Google Scholar] [CrossRef]
- Reiss, R.S.; Lemmin, U.; Barry, D.A. Wind-induced hypolimnetic upwelling between the multi-depth basins of Lake Geneva during winter: An overlooked deepwater renewal mechanism? J. Geophys. Res. Ocean. 2022, 127, e2021JC018023. [Google Scholar] [CrossRef]
- Voudouri, A.; Avgoustoglou, E.; Kaufmann, P. Impacts of Observational Data Assimilation on Operational Forecasts. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–149. [Google Scholar]
- CIPEL. Rapports Sur Les Études et Recherches Entreprises Dans Le Bassin Lémanique, Campagne 2018; Commission Internationale Pour la Protection des eaux du Léman (CIPEL): Nyon, Switzerland, 2019. [Google Scholar]
- Jackson, C.R.; Apel, J.R. Synthetic Aperture Radar Marine User’s Manual; US Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA, 2004; Available online: http://www.sarusersmanual.com (accessed on 13 September 2022).
- Elfouhaily, T.; Thompson, D.R.; Vandemark, D.; Chapron, B. A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces. Waves Random Media 1999, 9, 281–294. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Thompson, D.R.; Freund, D.E.; Vandemark, D.; Chapron, B. A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces: Numerical evaluation and comparison with SPM. Waves Random Media 2001, 11, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Tritton, D.J. Physical Fluid Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 978-94-009-9992-3. [Google Scholar]
- Large, W.G.; Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Grachev, A.A.; Bariteau, L.; Fairall, C.W.; Hare, J.E.; Helmig, D.; Hueber, J.; Lang, E.K. Turbulent fluxes and transfer of trace gases from ship-based measurements during TexAQS 2006. J. Geophys. Res. Atmos. 2011, 116, D13110. [Google Scholar] [CrossRef]
- Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Ann. Rev. Mar. Sci. 2016, 8, 161–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Collingsworth, P.D.; Minsker, B. Algorithmic characterization of lake stratification and deep chlorophyll layers from depth profiling water quality data. Water Resour. Res. 2019, 55, 3815–3834. [Google Scholar] [CrossRef]
- Gula, J.; Molemaker, M.J.; McWilliams, J.C. Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr. 2014, 44, 2617–2643. [Google Scholar] [CrossRef]
- McWilliams, J.; Molemaker, M. Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr. 2011, 41, 601–619. [Google Scholar] [CrossRef]
- Corman, J.R.; McIntyre, P.B.; Kuboja, B.; Mbemba, W.; Fink, D.; Wheeler, C.W.; Gans, C.; Michel, E.; Flecker, A.S. Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa. Limnol. Oceanogr. 2010, 55, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Jane, S.F.; Hansen, G.J.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread deoxygenation of temperate lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Bouffard, D.; Kiefer, I.; Wüest, A.; Wunderle, S.; Odermatt, D. Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sens. Environ. 2018, 209, 510–523. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.; Geng, X.; Yan, X.H.; Xie, T.; Yu, Q. Significant wave height retrieval from Sentinel-1 SAR imagery by convolutional neural network. J. Oceanogr. 2020, 76, 465–477. [Google Scholar] [CrossRef]
- Xing, L.; Tang, X.; Wang, H.; Fan, W.; Wang, G. Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m. PeerJ 2018, 6, e4992. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamze-Ziabari, S.M.; Foroughan, M.; Lemmin, U.; Barry, D.A. Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva. Remote Sens. 2022, 14, 4967. https://doi.org/10.3390/rs14194967
Hamze-Ziabari SM, Foroughan M, Lemmin U, Barry DA. Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva. Remote Sensing. 2022; 14(19):4967. https://doi.org/10.3390/rs14194967
Chicago/Turabian StyleHamze-Ziabari, Seyed Mahmood, Mehrshad Foroughan, Ulrich Lemmin, and David Andrew Barry. 2022. "Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva" Remote Sensing 14, no. 19: 4967. https://doi.org/10.3390/rs14194967
APA StyleHamze-Ziabari, S. M., Foroughan, M., Lemmin, U., & Barry, D. A. (2022). Monitoring Mesoscale to Submesoscale Processes in Large Lakes with Sentinel-1 SAR Imagery: The Case of Lake Geneva. Remote Sensing, 14(19), 4967. https://doi.org/10.3390/rs14194967