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Abstract: Large-scale caption-labeled remote sensing image samples are expensive to acquire, and 
the training samples available in practical application scenarios are generally limited. Therefore, 
remote sensing image caption generation tasks will inevitably fall into the dilemma of few-shot, 
resulting in poor qualities of the generated text descriptions. In this study, we propose a self-learn-
ing method named SFRC for few-shot remote sensing image captioning. Without relying on addi-
tional labeled samples and external knowledge, SFRC improves the performance in few-shot sce-
narios by ameliorating the way and efficiency of the method of learning on limited data. We first 
train an encoder for semantic feature extraction using a supplemental modified BYOL self-super-
vised learning method on a small number of unlabeled remote sensing samples, where the unla-
beled remote sensing samples are derived from caption-labeled samples. When training the model 
for caption generation in a small number of caption-labeled remote sensing samples, the self-ensem-
ble yields a parameter-averaging teacher model based on the integration of intermediate morphol-
ogies of the model over a certain training time horizon. The self-distillation uses the self-ensemble-
obtained teacher model to generate pseudo labels to guide the student model in the next generation 
to achieve better performance. Additionally, when optimizing the model by parameter back-prop-
agation, we design a baseline incorporating self-critical self-ensemble to reduce the variance during 
gradient computation and weaken the effect of overfitting. In a range of experiments only using 
limited caption-labeled samples, the performance evaluation metric scores of SFRC exceed those of 
recent methods. We conduct percentage sampling few-shot experiments to test the performance of 
the SFRC method in few-shot remote sensing image captioning with fewer samples. We also con-
duct ablation experiments on key designs in SFRC. The results of the ablation experiments prove 
that these self-learning designs we generated for captioning in sparse remote sensing sample sce-
narios are indeed fruitful, and each design contributes to the performance of the SFRC method. 

Keywords: few-shot remote sensing image captioning; few-shot learning; self-supervised learning; 
self-ensemble; self-distillation; self-critical 
 

1. Introduction 
Deep neural networks are widely used for the analysis and interpretation of remote 

sensing images because of their brilliant performance. Typical application scenarios are 
scene classification [1,2], target detection [3,4], and instance segmentation [5,6]. As a mul-
timodal task that requires simultaneous modeling of visual features and semantic infor-
mation in remote sensing images, remote sensing image captioning has been gaining at-
tention in recent years. This task aims to describe important targets and scenes in remote 
sensing images, including their characteristics, relationships, and states. This requires 
deep neural networks capable of capturing deeper visual features and semantic infor-
mation to generate global perspective descriptions. This research direction has high re-
search value [7] and can provide real-time information support for application scenarios 
such as traffic command, forest fire fighting, and other application scenarios. 
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There is a range of publicly available remote sensing image captioning datasets, but 
the variety and number of samples in these datasets are still small compared to natural 
image caption datasets. The problem of the shortage of remote sensing image samples that 
can be used for training becomes more prevalent when faced with actual remote sensing 
scenarios. Although the number of remote sensing images is large, the size and number 
of training targets contained in a single remote sensing image are small. At the same time, 
the semantic interpretation caption of a single remote sensing image is tedious and re-
quires certain expertise. The caption cost of the samples is very high. In such a few-shot 
scenario, training the remote sensing caption generation model will overfit and lead to 
poor quality of the generated captions. Therefore, it is important to solve the few-shot 
problem in remote sensing image caption generation and reduce the reliance of model 
training on a large amount of caption-labeled samples to promote the implementation of 
caption generation methods in practical scenarios. 

In natural image captioning, researchers have explored different methods to deal 
with the few-shot problem. Semi-supervised learning-based image captioning [8] uses ex-
ternal modeling to achieve semantic alignment and improve the quality of generated cap-
tions. Ref. [9] proposed a model to help capture more intrinsic information through arti-
ficially designed missing information. Unsupervised learning captioning [10] utilizes a 
large text corpus outside of existing data to generate captions with robustness by con-
structing a shared latent space. Ref. [11] used a scene graph auto-encoder trained exter-
nally to help the model generate more humane captions. This scene graph auto-encoder 
introduces inductive bias as the prior knowledge, which lightens the overfitting of the 
model. 

Although it is possible to directly migrate and apply the methods used for caption 
generation in natural images to the problem of few-shot remote sensing image captioning, 
there are different challenges in remote sensing images than in natural images. The scale 
and appearance of the same object in different remote sensing images may vary greatly, 
which places high demands on the ability of caption generation models to identify the 
described objects. There is no fixed observation orientation and focus in remote sensing 
images similar to those in natural images, and it is more difficult to perform caption de-
scriptions than in natural images. Moreover, the problem of remote sensing image cap-
tioning in few-shot scenarios becomes more difficult and complex. 

Few-shot remote sensing image captioning can be divided into two categories. One 
category is where the obtainable data contain a small amount of caption-labeled remote 
sensing images and sufficient class-labeled remote sensing images without semantic cap-
tions. A framework called Meta captioning is proposed in [12]. This framework introduces 
a meta-learning method to extract meta-features from sufficient class-labeled remote sens-
ing images to improve the training of caption generation models when caption-labeled 
samples are insufficient. In [13], a VAE [14] is trained on a large-scale annotated remote 
sensing image dataset for image reconstruction tasks. This VAE serves as a branch of the 
captioning model to mitigate the overfitting problem. The second category is where the 
available data only contains a small amount of caption-labeled remote sensing images and 
does not contain other additional class-labeled data. The first type of scene can be seen as 
the simplification of the second type of scene. The settings in the second type of few-shot 
scenarios will make it impossible to achieve performance gains using additional data or 
additional models. Therefore, this paper chooses to study remote sensing image caption-
ing in the more challenging few-shot scenarios of the second category, where the task of 
remote sensing image caption generation needs to face the following challenges: 
1. Only a few caption-labeled remote sensing images can be obtained from the training 

data. The image captioning model usually adopts the encoder-decoder structure. In 
remote sensing scenarios, the key role of the encoder is usually played by the scene 
classification model, which is obtained by supervised training in a large number of 
class-labeled remote sensing samples. However, a small number of remote sensing 
image samples with semantic captions can only be used to train the image captioning 
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models. Directly using these remote sensing images with semantic captions but no 
class labels results in difficulty training to obtain scene classification models with 
sufficient performance to further improve the performance of remote sensing image 
captioning models. 

2. The training of both remote sensing image captioning and scene classification models 
requires a large amount of labeled training data to obtain good performance; other-
wise, overfitting will occur, which eventually leads to poor model transferability. 

