Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Homogeneous Subregion Segmentation with Mean Shift Method
2.2. Subregion Search and Matching
2.3. Shadow Compensation
2.3.1. Color Transfer
2.3.2. Texture-Preserving Color Transfer
Algorithm1. Shadow compensation algorithm |
Input: UAV RGB image ; The number of homogeneous regions, n; k1, k2. |
Output: The result of shadow compensation, . |
1. Image I is converted to Lab color space; |
2. For any homogeneous region , , represents all of its subregion matching combinations as ,; |
3. for (j=1; j n; j++) do |
4. for (i=1; i m; i ++) do |
5. compute the average value () and standard deviation () of in the q-band, (); |
6. compute the average value () and standard deviation () of in the q-band, (); |
7. ; |
8. ; |
9. ;// color transfer |
10. end for |
11. ; // the shadow compensation result of homogeneous region in the q-band |
12. end for |
13. ; // the shadow compensation result of image in the q-band |
14. Image I is converted to RGB color space, ,; |
15. ; // RGB image composition |
16. return ; |
2.4. Penumbra Optimization
Algorithm 2. Penumbra compensation algorithm |
Input: UAV RGB image ; Shadow mask Smask; Penumbra width d; k1, k2. |
Output: The result of penumbra shadow compensation, . |
1. Image I is converted to Lab color space; |
2. The Smask was morphologically dilated by 1/3d pixels in the non-shadow direction and morphologically eroded by 2/3d pixels in the umbra direction to obtain the penumbra mask, Pmask; |
3. The Pmask morphologically dilated five pixel widths toward the non-shaded direction was used as a reference sample for color transfer; |
4. For any homogeneous region , , represents all of its subregion matching combinations as ; |
5. for (j=1; j n; j++) do |
6. for (i=1; i d; i ++) do |
7. compute the average value () and standard deviation () of in the q-band, (); |
8. compute the average value () and standard deviation () of in the q-band, (); |
9. ; // color transfer |
10. end for |
11. ; // the penumbra shadow compensation result of homogeneous region in the q-band |
12. end for |
13. ; // the penumbra shadow compensation result of image in the q-band |
14. Image I is converted to RGB color space, ,; |
15. ; // RGB image composition |
16. return ; |
3. Experiments
3.1. Experiment Data
3.2. Experiment Design
3.3. Experimental Result
4. Discussion
4.1. Parameter Settings and Discussion
4.2. Analysis and Discussion of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, N.; Zhu, R.; Yan, L.; Zhao, Z. Deshadowing of Urban Airborne Imagery Based on Object-Oriented Automatic Shadow Detection and Regional Matching Compensation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 585–605. [Google Scholar] [CrossRef]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. Automatic detection of blurred images in UAV image sets. ISPRS J. Photogramm. Remote Sens. 2016, 122, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xu, H.; Zhou, Z.; Deng, L.; Yang, M. Shadow Detection and Removal for Illumination Consistency on the Road. IEEE Trans. Intell. Veh. 2020, 5, 534–544. [Google Scholar] [CrossRef]
- Han, H.; Han, C.; Huang, L.; Lan, T.; Xue, X. Irradiance Restoration Based Shadow Compensation Approach for High Resolution Multispectral Satellite Remote Sensing Images. Sensors 2020, 20, 6053. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, W.; Yokoya, N.; Huang, T. Blind cloud and cloud shadow removal of multitemporal images based on total variation regularized low-rank sparsity decomposition. ISPRS J. Photogramm. Remote Sens. 2019, 157, 93–107. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J. Fully constrained linear spectral unmixing based global shadow compensation for high resolution satellite imagery of urban areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 88–98. [Google Scholar] [CrossRef]
- Ankush, A.; Kumar, S.; Singh, D. An Adaptive Technique to Detect and Remove Shadow from Drone Data. J. Indian Soc. Remote. 2021, 49, 491–498. [Google Scholar]
- Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of conventional UAV-based highthroughput object detection to the early diagnosis of pine wilt disease by deep learning. For. Ecol. Manag. 2021, 486, 118986. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Li, Q.; Liu, L.; Liu, M.; Ji, Y. An empirical study of multi-scale object detection in high resolution UAV images. Neurocomputing 2021, 421, 173–182. [Google Scholar] [CrossRef]
- Tian, G.; Liu, J.; Yang, W. A dual neural network for object detection in UAV images. Neurocomputing 2021, 443, 292–301. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.; Nieto, H.; Coopmans, C. Behavior of vegetation/soil indices in shaded and sunlit pixels and evaluation of different shadow compensation methods using UAV high-resolution imagery over vineyards. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping III; International Society for Optics and Photonics: Orlando, FL, USA, 2018; Volume 10664, p. 1066407. [Google Scholar]
- Gao, M.; Yang, F.; Wei, H.; Liu, X. Individual Maize Location and Height Estimation in Field from UAV-Borne LiDAR and RGB Images. Remote Sens. 2022, 14, 2292. [Google Scholar] [CrossRef]
- Hamuda, E.; Mc Ginley, B.; Glavin, M.; Jones, E. Automatic crop detection under field conditions using the HSV colour space and morphological operations. Comput. Electron. Agric. 2017, 133, 97–107. [Google Scholar] [CrossRef]
- Lyu, Y.; Vosselman, G.; Xia, G.S.; Yilmaz, A.; Yang, M.Y. UAVid: A semantic segmentation dataset for UAV imagery. ISPRS J. Photogramm. Remote Sens. 2020, 165, 108–119. [Google Scholar] [CrossRef]
- Yang, F.; Wei, H.; Feng, P. A hierarchical Dempster-Shafer evidence combination framework for urban area land cover classification. Measurement 2020, 151, 105916. [Google Scholar] [CrossRef]
- Shao, H.; Song, P.; Mu, B.; Tian, G.; Chen, Q.; He, R.; Kim, G. Assessing city-scale green roof development potential using Unmanned Aerial Vehicle (UAV) imagery. Urban For. Urban Green. 2021, 57, 126954. [Google Scholar] [CrossRef]
- Yang, F.; Ji, L.; Wang, X. Possibility Theory and Application; Science Press: Beijing, China, 2019; pp. 186–194. [Google Scholar]
- Luo, S.; Shen, H.; Li, H.; Chen, Y. Shadow removal based on separated illumination correction for urban aerial remote sensing images. Signal Process. 2019, 165, 197–208. [Google Scholar] [CrossRef]
- Zhou, T.; Fu, H.; Sun, C. Shadow Detection and Compensation from Remote Sensing Images under Complex Urban Conditions. Remote Sens. 2021, 13, 699. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Vukomanovic, J.; Singh, K.; Liu, Y.; Holden, S.; Meentemeyer, R.K. Recurrent Shadow Attention Model (RSAM) for shadow removal in high-resolution urban land-cover mapping. Remote Sens. Environ. 2020, 247, 111945. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, S.; Chen, J.; Lyu, M.; Jiang, Y. Radiance transfer process based shadow correction method for urban regions in high spatial resolution image. J. Remote Sens. 2016, 20, 138–148. [Google Scholar]
- Xiao, C.; Xiao, D.; Zhang, L.; Chen, L. Efficient Shadow Removal Using Subregion Matching Illumination Transfer. Comput. Graph. Forum 2013, 32, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Amin, B.; Riaz, M.M.; Ghafoor, A. Automatic shadow detection and removal using image matting. Signal Process. 2019, 170, 107415. [Google Scholar] [CrossRef]
- Qu, L.; Tian, J.; He, S.; Tang, Y.; Lau, R.W.H. DeshadowNet: A Multi-context embedding deep network for shadow removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2308–2316. [Google Scholar]
- Finlayson, G.D.; Drew, M.S.; Lu, C. Entropy minimization for shadow removal. Int. J. Comput. Vision. 2009, 85, 35–57. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Shen, H. An adaptive nonlocal regularized shadow removal method for aerial remote sensing images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 106–120. [Google Scholar] [CrossRef]
