Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = submesoscale

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7837 KiB  
Article
Automated Eddy Identification and Tracking in the Northwest Pacific Based on Conventional Altimeter and SWOT Data
by Lan Zhang, Cheinway Hwang, Han-Yang Liu, Emmy T. Y. Chang and Daocheng Yu
Remote Sens. 2025, 17(10), 1665; https://doi.org/10.3390/rs17101665 - 9 May 2025
Viewed by 707
Abstract
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET [...] Read more.
Eddy identification and tracking are essential for understanding ocean dynamics. This study employed the elliptical Gaussian function (EGF) simulations and the py-eddy-tracker (PET) algorithm, validated by Surface Velocity Program (SVP) drifter data, to track eddies in the western North Pacific Ocean. The PET method effectively identified large- and mesoscale eddies but struggled with submesoscale features, indicating areas for improvement. Simulated satellite altimetry by EGF, mirroring Surface Water and Ocean Topography (SWOT)’s high-resolution observations, confirmed PET’s capability in processing fine-scale data, though accuracy declined for submesoscale eddies. Over 22 years, 1,188,649 eddies were identified, mainly concentrated east of Taiwan. Temporal analysis showed interannual variability, more cyclonic than anticyclonic eddies, and a seasonal peak in spring, likely influenced by marine conditions. Short-lived eddies were uniformly distributed, while long-lived ones followed major currents, validating PET’s robustness with SVP drifters. The launch of the SWOT satellite in 2022 has enhanced fine-scale ocean studies, enabling the detection of submesoscale eddies previously unresolved by conventional altimetry. SWOT observations reveal intricate eddy structures, including small cyclonic features in the northwestern Pacific, demonstrating its potential for improving eddy tracking. Future work should refine the PET algorithm for SWOT’s swath altimetry, addressing data gaps and unclosed contours. Integrating SWOT with in situ drifters, numerical models, and machine learning will further enhance eddy classification, benefiting ocean circulation studies and climate modeling. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

24 pages, 10936 KiB  
Article
Surface Current Observations in the Southeastern Tropical Indian Ocean Using Drifters
by Prescilla Siji and Charitha Pattiaratchi
J. Mar. Sci. Eng. 2025, 13(4), 717; https://doi.org/10.3390/jmse13040717 - 3 Apr 2025
Viewed by 1084
Abstract
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, [...] Read more.
The Southeastern Tropical Indian Ocean (SETIO) forms part of the global ocean conveyor belt and thermohaline circulation that has a significant influence in controlling the global climate. This region of the ocean has very few observations using surface drifters, and this study presents, for the first time, paths of satellite tracked drifters released in the Timor Sea (123.3° E, 13.8° S). The drifter data were used to identify the ocean dynamics, forcing mechanisms and connectivity in the SETIO region. The data set has high temporal (~5 min) and spatial (~120 m) resolution and were collected over an 8-month period between 17 September 2020 and 25 May 2021. At the end of 250 days, drifters covered a region separated by ~8000 km (83–137° E, 4–21° S) and transited through several forcing mechanisms including semidiurnal and diurnal tides, submesoscale and mesoscale eddies, channel and headland flows, and inertial currents generated by tropical storms. Initially, all the drifters moved as a single cluster, and at 120° E longitude they entered a region of high eddy kinetic energy defined here as the ‘SETIO Mixing Zone’ (SMZ), and their movement was highly variable. All the drifters remained within the SMZ for periods between 3 and 5 months. Exiting the SMZ, drifters followed the major ocean currents in the system (either South Java or South Equatorial Current). Two of the drifters moved north through Lombok and Sape Straits and travelled to the east as far as Aru Islands. The results of this study have many implications for connectivity and transport of buoyant materials (e.g., plastics), as numerical models do not have the ability to resolve many of the fine-scale physical processes that contribute to surface transport and mixing in the ocean. Full article
(This article belongs to the Special Issue Monitoring of Ocean Surface Currents and Circulation)
Show Figures