3. The methods for handling few-shot image captioning in natural images are highly 
dependent on external supplementary knowledge and additional trained models, 
which leads to many image captioning methods in natural images that cannot be di-
rectly applied to few-shot remote sensing scenarios. 
In order to address the above challenges, we propose a self-learning method named 

SFRC for few-shot remote sensing image captioning. We enhance the model’s utilization 
of limited samples and knowledge contained in the model itself from different perspec-
tives and improve the performance of the few-shot remote sensing image captioning 
model by self-learning without using additional caption-labeled remote sensing images. 
Specifically, the contributions of this work are divided into four aspects: 
• From the feature extraction perspective, we use a small amount of unlabeled data for 

self-supervised learning in few-shot scenarios to obtain a scene classification model 
for the decoder in the image captioning model. The use of self-supervised learning 
can improve the generalization ability of the model and alleviate the reliance on a 
large number of labeled remote sensing image samples. 

• From the temporal perspective of model training, we use self-ensemble to aggregate 
the performance of the same model at different time steps to improve the robustness 
of the few-shot remote sensing image captioning model and reduce the occurrence 
of overfitting. 

• From the perspective of model training manner, we propose a model iteration ap-
proach based on self-distillation: without using additional pre-trained models and 
knowledge, new models and self-ensemble models of previous generations of mod-
els continuously promote each other to achieve self-improvement of sequence mod-
els. 

• From the perspective of model parameter optimization, we design a model parame-
ter optimization approach based on self-critical reinforcement learning. This incor-
porates the baseline computed by self-ensemble to reduce the error in training and 
prevent the model from falling into the local optimum. 
We conduct several few-shot experiments on a limited number of caption-labeled 

remote sensing samples and quantitatively compare the evaluation metric scores with 
some classical and recent methods. We design percentage sampling few-shot experiments 
to investigate the performance variation of SFRC in few-shot remote sensing image cap-
tioning with fewer samples. In order to elucidate the effectiveness of the design of each 
component in the SFRC method, we also perform ablation experiments of the key compo-
nents. 

2. Related Work 
2.1. Remote Sensing Image Captioning 

Three main forms of remote sensing image captioning exist: retrieval-based methods, 
template-based methods, and methods using the encoder-decoder paradigm. 

The approach based on retrieval [15] maps the representation obtained from the im-
age input to the CNN and the corresponding ground truth captions to the same metric 
space. The distance between the input remote sensing image and all captions is calculated 
by metric learning, and the caption with the smallest distance is selected as the final de-
scriptive statement. The captions generated by this method are all derived from the 
ground truth captions in the train set, which do not generate syntax errors but lack 
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flexibility. When using this method to process remote sensing images that differ signifi-
cantly from those already in the database, it is difficult to obtain matching descriptions. 

The approach based on template pre-structures the generated descriptive captions 
by training a template with reserved gaps. The pre-preserved gaps in the template are 
generally scenes, objects, attributes, and relationships among them in the remote sensing 
images. The semantic information in the remote sensing image in [7] is extracted by a full 
convolutional network (FCN) [16]-based object detection task. The semantic information 
is converted into words filled in a template to form a caption. This approach can achieve 
good results in specific tasks, but such pre-designed templates may limit the flexibility of 
generating captions. 

The image captioning method using the encoder-decoder paradigm for remote sens-
ing images was first proposed by [17]. The encoding stage extracts feature vectors from 
the input image, and the decoding stage converts the feature vectors into the correspond-
ing captions. The methods based on the encoder-decoder paradigm are more flexible and 
have better performance, so this kind of method has also gained much attention. Ref. [18] 
proposed the RSICD remote sensing image caption dataset and several methods based on 
the encoder-decoder paradigm and introduced the attention mechanism. Ref. [19] con-
structed a multi-scale feature fusion mechanism using a denoising approach to enhance 
the feature extraction from the encoder. Ref. [20] proposed a truncated cross-entropy 
(TCE) loss, which aims to alleviate the overfitting problem in remote sensing image cap-
tioning. Ref. [21] modified the encoder-decoder paradigm to use continuous output se-
quences instead of discrete output sequences to generate more accurate remote sensing 
image descriptions. Ref. [22] proposed a method to extract semantic information in high-
resolution remote sensing images using a fine-grained attention mechanism, which gen-
erates description statements along with the corresponding pixel-level segmentation 
masks. 

2.2. Few-Shot Learning 
The goal of few-shot learning is to train a model using limited data such that the 

model gains the ability to adapt to unseen data and new tasks. Transfer learning [23,24] 
extracts knowledge from the source domain and applies this knowledge to the target do-
main. The pre-trained model is adapted to the new scenario by fine-tuning. This approach 
can improve the performance of the model with limited samples. However, when the old 
and new scenarios are too different, transfer learning is not effective. As the most popular 
solution, meta-learning advocates that the model “learns to learn” and can be divided into 
metric-based meta-learning [25–28] and optimization-based meta-learning [29,30]. Meta-
learning is task-oriented rather than data-oriented and has good flexibility and adaptabil-
ity. In addition to the above methods, there are approaches based on graph neural net-
works [31,32] and approaches based on pre-trained feature extractors [33,34]. 

2.3. Self-Supervised Learning 
Self-supervised learning uses pre-designed pretext tasks to replace supervised sig-

nals in large-scale annotated data, training the model to extract semantic feature repre-
sentations that can be migrated to downstream tasks. The auxiliary tasks can be designed 
as various transformations of the images, including coloring [35], rotation angle predic-
tion [36], stitching images [37], etc. The pretext task based on contrast learning [38,39] has 
been popular in recent years. It compares similarities and dissimilarities between two or 
more views of an image to learn feature representations. Momentum contrast (MoCo) [40] 
constructs a moving-averaged dynamic dictionary to train models by a queue dictionary 
lookup. SimCLR [41,42] achieves excellent performance using large batch size pretraining 
and data augmentation. BYOL [43] only compares similarities between views to learn fea-
ture representations, reducing the sensitivity of the model to systematic biases in the train-
ing data and the dependence of the training process on data augmentation. 
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2.4. Ensemble 
Ensemble often generates robust pseudo labels by aggregating the knowledge con-

tained in multiple networks. Such pseudo labels act as a kind of supervision information 
that can improve the performance of networks in supervised learning. There are many 
ways to integrate pseudo labels. Refs. [40,44] generated pseudo labels after integrating 
multiple models. Ref. [45] integrated pseudo labels output from different models to obtain 
pseudo labels. Ensembles are also often applied in semi-supervised learning [46] and even 
in unsupervised learning [12,43]. Although all these methods have good results, they all 
require multiple networks that are pre-trained on a large amount of data, which is not 
satisfying in few-shot scenarios. 