- Silva, G.F.; Carneiro, G.B.; Doth, R.; Amaral, L.A.; De Azevedo, D.F.G. Near real-time shadow detection and removal in aerial motion imagery application. ISPRS J. Photogramm. Remote Sens. Lett. 2017, 140, 104–121. [Google Scholar] [CrossRef]
- Guo, R.; Dai, Q.; Hoiem, D. Single-image shadow detection and removal using paired regions. In Proceedings of the IEEE Conference Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 2033–2040. [Google Scholar]
- Zhang, L.; Zhang, Q.; Xiao, C. Shadow remover: Image shadow removal based on illumination recovering optimization. IEEE Trans. Image Process. 2015, 24, 4623–4636. [Google Scholar] [CrossRef]
- Liu, X.; Yang, F.; Wei, H.; Gao, M. Shadow Removal from UAV Images Based on Color and Texture Equalization Compensation of Local Homogeneous Regions. Remote Sens. 2022, 14, 2616. [Google Scholar] [CrossRef]
- Murali, S.; Govindan, V.K.; Kalady, S. Quaternion-based image shadow removal. Vis. Comput. 2022, 38, 1527–1538. [Google Scholar] [CrossRef]
- Song, Z.; Liu, S. Sufficient Image Appearance Transfer Combining Color and Texture. IEEE Trans. Multimed. 2017, 19, 702–711. [Google Scholar] [CrossRef]
- Pang, G.; Zhu, M.; Zhou, P. Color transfer and image enhancement by using sorting pixels comparison. Optik 2015, 126, 3510–3515. [Google Scholar] [CrossRef]
- Wu, T.; Tang, C.; Brown, M.S.; Shum, H. Natural shadow matting. ACM Trans. Graph. 2007, 26, 8–es. [Google Scholar] [CrossRef]
- Yu, X.; Ren, J.; Chen, Q.; Sui, X. A false color image fusion method based on multi-resolution color transfer in normalization YCBCR space. Optik 2014, 125, 6010–6016. [Google Scholar] [CrossRef]
- Reinhard, E.; Ashikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Ruderman, D.L.; Cronin, T.W.; Chiao, C. Statistics of cone responses to natural images: Implications for visual coding. J. Opt. Soc. Am. A 1998, 15, 2036–2045. [Google Scholar] [CrossRef] [Green Version]
- Murali, S.; Govindan, V.K. Shadow detection and removal from a single image: Using LAB color space. Cybern. Inf. Technol. 2013, 13, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Gilberto, A.; Francisco, J.S.; Marco, A.G.; Roque, A.O.; Luis, A.M. A Novel Shadow Removal Method Based upon Color Transfer and Color Tuning in UAV Imaging. Appl. Sci. 2021, 11, 11494. [Google Scholar]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
Metrics | Formulas |
---|---|
CD | L, a and b are, respectively, the three channels of LAB color space. |
SSDI | b is the current band of the image and B is the total number of image bands. i is the current pixel in the shadow regions and N is the total number of pixels in the shadow regions. is the compensated shadow sample set, and is the mean of the corresponding non-shadow sample set. |
GS | and represent the central gradient values of image blocks x and y, respectively, and C is a smaller positive constant, in order to prevent the instability of the algorithm caused by too small a denominator. |
Regions | Silva [27] | Gilberto [39] | Liu [30] | Proposed Work |
---|---|---|---|---|
ROI1 | 4.863 | 3.912 | 1.792 | 1.048 |
ROI2 | 4.340 | 4.053 | 1.943 | 1.290 |
ROI3 | 5.207 | 3.786 | 1.998 | 1.117 |
ROI4 | 5.162 | 4.039 | 1.815 | 0.981 |
AVG | 4.893 | 3.948 | 1.887 | 1.109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yang, F.; Wei, H.; Gao, M. Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer. Remote Sens. 2022, 14, 4969. https://doi.org/10.3390/rs14194969
Liu X, Yang F, Wei H, Gao M. Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer. Remote Sensing. 2022; 14(19):4969. https://doi.org/10.3390/rs14194969
Chicago/Turabian StyleLiu, Xiaoxia, Fengbao Yang, Hong Wei, and Min Gao. 2022. "Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer" Remote Sensing 14, no. 19: 4969. https://doi.org/10.3390/rs14194969
APA StyleLiu, X., Yang, F., Wei, H., & Gao, M. (2022). Shadow Compensation from UAV Images Based on Texture-Preserving Local Color Transfer. Remote Sensing, 14(19), 4969. https://doi.org/10.3390/rs14194969