Figure 1

33 pages, 21153 KiB  
Article
South China Sea SST Fronts, 2015–2022
by Igor M. Belkin and Yi-Tao Zang
Remote Sens. 2025, 17(5), 817; https://doi.org/10.3390/rs17050817 - 27 Feb 2025
Viewed by 1066
Abstract
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were [...] Read more.
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were processed with the Belkin–O’Reilly algorithm to generate maps of SST gradient magnitude GM. The GM maps were log-transformed to enhance contrasts in digital maps and reveal additional features (fronts). The combination of high-resolution, cloud-free, four-day-composite SST imagery from AHI, the advanced front-preserving gradient algorithm BOA, and digital contrast enhancement with the log-transformation of SST gradients allowed us to identify numerous mesoscale/submesoscale fronts (including a few fronts that have never been reported) and document their month-to-month variability and spatial patterns. The spatiotemporal variability of SST fronts was analyzed in detail in five regions: (1) In the Taiwan Strait, six fronts were identified: the China Coastal Front, Taiwan Bank Front, Changyun Ridge Front, East Penghu Channel Front, and Eastern/Western Penghu Islands fronts; (2) the Guangdong Shelf is dominated by the China Coastal Front in winter, with the eastern and western Guangdong fronts separated by the Pearl River outflow in summer; (3) Hainan Island is surrounded by upwelling fronts of various nature (wind-driven coastal and topographic) and tidal mixing fronts; in the western Beibu Gulf, the Red River Outflow Front extends southward as the Vietnam Coastal Front, while the northern Beibu Gulf features a tidal mixing front off the Guangxi coast; (4) Off SE Vietnam, the 11°N coastal upwelling gives rise to a summertime front, while the Mekong Outflow and associated front extend seasonally toward Cape Camau, close to the Gulf of Thailand Entrance Front; (5) In the Luzon Strait, the Kuroshio Front manifests as a chain of three fronts across the Babuyan Islands, while west of Luzon Island a broad offshore frontal zone persists in winter. The summertime eastward jet (SEJ) off SE Vietnam is documented from five-day mean SST data. The SEJ emerges in June–September off the 11°N coastal upwelling center and extends up to 114°E. The zonally oriented SEJ is observed to be located between two large gyres, each about 300 km in diameter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

21 pages, 8798 KiB  
Article
Climatological Annual Mean and Seasonal Variations in Spatial Energy Spectra of Satellite-Observed Sea-Surface Chlorophyll-a Concentration in the East China Sea
by Bo Huang, Yanzhen Gu, Cong Liu, Fangguo Zhai, Shuangyan He, Dan Song and Peiliang Li
J. Mar. Sci. Eng. 2025, 13(2), 198; https://doi.org/10.3390/jmse13020198 - 22 Jan 2025
Viewed by 766
Abstract
The hourly L2-level chlorophyll-a (CHL-a) concentration spatial energy spectra of GOCI-II from 2021 to 2023 are employed to investigate the characteristics of the CHL-a spatial energy spectrum slopes in three regions of the East China Sea, namely nearshore, offshore, and open ocean. The [...] Read more.
The hourly L2-level chlorophyll-a (CHL-a) concentration spatial energy spectra of GOCI-II from 2021 to 2023 are employed to investigate the characteristics of the CHL-a spatial energy spectrum slopes in three regions of the East China Sea, namely nearshore, offshore, and open ocean. The seasonal trends of the spatial energy spectrum slopes are also examined for the nearshore and offshore regions. It is observed that the slopes of the CHL-a spatial energy spectrum are −2 at scales larger than 5 km, whereas at smaller scales, they are −5/3, −1, and −0.3 from the nearshore region to the open sea, respectively. On the larger scales, the spatial energy spectrum slopes are consistent with surface quasi-geostrophic (sQG) theory, but this is not the case on smaller scales. An insufficient regional CHL-a concentration leads to a flattening of the slope at the smaller scales. On the submesoscale, the slope of the nearshore CHL-a concentration spatial energy spectrum is steeper in summer and flatter in winter, a pattern that contrasts with changes observed offshore. This seasonal variation is attributed to the southward flow of ZheMin Coastal Current (ZMCC) during winter, which carries freshwater and enhances the horizontal buoyancy gradient in the nearshore region. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