2.5. Knowledge Distillation 
Knowledge distillation [47] has a wide range of applications in both computer vision 

and natural language processing. Knowledge distillation transfers knowledge from the 
teacher model to the student model through soft labels. The student network benefits from 
the additional information contained in the soft labels and usually obtains performance 
improvement. Soft labels can be probability values [48] or features [49] of the teacher 
model output. Knowledge distillation is not limited to training student models through 
teacher models. BAN [50] uses sequential distillation to train student models while also 
improving the performance of teacher models. BAM [51] uses multi-task student models 
to outperform teacher models in performance. Self-distillation [48,52], in which the 
teacher and student models have the same structure, allows for the evolution of perfor-
mance through cyclic training. 

2.6. Reinforcement Learning 
The test metrics for caption generation tasks are usually non-differentiable. Refs. 

[53,54] addressed this problem by considering image captioning as a reinforcement learn-
ing problem. Reinforcement learning [55] continuously interacts with the environment 
during training and optimizes the model based on feedback information (reward values). 
Reinforcement learning learns iteratively by deferring the reward values obtained, and 
each action is related to a time series, making reinforcement learning well suited for se-
quence generation prediction. Ref. [54] is the first to apply reinforcement learning to se-
quence training for image captioning and uses a trained function approximator to gener-
ate a baseline to reduce variance. Ref. [56] uses an actor-critic approach to train sequence 
image captioning models. Ref. [57] uses the time required for testing to normalize the re-
ward of the algorithm, avoiding the estimation of reward signals in the actor-critic ap-
proach, reducing the gradient variance, and generating better quality captions. 

3. SFRC: Self-Learning for Few-Shot Remote Sensing Image Captioning 
Although the remote sensing image captioning and remote sensing image scene clas-

sification tasks have different domains and final outputs, they both need to extract and 
apply the features of remote sensing images: the scene classification task uses visual fea-
tures to classify and obtain category labels, and the image captioning task identifies and 
converts visual features into text descriptions. The scene classification task and the image 
captioning task intersect in the extraction process of visual features. Therefore, the remote 
sensing image captioning model in this paper adopts an encoder-decoder structure: the 
encoder, which is trained in the scene classification task, is used to extract features from 
the input remote sensing image, and the decoder generates captions based on the features. 
The encoder usually uses a series of convolutional neural network (CNN)-based networks 
pre-trained in the scene classification tasks because of their simple structures and power-
ful performance. Here, the encoder is denoted by x . Given a remote sensing image I  
as input, the visual features extracted by the encoder are: 
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( )( )= CNNv AveragePooling f I  (1) 

where we apply average pooling to the features extracted by the encoder. For the CNN 
here, we choose ResNet, a classic and still powerful network. The visual features v  of 
the remote sensing image output from the encoder are fed to a decoder for decoding. The 
decoder can use recurrent networks (RNN), long-short term memory networks (LSTM), 
etc. LSTM is a special RNN, which is often chosen as the decoder of remote sensing image 
captioning models. As a sequential model, LSTM can learn long dependencies and over-
come gradient vanishing to achieve better functionality. The information transfer in LSTM 
is controlled by a forget gate tF , an input gate tI  and an output gate tO . The forget gate 

tF  controls whether to clear the current value, the input gate tI  determines whether to 
obtain new input information, and the output gate tO  determines whether to output a 
new value. The structure of the LSTM at time t  and the parameter transfer method are 
shown in Figure 1. At time t , the parameters in LSTM are updated as follows: 
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Figure 1. The operation flow of LSTM at time t . The input at time t is the output at time 1−t , 
while the output at time t  is used as the input at time 1+t . 

Finally, to generate word probabilities tp , we use a “softmax” layer to normalize the 
generated score vectors to probabilities. σ  represents the nonlinear activation function 
sigmoid and tanh represents the hyperbolic tangent function. xIW , hIW , xFW , hFW , xOW ,

hOW , xCW  and hCW  are the trainable weight matrices in LSTM. Ib , Fb , Ob  and Cb  are 

trainable biases. xIW  and hIW  are the trainable weight matrices of the input gate and 

Ib  is the trainable bias of the input gate; xFW  and hFW  are the trainable weight 
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matrices of the forget gate and Fb  is the trainable bias of the forget gate; xOW  and hOW  

are the trainable weight matrices of the output gate and Ob  is the trainable bias of the 

output gate; xCW  and hCW  are the trainable weight matrices of the memory cell and Cb  

is the trainable bias of the memory cell. The memory cell tC  is used to store new state 
information. th  represents the hidden state of the LSTM at time t  and also the output 
of the LSTM at time t . tx  represents the input of the LSTM at time t . tx  is obtained 
by combining 1 1,t th y− −  and the encoder-extracted feature vectors v  at time 1−t  in 

series: [ ]1 1, ,t t tx h y v− −= . th  is calculated based on 1th − . 1th −  is calculated based on 

2th − , and so on. tC  and 1tC −  are also calculated in this way. When t  is 0, 0h  and 0C  

will be initialized to 0 before model training. 0h , 0C  and the visual features v  output 
from the encoder are input to LSTM for training. The word vector ty  generated at time 
t  is denoted as: 

= ∗t out ty W h  (3) 

Word probabilities tp  are normalized by softmax: 

( )=t tp Softmax y  (4) 

The LSTM decoder receives the features extracted from the remote sensing image by 
the encoder and generates the first word. The word embedding vector of the first word is 
passed to the LSTM as the new input for generating the second word. The decoder gener-
ates one word at each step, resulting in a textual description of the remote sensing image. 

In the above encoder-decoder framework, the choice of encoder and decoder struc-
tures is not limited to the combination of CNN (ResNet) and LSTM, as described above. 
Various attention mechanisms are added to the LSTM to constitute new decoders. Trans-
formers [58] and models built based on a transformer (such as bert) have achieved great 
results in the field of natural language processing in recent years, and the decoder can also 
choose a transformer instead of LSTM. The encoder can also choose from different feature 
extraction networks, including CNNs with various attention models attached or even a 
transformer-based design, vision transformer. Using these powerful new designs to con-
struct the baseline for image captioning has great potential to achieve strong performance. 
However, discussing the construction of encoders and decoders is not the focus of this 
study. Here we choose ResNet as the encoder and LSTM as the decoder for the baseline 
model of the few-shot remote sensing image captioning model. After setting the overall 
framework of few-shot remote sensing image captioning, we improve the performance of 
the few-shot remote sensing image captioning model from four perspectives: feature, tem-
poral, manner, and optimization according to the characteristics of few-shot remote sens-
ing image scenarios. 