14 pages, 1143 KiB  
Article
On the Horizontal Divergence Asymmetry in the Gulf of Mexico
by Tianshu Zhou, Jin-Han Xie and Dhruv Balwada
Symmetry 2025, 17(1), 136; https://doi.org/10.3390/sym17010136 - 17 Jan 2025
Viewed by 640
Abstract
Due to the geostrophic balance, horizontal divergence-free is often assumed when analyzing large-scale oceanic flows. However, the geostrophic balance is a leading-order approximation. We investigate the statistical feature of weak horizontal compressibility in the Gulf of Mexico by analyzing drifter data (the Grand [...] Read more.
Due to the geostrophic balance, horizontal divergence-free is often assumed when analyzing large-scale oceanic flows. However, the geostrophic balance is a leading-order approximation. We investigate the statistical feature of weak horizontal compressibility in the Gulf of Mexico by analyzing drifter data (the Grand LAgrangian Deployment (GLAD) experiment and the LAgrangian Submesoscale ExpeRiment (LASER)) based on the asymptotic probability density function of the angle between velocity and acceleration difference vectors in a strain-dominant model. The results reveal a notable divergence at scales between 10 km and 300 km, which is stronger in winter (LASER) than in summer (GLAD). We conjecture that the divergence is induced by wind stress with its curl parallel to the Earth’s rotation. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Fluid Mechanics)
Show Figures

Figure 1

15 pages, 6650 KiB  
Article
Submesoscale Ageostrophic Processes in the Kuroshio and Their Impact on Phytoplankton Community Distribution
by Yuxuan Wang, Zheyue Shen, Jinjun Rao and Shuwen Zhang
J. Mar. Sci. Eng. 2024, 12(12), 2334; https://doi.org/10.3390/jmse12122334 - 19 Dec 2024
Viewed by 784
Abstract
This study focuses on typical regions of strong ageostrophic processes in the Kuroshio using high-resolution remote sensing satellite reanalysis data and Argo float data. By analyzing the relationship between the Rossby number and chlorophyll concentration from June to August in the summer of [...] Read more.
This study focuses on typical regions of strong ageostrophic processes in the Kuroshio using high-resolution remote sensing satellite reanalysis data and Argo float data. By analyzing the relationship between the Rossby number and chlorophyll concentration from June to August in the summer of 2020, the spatial characteristics of ageostrophic processes and their impact on the phytoplankton community distribution are explored. The results indicate that ageostrophic processes, driven by coastal topography, are stably generated in the regions of the Bashi Channel, northeastern Taiwan waters, southwestern Kyushu Island, and southern Shikoku Island. Furthermore, the intensity of these ageostrophic processes shows an overall positive correlation with chlorophyll concentration. The local mixing and subfront circulations induced by ageostrophic processes pump deep nutrients into the euphotic zone, supporting the growth and reproduction of phytoplankton, which leads to the formation of significant chlorophyll hotspots in regions controlled by ageostrophic processes. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography—2nd Edition)
Show Figures

Figure 1

17 pages, 2807 KiB  
Article
Anomalous Diffusion by Ocean Waves and Eddies
by Joey J. Voermans, Alexander V. Babanin, Alexei T. Skvortsov, Cagil Kirezci, Muhannad W. Gamaleldin, Henrique Rapizo, Luciano P. Pezzi, Marcelo F. Santini and Petra Heil
J. Mar. Sci. Eng. 2024, 12(11), 2036; https://doi.org/10.3390/jmse12112036 - 11 Nov 2024
Viewed by 1283
Abstract
Understanding the dispersion of floating objects and ocean properties at the ocean surface is crucial for various applications, including oil spill management, debris tracking and search and rescue operations. While mesoscale turbulence has been recognized as a primary driver of dispersion, the role [...] Read more.
Understanding the dispersion of floating objects and ocean properties at the ocean surface is crucial for various applications, including oil spill management, debris tracking and search and rescue operations. While mesoscale turbulence has been recognized as a primary driver of dispersion, the role of submesoscale processes is poorly understood. This study investigates the largely unexplored mechanism of dispersion by refracted wave fields. In situ observations demonstrate significantly faster and distinct dispersion patterns for objects influenced by wind, waves and currents compared to those solely driven by ocean currents. Numerical simulations of wave fields refracted by ocean eddies corroborate these findings, revealing diffusivities that exceed those of turbulent diffusion at scales up to 10 km during energetic sea states. Our results highlight the importance of ocean waves in dispersing surface material, suggesting that refracted wave fields may play a significant role in submesoscale spreading. As atmospheric forcing at the ocean surface will only strengthen due to anthropogenic contributions, additional research into wave refraction is necessary. This requires concurrent high-resolution measurements of wind, waves and currents to inform the revisions of large-scale coupled models to better include the submesoscale physics. Full article
Show Figures

Figure 1

20 pages, 6853 KiB  
Article
Upper Ocean Thermodynamic Response to Coupling Currents to Wind Stress over the Gulf Stream
by Jackie May and Mark A. Bourassa
J. Mar. Sci. Eng. 2024, 12(11), 1994; https://doi.org/10.3390/jmse12111994 - 5 Nov 2024
Viewed by 1366
Abstract
We use high-resolution coupled atmosphere–ocean model simulations over the Gulf Stream extension region during a winter season to examine the upper ocean thermodynamic response to including current feedback to atmospheric wind stress. We demonstrate that a model that includes current feedback leads to [...] Read more.
We use high-resolution coupled atmosphere–ocean model simulations over the Gulf Stream extension region during a winter season to examine the upper ocean thermodynamic response to including current feedback to atmospheric wind stress. We demonstrate that a model that includes current feedback leads to significant changes in the structure and transport of heat throughout the upper ocean in comparison to the same model without current feedback. We find that including the current feedback leads to changes in the upper ocean temperature pattern that match the vorticity pattern. Areas with cyclonic ocean vorticity, typically north of the Gulf Stream extension, correspond to areas with warmer temperatures throughout the water column. Areas with anticyclonic ocean vorticity, typically south of the Gulf Stream extension, correspond to areas with cooler temperatures throughout the water column. We also find that including current feedback leads to an overall reduction in the submesoscale vertical heat flux spectra across all spatial scales, with differences in the submesoscale vertical heat flux corresponding to SST minus mixed layer temperature differences. The direct impact of current feedback on the thermodynamic structure within the upper ocean also has indirect impacts on other aspects of the ocean, such as the energy transfer between the ocean and the atmosphere, ocean stratification, and acoustic parameters. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