3.1. Feature: Self-Supervised Learning 
We first improve the performance of the image captioning encoder in few-shot re-

mote sensing image scenarios from the perspective of feature extraction. The remote sens-
ing image captioning model based on the encoder-decoder structure needs the visual fea-
tures of remote sensing images for text generation. This visual feature is the same as the 
visual feature used in the process of the remote sensing image scene classification process. 
Therefore, the remote sensing image feature extraction problem in few-shot scenarios can 
be transformed into a few-shot remote sensing image scene classification problem to be 
solved. In the few-shot scenario we set, only a small number of unlabeled remote sensing 
images can be used to train the remote sensing image scene classification model. We note 
that self-supervised learning can learn generic feature information contained within the 
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data without using label information, providing a stable and generalizable feature repre-
sentation for downstream tasks. As can be seen, the goal of both self-supervised learning 
and few-shot learning is to reduce the reliance of model training on labeled data. There-
fore, our strategy is to use self-supervised learning to train a scene classification model as 
an encoder in a small amount of unlabeled remote sensing image samples. We choose the 
classical ResNet-101 as the structure of the encoder. ResNet-101 still performs brightly in 
real scenarios, combining accuracy and simplicity. After determining the structure of the 
encoder, we need to consider how to train the encoder using unlabeled remote sensing 
images. Here we use self-supervised learning to further improve the encoder’s generali-
zation ability. Self-supervised learning performs consistency regularization on the en-
coder, focusing on the output of the encoder rather than the specific data labels for train-
ing. Here we borrow the self-supervised training paradigm from BYOL. Without chang-
ing the original model structure, the performance of the model is improved from the data 
without class labels. 

Given an input remote sensing image, here denoted as x , we randomly adopt two 
different strategies τa  and τ b  for data augmentation to obtain mx  and nx . The two 
different data augmentation strategies adopted are derived from the strategies expounded 
in Section 4.3. Regarding implementation details, the self-supervised learning model con-
tains two-path modules: an online model and a target model. First of all, they both have 
encoders with the structure of ResNet-101, but the difference is the parameters of the en-
coders. Here, the encoder in the online model is denoted as ( )f θ , and θ  is the param-

eter of the online model. The encoder in the target model is denoted as ( )f ε , and ε  is 

the parameter of the target model. We input mx  and nx  to ( )f θ  in the online model 

and ( )f ε  in the target model, respectively. The role of ( )f θ  in the online model is to 

extract the remote sensing image ( )my xθ  from mx . Then, we input ( )my xθ  into the 

projection layer gθ  to project into a higher dimensional space to obtain the vector 

( )mz xθ . In the target model, a vector ( )nz xε  is obtained by replacing θ  with ε  with 

the same structure. The structure of the projection layer gθ  and gε  is a multilayer per-
ceptron (MLP). The divergence between the online model and the target model occurs in 
the next step: the online model uses ( )mz xθ  to predict ( )nz xε  output from the target 

model through an additional prediction layer qθ . The prediction layer qθ  is structured 

as a multilayer perceptron like the projection layer gθ . ( )nz xε  stops the gradient de-
scent and updates the parameters with momentum through ε : 

( )1ε τε τ θ← + −  (5) 

where τ  is the decay rate, and the value is taken in [0,1]. This exponential moving aver-
age update strategy takes the target model as a mean teacher. The mean teacher constantly 
generates pseudo labels to serve as learning guidance and prediction objectives for the 
online model. The error ,Lθ ε  generated by the prediction is calculated as: 

( )( ) ( )
( )( ) ( ),

22

,
2 2 θ θ ε

θ ε
θ θ ε

− ⋅
⋅



m

m

n

n

q z z

xq z z

x x

x
L  (6) 

The difference between the predicted value and the target value is continuously re-
duced by continuously reducing ,Lθ ε  to a minimum value. Stop gradient means that we 
do not allow the generated gradients to be back-propagated at each stochastic optimiza-
tion step. We minimize ,Lθ ε  with respect to θ  only, but not τ . The gradient generated 
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by the target path will not be passed to, that is, stop the gradient descent of this path. Only 
the gradients passed backwards by the online path are updated. The stop-gradient design 
prevents the output of the target path and the online path from collapsing to the same, 
ensuring that self-supervised learning proceeds smoothly. At the end of the training, only 
the encoder ( )f θ  in the online model is saved. 

Although BYOL can excellently improve the performance of the model in unlabeled 
data scenarios, BYOL does not take into account the local features in remote sensing im-
ages. ,Lθ ε  can be regarded as a global consistency loss. Local features are very important 
for the interpretation and application of remote sensing images, which are related to the 
capture and extraction of key targets. Therefore, we add additional learning of the local 
consistency of remote sensing images to BYOL to complement the model’s ability to ex-
tract local features of remote sensing images. Figure 2 shows the schematic diagram of our 
self-supervised learning process. 

 
Figure 2. Schematic diagram of self-supervised learning we use. This process consists of two dual-
path modules. The first module uses BYOL to learn global consistency, which contains two paths: 
the online path and the target path. The model is trained by minimizing the global consistency loss 
between the online path and the target path containing SG and EMA. The θ  is the weight of the 
model. SG is the stop gradient. EMA is the exponential moving average, and ε  is the exponential 
moving average with respect to θ  whose decay rate is τ . The second module uses feature con-
trast learning to learn local consistency, which is divided into two paths. The core of this module is 
to minimize the loss of local consistency between the local feature representations extracted by the 
encoder in different views of the same remote sensing image. There are many options for data aug-
mentation strategies, which are shown in Section 4.3. Implementation details. The global consistency 
loss and the local consistency loss constitute the loss function of the self-supervised learning we 
designed. Training ends, and we only keep the encoder. 

In the process of the additional self-supervised learning, we directly select the local 
features extracted from remote sensing images for contrast learning. We also enhanced 
the input remote sensing images to get a large number of positive and negative pairs and 
input them into the classification model. The positive samples come from different data 
augmentation results of the same remote sensing image, and the negative samples are 
data augmentation results of different remote sensing images. A remote sensing image x  
is enhanced with different strategies to obtain mx  and nx . We randomly crop mx  to 

obtain a 5 × 5 slice and adjust back to the original size of mx  to obtain 5
mx . We randomly 
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crop nx  to obtain a 7 × 7 slice and adjust it back to the original size of nx  to obtain 7
nx . 

Subsequently, 5
mx  and 7

nx  are fed into the scene classification model (encoder) ( )f θ  
for self-supervised learning based on feature comparison. Note that the encoder structure 
is the same for both 5

mx  and 7
nx , and the parameters of the encoder are both θ . The 

encoder ( )f θ  is followed by an MLP for feature projection. Symmetrically, randomly 

crop mx  to obtain a 7 × 7 slice and adjust back to the original size of mx  to obtain 7
mx . 