16 pages, 17635 KiB  
Article
Influence of Ocean Current Features on the Performance of Machine Learning and Dynamic Tracking Methods in Predicting Marine Drifter Trajectories
by Huan Lin, Weiye Yu and Zhan Lian
J. Mar. Sci. Eng. 2024, 12(11), 1933; https://doi.org/10.3390/jmse12111933 - 28 Oct 2024
Viewed by 1346
Abstract
Accurately and rapidly predicting marine drifter trajectories under conditions of information scarcity is critical for addressing maritime emergencies and conducting marine surveys with resource-limited unmanned vessels. Machine learning-based tracking methods, such as Long Short-Term Memory networks (LSTM), offer a promising approach for trajectory [...] Read more.
Accurately and rapidly predicting marine drifter trajectories under conditions of information scarcity is critical for addressing maritime emergencies and conducting marine surveys with resource-limited unmanned vessels. Machine learning-based tracking methods, such as Long Short-Term Memory networks (LSTM), offer a promising approach for trajectory prediction in such scenarios. This study combines satellite observations and idealized simulations to compare the predictive performance of LSTM with a resource-dependent dynamic tracking method (DT). The results indicate that when driven solely by historical drifter paths, LSTM achieves better trajectory predictions when trained and tested on relative trajectory intervals rather than the absolute positions of individual trajectory points. In general, LSTM provides a more accurate geometric pattern of trajectories at the initial stages of forecasting, while DT offers superior accuracy in predicting specific trajectory positions. The velocity and curvature of ocean currents jointly influence the prediction quality of both methods. In regions characterized by active sub-mesoscale dynamics, such as the fast-flowing and meandering Kuroshio Current and Kuroshio Current Extension, DT predicts more reliable trajectory patterns but lacks precision in detailed position estimates compared to LSTM. However, in areas dominated by the fast but relatively straight North Equatorial Current, the performance of the two methods reverses. The two methods also demonstrate different tolerances for noise and sampling intervals. This study establishes a baseline for selecting machine learning methods for marine drifter prediction and highlights the limitations of AI-based predictions under data-scarce and resource-constrained conditions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 6642 KiB  
Article
Performance of the Earth Explorer 11 SeaSTAR Mission Candidate for Simultaneous Retrieval of Total Surface Current and Wind Vectors
by Adrien C. H. Martin, Christine P. Gommenginger, Daria Andrievskaia, Petronilo Martin-Iglesias and Alejandro Egido
Remote Sens. 2024, 16(19), 3556; https://doi.org/10.3390/rs16193556 - 24 Sep 2024
Viewed by 1484
Abstract
Interactions between ocean surface currents, winds and waves at the atmosphere-ocean interface are key controls of lateral and vertical exchanges of water, heat, carbon, gases and nutrients in the global Earth System. The SeaSTAR satellite mission concept proposes to better quantify and understand [...] Read more.
Interactions between ocean surface currents, winds and waves at the atmosphere-ocean interface are key controls of lateral and vertical exchanges of water, heat, carbon, gases and nutrients in the global Earth System. The SeaSTAR satellite mission concept proposes to better quantify and understand these important dynamic processes by measuring two-dimensional fields of total surface current and wind vectors with unparalleled spatial and temporal resolution (1 × 1 km2 or finer, 1 day) and unmatched precision over one continuous wide swath (100 km or more). This paper presents a comprehensive numerical analysis of the expected performance of the Earth Explorer 11 (EE11) SeaSTAR mission candidate in the case of idealised and realistic 2D ocean currents and wind fields. A Bayesian framework derived from satellite scatterometry is adapted and applied to SeaSTAR’s bespoke inversion scheme that simultaneously retrieves total surface current vectors (TSCV) and ocean surface vector winds (OSVW). The results confirm the excellent performance of the EE11 SeaSTAR concept, with Root Mean Square Errors (RMSE) for TSCV and OSVW at 1 × 1 km2 resolution consistently better than 0.1 m/s and 0.4 m/s, respectively. The analyses highlight some performance degradation in some relative wind directions, particularly marked at near range and low wind speeds. Retrieval uncertainties are also reported for several variations around the SeaSTAR baseline three-azimuth configuration, indicating that RMSEs improve only marginally (by ∼0.01 m/s for TSCV) when including broadside Radial Surface Velocity or broadside dual-polarisation data in the inversion. In contrast, our results underscore (a) the critical need to include broadside Normalised Radar Cross Section data in the inversion; (b) the rapid performance degradation when broadside incidence angles become steeper than 20° from nadir; and (c) the benefits of maintaining ground squint angle separation between fore and aft lines-of-sight close to 90°. The numerical results are consistent with experimental performance estimates from airborne data and confirm that the EE11 SeaSTAR concept satisfies the requirements of the mission objectives. Full article
Show Figures

Figure 1

14 pages, 26758 KiB  
Article
Seasonal Variation of Submesoscale Ageostrophic Motion and Geostrophic Energy Cascade in the Kuroshio
by Zihao Peng and Shuwen Zhang
J. Mar. Sci. Eng. 2024, 12(7), 1121; https://doi.org/10.3390/jmse12071121 - 4 Jul 2024
Cited by 2 | Viewed by 1284
Abstract
The study of submesoscale ageostrophic motion is crucial for enhancing our comprehension of ocean dynamics. This paper employs global sea surface velocity reanalysis data and mixed layer depth data to examine the factors influencing submesoscale ageostrophic energy in the Kuroshio region as well [...] Read more.
The study of submesoscale ageostrophic motion is crucial for enhancing our comprehension of ocean dynamics. This paper employs global sea surface velocity reanalysis data and mixed layer depth data to examine the factors influencing submesoscale ageostrophic energy in the Kuroshio region as well as the energy transition between ageostrophic and geostrophic energy. The findings indicate that submesoscale ageostrophic kinetic energy in the Kuroshio region peaks during winter and spring. Mixed layer depth and geostrophic strain significantly boost ageostrophic kinetic energy, especially in strong current area. Analysis of kinetic energy spectral density reveals how energy distribution and transition scale vary across strong and slow current zones during different seasons, highlighting that submesoscale kinetic energy is susceptible to seasonal variations. In summer and autumn, the transition scale of kinetic energy is generally larger compared to those in spring and winter. Submesoscale ageostrophic motion predominantly gains kinetic energy from the release of available potential energy (APE) and horizontal shear production (HSP) while losing a small portion of its kinetic energy through vertical shear production (VSP) in the Kuroshio. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