Randomly crop nx  to get a 5 × 5 slice and adjust back to the original size of nx  to obtain 
5
nx . We adopt the same treatment as above for 7

mx  and 5
nx .The loss function LocalL  

generated in this process is calculated as follows: 
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where xN  represents the negative samples of remote sensing image x , and d  is the 

square of Euclidean distance. 5f  represents the feature extracted by inputting 5
mx  or

5
nx  into the encoder ( )f θ  and the MLP, and 7f  represents the feature extracted by 

inputting 7
mx  or 7

nx  into the encoder ( )f θ  and the MLP. ( )( )7 5)( ,m nf x f x  and 

( ) ( )( )5 7,m nf x f x  represent positive pairs. ( ) ( )( )5 7,m xf x f   includes positive pairs 

and all negative pairs, and L  is the InfoNCE loss. By continuously reducing LocalL  to 

promote the realization of local consistency, only the decoder ( )f θ  is saved after train-

ing. It is important to note that there is more than just the choice of 5f  or 7f  for contrast 
learning. Different choices for the size of cutting and the combination of contrast can con-
stitute different contrast learning strategies. The reason we choose them here is that using 

5f  and 7f  with smaller sizes for contrast learning can reduce the occupation of compu-
ting resources. Using 5f  and 7f  with small sizes is beneficial to learn the local con-
sistency of remote sensing images. At the same time, the difference between 5f  and 7f
, which are close in size, will not be so large that it is too difficult for the encoder to learn. 
Finally, more 5f  and 7f  with smaller sizes can be generated from one image, which is 
conducive to alleviating the few-shot problem. 

Therefore, considering the global consistency of the model to the images and the local 
consistency of the features, we implement self-supervised learning with decreasing ,Lθ ε  

and LocalL  by gradient descent until a minimum value is reached. At the end of the train-

ing, only the encoder ( )f θ  is retained. Self-supervised learning helps the encoder learn 
a general feature expression from a small number of unlabeled remote sensing images for 
remote sensing image scene classification. The semantic features are extracted from a lim-
ited number of remote sensing images using the encoder with caption labels but without 
class labels. Then the extracted semantic features are input into the decoder to generate 
captions. The decoder only needs to focus on generating captions for limited caption-la-
beled samples. 
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3.2. Temporal: Self-Ensemble 
After optimizing the feature extraction process of the encoder, we improve the per-

formance of the decoder in the image captioning method in few-shot scenarios from a 
temporal perspective. Better performance is often achieved by ensemble training models. 
However, the usual ensemble training needs to integrate the outputs of multiple pre-
trained models, which leads to a high cost of training and is not suitable for the few-shot 
scenarios. Therefore, we adopt self-ensemble training, which is more suitable for the set 
few-shot scenarios. Considering that the text generation model is sequential, we regard 
the different forms of image captioning models in different training stages as different 
models and then ensemble these models. In order to reduce the complexity of the model 
and improve the accuracy of the model [59], we use parameter averaging instead of di-
rectly averaging the output of the model to achieve a self-ensemble of the model. We use 
the model in the training process to generate a series of pseudo labels and construct a 
mean teacher with exponential moving average (EMA) through the consistent regulariza-
tion of the model itself in the training process as a self-ensemble model to guide the model 
for more in-depth training. The self-ensemble image captioning model SEF  is defined as: 
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where x  is the input image, t  is the time step of training, kθ  is the parameter of the 

model at the k-th time step, and kθ  is the average parameter of the model within t  re-

cent time steps. The expression for kθ  can be expressed by a constant transformation as: 

1 (1 )θ αθ α θ−= + −k k k  (9) 

It can be found that the updating process of kθ  can be seen as using EMA to train a 
mean teacher with a smoothing coefficient of α  as a self-ensemble model. The introduc-
tion of the parameter moving average self-ensemble can improve the accuracy of captions 
generated by the model and further reduce the dependence of the model on labeled sam-
ples. 

3.3. Manner: Self-Distillation 
After using self-ensemble to improve the performance of the model from a temporal 

perspective, we further optimize the training manner of the model. Knowledge distillation 
can transfer knowledge from the teacher model to the student model. When the teacher 
model and the learning model have the same structure, knowledge distillation becomes 
self-distillation. Self-distillation eliminates the need to train additional models, additional 
prior knowledge and additional training data. Knowledge is transferred from the previ-
ous generation model to the next generation model in the form of pseudo labels. Model 
performance can be improved through multiple iterations. These characteristics of self-
distillation can well alleviate the pain points of few-shot scenarios. We combine self-dis-
tillation with the above self-ensemble: unlike the common self-distillation in which the 
teacher model and the student model directly adopt the same structure, we use the model 
obtained from the self-ensemble as the teacher model to train the next generation of stu-
dent models. A series of pseudo semantic annotation labels generated by the self-ensem-
ble model is fed to the self-distillation model for training, and the self-distillation will 
continue to generate new pseudo semantic caption labels to store in the performance boost 
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of the next-generation model. The loss function SDEL  of self-distillation combined with 

self-ensemble in the process of training the model ( )SDEF x  is: 

( )( ) ( ) ( )( )
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θ β θ θ
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where x  represents the input image, y  represents the semantic annotation label of x , 

CEL  represents the cross-entropy loss, MSEL  represents the mean square error, tθ  rep-
resents the parameters of the t generation model, and β  is used to adjust the proportion 

of cross-entropy loss and mean square error. tθ  represents the averaged parameters in 
the first t  time steps, including the k-generation model. The hyperparameter t  deter-
mines the scale of self-ensemble with parameter averaging. 

The schematic diagram of the self-distillation training strategy with self-ensemble is 
shown in Figure 3. In the training process, tθ  will change with the advance of the train-
ing step, which can prevent the model from overfitting. The performance obtained from 
self-distillation training will also be self-ensembled into the training of the next-generation 
model. Self-ensemble and self-distillation can promote each other in this process so that 
the training of the model tends to be stable, and finally, we obtain a model with the best 
performance in the training process. 

 
Figure 3. Schematic diagram of self-distillation training strategy with self-ensemble we proposed. 
x  represents the input remote sensing image, and y  represents the caption label of x . The self-

ensemble we construct contains the average of model parameters: a self-ensemble mean teacher 
model with exponential moving average is constructed according to the different morphologies of 
the model itself in the recent t  training steps. The caption generated by the self-ensemble model 
will be sent to the self-distillation process as a pseudo caption label. Self-distillation separately cal-
culates the mean square error MSEL  of the output captions generated by the k-generation model 

with pseudo caption labels and the cross-entropy loss CEL  of the output captions with caption 

label y . By weighted summation of MSEL  and CEL , the loss function SDEL  of self-distillation 
combined with self-ensemble is obtained to optimize the K generation model. 
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3.4. Optimization: Self-Critical 
In this section, the performance of the image captioning model is improved through 

parameter optimization of the image captioning model. There are several problems in the 
training and testing process of image captioning from few-shot remote sensing images. 
First, in the few-shot scenarios, the data distribution of the model does not match the pro-
cess of training and testing. Because the total number of remote sensing image samples 
with caption labels is small, the number of samples with caption labels that can be ob-
tained in the training stage is correspondingly small. The train set is expanded in various 
ways, but the train set will not be changed. The data distribution of the train set and the 
test set is different. In the process of training the image captioning model, the model will 
predict the next word based on the generated words and use gradient descent to continu-
ously optimize the model. In this process, the difference in data distribution between the 
train set and the test set will be further accumulated. During the training process, the input 
of the model is all from the real dataset, and the labels of the samples are ground truth. 
However, the input of the model in the test process comes from the output of the previous 
time. The errors generated in the test process will continue to accumulate. This phenom-
enon is called exposure bias [54]. Second, the image captioning model uses a loss function 
to tune the model parameter θ  during the training process but uses evaluation metrics 
such as BLEU, CIDEr, ROUGE, and SPICE to evaluate the performance during the testing 
process. These metrics are non-differentiable with respect to the parameter θ , so it is not 
possible to use gradient descent to feed the test results directly to the model for optimiza-
tion. 

Several studies have shown that the policy-gradient method in reinforcement learn-
ing can be used to solve the problems of exposure bias and the non-differentiability of 
training metrics. Reinforcement learning defines a text generation model as an agent that 
interacts with the “environment”, defines descriptive captions and remote sensing image 
features as the “environment”, and considers the evaluation metric CIDEr score of de-
scriptive captions as the reward ( )R w . The policy gradient method expresses the learn-

ing policy as Fθ  using the parameter θ . The training expectation function is: 

( ) ( )
θ

θ  = −  
s

FL R w  (11) 

where ( )1 2, ,...,s s s s
Tw W W W= . sw  represents sequentially generated word sequences 

(sentences), s
tW  denotes the generated words sampled from the model using strategy 

Fθ  at time t, and Fθ
−  denotes negative expectation. The reward is adjusted by intro-

ducing a baseline b of the greedy decoding output to calculate the reward gradient esti-
mation with feedback from the strategy parameters and the environment to achieve an 
optimal update of the parameter θ  and finally obtain the maximum cumulative reward. 
The gradient estimate on θ  is: 

( ) ( ) ( )logθ θ θθ  ∇ ≈ − ∇ 
s sL R w b F w  (12) 

The baseline b  can be any function independent of sw . The introduction of b  can 
reduce the variance of the gradient estimate. This is an end-to-end method to search for 
the optimal solution in the policy space, which has a wide range of applications. This 
method also has obvious shortcomings: the gradient variance calculated under the rein-
forcement learning framework is very large. The training is very volatile, and the model 
is easy to converge to a local minimum, which is similar to the phenomenon of overfitting, 
resulting in poor quality of the generated captions. These disadvantages can be magnified 
in few-shot scenarios. 

To solve the above problems, we adopt the self-critical paradigm [57] proposed in 
the self-critical sequence training for image captioning (SCST) to optimize the process of 
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using reinforcement learning to train the image captioning model. The self-critical tech-
nique in SCST introduces a baseline calculated by greedy search, which can reduce the 
gradient variance. The self-critical technique adjusts the baseline according to the greedy 
decoding output of the image captioning model in the test reasoning process and finally 
optimizes the image captioning model, achieving superior performance to the vanilla re-
inforcement learning. Ref. [57] shows that the variance of the self-critical model is very 
small, and good results can be achieved in few-sot samples with the use of SGD. At the 
same time, the self-critical technique realizes the direct measurement of sequence varia-
bles by adjusting the baseline and promotes consistency in the process of training and 
testing. The optimization goal in self-critical training is to maximize the CIDEr scores of 
the generated captions. We follow this design, but different from the greedy search used 
in SCST to calculate the baseline, we simultaneously sample multiple captions of the same 
remote sensing image by the model and calculate a baseline with self-ensemble according 
to the beam search [60]. The schematic diagram of using self-critical to optimize model 
parameters is shown in Figure 4. 

 
Figure 4. Schematic diagram of our proposed process for optimizing model parameters using self-
critical. A remote sensing image x  is input to the model ( )SDEF x  trained by self-ensemble and 

self-distillation, and K mutually independent captions 1 2ˆ ˆ ˆ, , ,s s s
kw w w  are sampled. We average 

the CIDEr scores of the k – 1 captions except ˆ s
tw  to obtain the baseline for the self-critical training 

of caption ˆ s
tw . The CIDEr scores of the descriptions are computed by beam search. Self-critical uses 

the baseline obtained from this self-ensemble to compute the gradient estimation of the parameters 
θ  of model ( )SDEF x . 

For few-shot remote sensing scenarios, we collect K captions of the input remote sens-
ing image x  generated by the model ( )SDEF x  after self-ensemble and self-distillation 

training: 1 2ˆ ˆ ˆ, , ,s s s
kw w w , ( )ˆ |s s

t SDEw F w x∈ . The caption label corresponding to the in-

put remote sensing image x  is ( ){ }1 2, , , Tw w w w∗ ∗ ∗ ∗=  . When calculating the CIDEr 

scores of these K captions, we use beam search instead of greedy search. Beam search has 
a larger search space than greedy search. It does not pursue local optimization but global 
optimization. The speed and accuracy of training are better than greedy search. Beam 
search is very useful in scenarios where there are obvious differences in the data distribu-
tion between training samples and test samples [3], and the few-shot scenario is one of 
them. Compared with greedy search, the calculation method of beam search can avoid the 
continuous accumulation of errors to a certain extent and reduce the adverse effects of 
exposure bias. We integrate the self-ensemble calculation method into the baseline calcu-
lation process as follows: we randomly select a caption ˆ s

tw , and the baseline tb  of 
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caption ˆ s
tw  is obtained by the average integration of the reward CIDEr scores of other K-

1 captions: 

( )1 ˆ
1 ≠

=
− ∑ s

t i
i t

b R w
k

 (13) 

where ( )ˆ s
iR w  is the CIDEr score of ˆ s

iw . Because the K captions and the corresponding 

CIDEr scores are generated by the same model based on a remote sensing image, they are 
independent of each other. Therefore, the calculation of tb  does not depend on ˆ s

iw , and 

tb  is a valid baseline. The self-ensemble here averages the scores of multiple captions 
generated by the model for the same input image. The gradient estimation of the param-
eter θ  of model ( )SDEF x  is calculated as: 

( ) ( ) ( ) ( )

( )

1ˆ ˆ ˆ ˆlog |
1

ˆlog |

θ θ
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≠
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∑s s s s
t t SDE t t i

i t

s
SDE t

R w b F w x R w R w
k

F w x
 (14) 

Self-critical techniques using the baseline obtained from the self-ensemble model can 
improve the utilization of limited samples and effectively avoid the possible overfitting 
caused by few-shot problems. At the same time, it can further reduce the gradient variance 
in the reinforcement learning process and better optimize the few-shot remote sensing 
image captioning model. 