28 pages, 8365 KiB  
Article
Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data
by Anna I. Ginzburg, Andrey G. Kostianoy, Nickolay A. Sheremet and Olga Yu. Lavrova
Remote Sens. 2024, 16(13), 2285; https://doi.org/10.3390/rs16132285 - 22 Jun 2024
Cited by 4 | Viewed by 2168
Abstract
Here, we explore the dynamics of the waters of eutrophicated Lake Sevan in the modern period, using MSI Sentinel-2 satellite images of different months in different years (2017–2022) and SAR Sentinel-1 images of similar dates. The main objective of the study is to [...] Read more.
Here, we explore the dynamics of the waters of eutrophicated Lake Sevan in the modern period, using MSI Sentinel-2 satellite images of different months in different years (2017–2022) and SAR Sentinel-1 images of similar dates. The main objective of the study is to investigate the spatiotemporal variability of the horizontal circulation of this lake and to establish whether the scheme of cyclonic water circulation in the deep-water part of Large Sevan, given in a number of publications, which does not imply water exchange between its littoral and deep-water zones, corresponds to the real picture of currents in the surface layer of the lake in the summer–autumn period (period of pronounced water stratification and intense phytoplankton bloom). The analysis performed convincingly showed that there is no constant cyclonic gyre on the scale of the deep-water part of Large Sevan (≈20 km) during the period under consideration. In most cases, non-stationary eddy dynamics are observed in Large Sevan, including mesoscale and submesoscale eddies, eddy dipoles (mushroom-shaped flows), and their packings. Often the entire deep-water part of Large Sevan is occupied by a two-cell (dipole) or even three-cell (cyclonic eddy with two anticyclones of similar size) water circulation. The time scale of the observed variability is several days. Such variable water circulation in different months (i.e., with different density stratification of water) of different years in a basin with a fairly homogeneous bottom and a slight indentation of the shoreline raises the assumption that the main reason for the non-stationary dynamics in Large Sevan is the variability of the wind effect on its surface layer. The cyclonic gyre in Small Sevan (8–9 km) is a permanent element of the circulation and maintains its position north of the strait between Small and Large Sevan. This gyre and attached anticyclonic eddies in the southern part of its periphery, as well as cyclonic submesoscale eddies in the northern part of Large Sevan, close to the strait, affect the water exchange between Small and Large Sevan in both directions. An additional objective of the study is a validation of the morphometric parameters of Lake Sevan (level, surface area, and water volume), contained in the near-real time HYDROWEB database, LEGOS, France (June 1995–January 2024), based on their comparison with the corresponding values of these parameters from gauging stations in Armenia. It is shown that, with a qualitative correspondence of the nature of lake level changes according to altimetric and instrumental measurements, its values in the HYDROWEB database exceed the data of gauging stations in most cases by 1–1.5 m in 1995–2012 and 0.5–0.6 m in 2013–2022, while the corresponding surface area and volume values according to HYDROWEB data turn out to be underestimated. Full article
Show Figures

Figure 1

20 pages, 7943 KiB  
Article
Decomposition of Submesoscale Ocean Wave and Current Derived from UAV-Based Observation
by Sin-Young Kim, Jong-Seok Lee, Youchul Jeong and Young-Heon Jo
Remote Sens. 2024, 16(13), 2275; https://doi.org/10.3390/rs16132275 - 21 Jun 2024
Cited by 1 | Viewed by 1570
Abstract
The consecutive submesoscale sea surface processes observed by an unmanned aerial vehicle (UAV) were used to decompose into spatial waves and current features. For the image decomposition, the Fast and Adaptive Multidimensional Empirical Mode Decomposition (FA-MEMD) method was employed to disintegrate multicomponent signals [...] Read more.
The consecutive submesoscale sea surface processes observed by an unmanned aerial vehicle (UAV) were used to decompose into spatial waves and current features. For the image decomposition, the Fast and Adaptive Multidimensional Empirical Mode Decomposition (FA-MEMD) method was employed to disintegrate multicomponent signals identified in sea surface optical images into modulated signals characterized by their amplitudes and frequencies. These signals, referred to as Bidimensional Intrinsic Mode Functions (BIMFs), represent the inherent two-dimensional oscillatory patterns within sea surface optical data. The BIMFs, separated into seven modes and a residual component, were subsequently reconstructed based on the physical frequencies. A two-dimensional Fast Fourier Transform (2D FFT) for each high-frequency mode was used for surface wave analysis to illustrate the wave characteristics. Wavenumbers (Kx, Ky) ranging between 0.01–0.1 radm−1 and wave directions predominantly in the northeastward direction were identified from the spectral peak ranges. The Optical Flow (OF) algorithm was applied to the remaining consecutive low-frequency modes as the current signal under 0.1 Hz for surface current analysis and to estimate a current field with a 1 m spatial resolution. The accuracy of currents in the overall region was validated with in situ drifter measurements, showing an R-squared (R2) value of 0.80 and an average root-mean-square error (RMSE) of 0.03 ms−1. This study proposes a novel framework for analyzing individual sea surface dynamical processes acquired from high-resolution UAV imagery using a multidimensional signal decomposition method specialized in nonlinear and nonstationary data analysis. Full article
Show Figures