4. Experiments 
In this section, we present a series of experiments we have implemented and the ex-

perimental results. The experimental results prove the effectiveness of our SFRC method 
in few-shot remote sensing scenarios. First, we clarify the selection of datasets in the ex-
periments and the evaluation metrics used in the experiments to evaluate the generated 
remote sensing image captions. Then, we introduce the details of the implementation of 
the experiment, including the software and hardware parameters of the experimental 
equipment, the preprocessing of data, the structural parameters of the model, the setting 
of super parameters, and so on. Next, we conduct a series of quantitative experiments to 
compare the SFRC method with classical and recent methods. We also perform percentage 
sampling experiments to observe the performance of the SFRC method when the available 
data are further reduced. Finally, we conduct a series of ablation experiments to analyze 
the effectiveness and necessity of various components in the SFRC method. 

4.1. Dataset 
We selected the RSICD dataset, UCM-Captions dataset, and Sydney-Captions dataset 

as the datasets for training, validating and testing the few-shot remote sensing image cap-
tioning tasks. Their samples are all RGB images containing manually annotated captions. 

4.1.1. UCM-Captions Dataset 
The UCM-Captions dataset was constructed based on the UCM-Merced University 

Land-Use dataset [61]. The images are from the national map urban area of the United 
States Geological Survey. The UCM captions data set contains 21 categories, including 
aircraft, beaches, overpasses and stadiums, with a total of 2100 remote sensing images. 
Some samples in the UCM captions dataset are shown in Figure 5. Each remote sensing 
image has a resolution of 256 × 256 pixels and is equipped with 5 different caption labels. 
The entire dataset uses 368 different words to generate 10,500 caption labels in describing 
the images. 
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Figure 5. Some samples selected from the UCM captions dataset. The UCM captions dataset con-
tains 21 scenes, such as aircraft, golf courses, farmlands, overpasses, ports, etc. The size of each re-
mote sensing sample is 256 × 256, and the format is TIFF. 

4.1.2. Sydney-Captions Dataset 
The Sydney-Captions dataset was collected and produced in Google Earth’s Sydney 

dataset [62]. Each remote sensing image was cropped from the 18,000 × 14,000 pixel remote 
sensing image of Sydney, Australia, with a resolution of 500 × 500 pixels. Some samples 
of the Sydney-Captions dataset are shown in Figure 6. The Sydney-Captions dataset con-
tains a total of 613 remote sensing images, which are divided into 7 categories, such as 
airports, oceans, and factories. This dataset uses 237 different words to generate five dif-
ferent caption labels for each remote sensing sample. This dataset has more detailed de-
scription statements, but there is a problem in that the number of remote sensing samples 
is small. 

 
Figure 6. Some samples selected from the Sydney-Captions dataset, including factories, grassland, 
houses, runways, etc. The Sydney-Captions dataset contains samples of a total of seven scenes. The 
size of each remote sensing sample is 500 × 500, and the format is TIFF. 

4.1.3. RSICD Dataset 
The RSICD dataset [18] is composed of remote sensing images collected from Google 

Earth, Baidu Maps, MapABC, and Sky Map (Tianditu) in 2017 and divided into 30 scene 
categories. Each remote sensing image is 224 × 224 pixels. Some samples of the RSICD 
dataset are shown in Figure 7. The RSICD dataset is the largest dataset for remote sensing 
image captioning tasks at present. The linguistic descriptions of remote sensing images in 
this dataset are more relevant because these descriptions do not contain pre-defined ob-
servation directions and vague adjectives, using a total of 3325 different words. Some of 
the samples in the dataset correspond to five different caption labels. Samples with less 
than five semantic captions were complemented to five annotations by copying existing 
captions. Finally, the whole dataset contains 10,921 images and 54,605 corresponding re-
mote sensing annotation statements. 
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Figure 7. Schematic diagram of some remote sensing samples in the RSICD dataset. The sizes of 
samples provided in RSICD are all 224 × 224. Unlike the UCM-Captions dataset and Sydney-Cap-
tions dataset, the remote sensing samples in RSICD are in JPEG format. The RSICD has the richest 
scene categories and the largest number of samples in the three datasets. The figure shows the sam-
ples of airports, churches, coasts, farmland, ponds, deserts and other categories. 

The captions sampling in the three datasets are shown in Figures 8 and 9. Combining 
the number of samples in each dataset, we find that each remote sensing sample in the 
UCM-Captions dataset and Sydney-Captions dataset is configured with sufficient cap-
tions, but the number of remote sensing samples in these two datasets is too small. The 
RSICD dataset contains a not very small number of remote sensing image samples, but 
some of the samples are not equipped with a sufficient number of captions. From the per-
spective of providing effective supervision information for model training, these three da-
tasets are still small compared with the natural image captioning datasets. The methods 
are prone to overfitting problems in these datasets due to the sparse samples. Therefore, 
it is reasonable and feasible for us to use these datasets to train, validate and test the few-
shot remote sensing image captioning methods. Here we will pay special attention to the 
results of the methods in the Sydney-Captions dataset containing definitely sparse sam-
ples. 

 
Figure 8. Schematic diagram of remote sensing samples and corresponding five captions extracted 
from the UCM-Captions dataset and Sydney-Captions dataset. Both the UCM-Captions dataset and 
Sydney-Captions dataset have five different captions for a single remote sensing scene. The captions 
in the UCM-Captions dataset are relatively simple, and there are some repetitions. The descriptions 
in the Sydney-Captions dataset are more detailed, and there are not too many similarities between 
the five captions. 
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Figure 9. A randomly selected remote sensing image from the RSICD dataset and the corresponding 
five captions. There are actually only two different description statements among the five captions, 
and the other three captions are obtained by copying. We found that such a situation is quite com-
mon in the RSICD dataset. However, the captions in the RSICD dataset are of high quality and can 
well describe the important semantic information in the corresponding remote sensing scenes. 