Figure 1

14 pages, 8378 KiB  
Communication
A First Look at Internal Waves in the Great Barrier Reef Lagoon
by George Marmorino
Remote Sens. 2024, 16(12), 2180; https://doi.org/10.3390/rs16122180 - 15 Jun 2024
Viewed by 1330
Abstract
The Great Barrier Reef lagoon is a large, relatively shallow area of the Australian continental shelf, isolated from the open ocean by a dense matrix of coral reefs. As the lagoon is generally vertically well mixed by strong tidal currents and wind, it [...] Read more.
The Great Barrier Reef lagoon is a large, relatively shallow area of the Australian continental shelf, isolated from the open ocean by a dense matrix of coral reefs. As the lagoon is generally vertically well mixed by strong tidal currents and wind, it is perhaps not surprising there is no mention in the open literature of the occurrence of internal waves there. Nevertheless, high-resolution satellite imagery is shown in this article to reveal the characteristic surface expressions of nonlinear internal waves in the lagoon. The waves are confined to periods of low winds in austral spring and summer, making them a potentially important mechanism for the dispersal of algae and planktonic larvae. The imagery suggests a link between the waves and tidally forced submesoscale jets and vortices, but the actual mechanism generating the internal waves is unclear and requires investigation. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

16 pages, 2230 KiB  
Article
Block-Circulant Approximation of the Precision Matrix for Assimilating SWOT Altimetry Data
by Max Yaremchuk, Christopher Beattie, Gleb Panteleev and Joseph D’Addezio
Remote Sens. 2024, 16(11), 1954; https://doi.org/10.3390/rs16111954 - 29 May 2024
Cited by 1 | Viewed by 967
Abstract
The recently deployed Surface Water and Ocean Topography (SWOT) mission for the first time has observed the ocean surface at a spatial resolution of 1 km, thus giving an opportunity to directly monitor submesoscale sea surface height (SSH) variations that have a typical [...] Read more.
The recently deployed Surface Water and Ocean Topography (SWOT) mission for the first time has observed the ocean surface at a spatial resolution of 1 km, thus giving an opportunity to directly monitor submesoscale sea surface height (SSH) variations that have a typical magnitude of a few centimeters. This progress comes at the expense of the necessity to take into account numerous uncertainties in calibration of the quality-controlled altimeter data. Of particular importance is the proper filtering of spatially correlated errors caused by the uncertainties in geometry and orientation of the on-board interferometer. These “systematic” errors dominate the SWOT error budget and are likely to have a notable signature in the SSH products available to the oceanographic community. In this study, we explore the utility of the block-circulant (BC) approximation of the SWOT precision matrix developed by the Jet Propulsion Laboratory for assessment of a mission’s accuracy, including the possible impact of the systematic errors on the assimilation of the wide-swath altimeter data into numerical models. It is found that BC approximation of the precision matrix has sufficient (90–99%) accuracy for a wide range of significant wave heights of the ocean surface, and, therefore, could potentially serve as an efficient preconditioner for data assimilation problems involving altimetry observations by space-borne interferometers. An extensive set of variational data assimilation (DA) experiments demonstrates that BC approximation provides more accurate SSH retrievals compared to approximations, assuming a spatially uncorrelated observation error field as is currently adopted in operational DA systems. Full article
(This article belongs to the Special Issue Applications of Satellite Altimetry in Ocean Observation)
Show Figures

Figure 1

Back to TopTop