4.2. Evaluation Metrics 
When evaluating the quality of remote sensing image captions, we select BLEU, 

ROUGE, CIDEr, SPICE, and METEOR as evaluation metrics. 
BLEU (Bilingual Evaluation Understudy): BLEU is an evaluation metric for machine 

translation proposed by IBM in 2002 [63]. It can evaluate co-occurrences between gener-
ated captions and ground truth captions. According to the n-gram matching rules, BLEU-
1, BLEU-2, BLEU-3 and BLEU-4 are calculated to measure the accuracy of word translation 
and the fluency of generating description sentences. BLEU’s rating range is 0–1. 

ROUGE (Recall-Oriented Understudy for Gisting Evaluation): ROUGE is a similarity 
measurement method based on recall rate [64], which is used to evaluate the accuracy of 
the generated description statements. There are four main types of ROUGE: ROUGE_N, 
ROUGE_L, ROUGE_ W, and ROUGE_S. In this paper, ROUGE_L was chosen as the eval-
uation metric, which calculates an F-measure with recall bias for the longest common sub-
sequence (LCS) between the generated captions and the ground truth captions. ROUGE_L 
is scored in the range of 0–1. 

CIDEr (Consensus-based Image Description Evaluation): CIDEr is a metric designed 
specifically for evaluating image captioning tasks [65]. It evaluates the consistency of de-
scription through term frequency-inverse document frequency (TF-IDF) calculation. CI-
DEr gives less weight to frequently occurring specific n-grams that do not contain useful 
visual information, mainly to judge whether the captions contain key information. CIDEr 
is popular among researchers because of its ability to evaluate whether the generated cap-
tions conform to human preferences. In order to prevent the occurrence of the “gaming” 
problem [65], the researchers optimized the CIDEr by introducing the Gaussian penalty 
for the length difference between the generated captions and the ground truth captions. 
The optimized CIDEr is more popular, and its score range is 0-10. 

SPICE (Semantic Propositional Image Caption Evaluation): SPICE is also specifically 
designed to evaluate image captioning tasks [66]. SPICE maps both ground truth captions 
and generated captions into a scene graph to evaluate the correlation between them. As a 
graph-based semantic representation, the scene graph can encode targets, attributes, and 
relationships in the generated captions. The score range of SPICE is 0–1. 

METEOR (Metric for Evaluation of Translation with Explicit Ordering): METEOR 
calculates the accuracy and recall rate of the unigram alignment between the generated 
captions and the ground truth captions based on the whole corpus and generates a har-
monic mean [67]. Unlike BLEU, meteor calculates the word-to-word match relationship 
between generated captions and ground truth captions. METEOR is widely used in image 
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captioning and can be considered a modified version of BLEU. METEOR has a rating 
range of 0–1. 

The higher scores of the above evaluation metrics, BLEU, ROUGE, CIDEr, SPICE, 
and METEOR, indicate that the more accurately the generated caption describes the im-
ages (remote sensing images), the closer the description method is to human description 
habits. 

4.3. Implementation Details 
The experimental device we used was equipped with an Intel Core i9-10900K @ 3.70 

GHz as the CPU. The GPU model was an NVIDIA GeForce RTX3090, which was released 
by NVIDIA in 2020, with 24 GB GDDR6X video memory and 384-bit memory width. The 
computer memory was 16GB DDR4 3200 MHz × 4, 64GB in total. The total capacity of the 
hard drive was 2 TB. We deployed the Ubuntu 20.04 LTS operating system in the above 
experimental equipment, and the deep learning framework adopted was Pytorch 1.8. 

When using self-supervised learning to train the scene classification model, the un-
labeled remote sensing samples we used came from the above remote sensing image cap-
tioning datasets. We did not use the captions in the datasets; we only used the remote 
sensing samples in the datasets. From our analysis of three remote sensing image caption-
ing datasets, we can see that although these samples are not labeled with class labels for 
classification, they are actually sampled from different remote sensing scenes. For exam-
ple, the remote sensing samples in the RSICD dataset can be divided into 30 different 
scenes. This allows us to use these unlabeled data to train the self-supervised learning 
scene classification model. We divided these samples into two sets: the train set, composed 
of 70% samples, and the test set, composed of 30% samples. 

We adopted various data augmentation strategies in the process of self-supervised 
learning. Our data augmentation strategies for the input remote sensing images included 
Cutout [68], randomly cropping and resizing the remote sensing images, converting the 
remote sensing images to grayscale with 50% probability, randomly flipping the remote 
sensing images with 50% probability, adjusting the brightness, contrast, saturation, and 
hue of the remote sensing images using the ColorJitter tool, adding Gaussian blur with 
20% probability and so on. Random augmentation, probabilistic augmentation and differ-
ent combinations can produce many different strategies. We used these data augmenta-
tion strategies in our experiments. Of course, this order can be changed. 

We loaded ResNet-101 from the torchvision module in Pytorch as the initial structure 
of the encoder ( )f θ  for self-supervised learning. In the training process of BYOL, both 

the prediction layer qθ  and the projection layer gθ  use MLP architecture. We set the 
structural parameters of the MLP that constitutes the prediction layer and the projection 
layer to be the same: the projection size was set to 256, and the projection hidden size was 
set to 4096. The decay rate of the mean teacher τ  was initially set to 0.996 and gradually 
increased to 1.000 during the training process. In the local feature extraction capability 
enhancement part of the self-supervised learning, the structure and parameters of the en-
coder were the same as those of the encoder ( )f θ  in the BYOL part. The MLP behind 

the encoder had the same structure and parameters as the projection layer gθ  in the 
BYOL part. The Adam optimizer was chosen for the whole training process, and the learn-
ing rate was set to 3 × 10−4. The training batch size was 32, and a total of 200 epochs were 
trained. 

When the training model generated captions for few-shot remote sensing samples, 
we divided the three remote sensing caption datasets into a train set, validation set and 
test set. Among them, the samples used for training account for 80%, the data used for 
validation account for 10%, and the data used for testing account for 10%. 

The hidden state dimension, image feature dimension and word embedding dimen-
sion in the LSTM model we used as the decoder were all fixed to 512. The sliding 
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momentum coefficient α  in the self-ensemble process was taken as 0.99, and the hy-
perparameter β  in the self-distillation process was taken as 1. Just like the self-critical 
design idea we designed in Section 3.4, the evaluation metric used to guide the optimiza-
tion of the model parameters in the model training process was CIDEr. We trained the 
model to obtain a maximum CIDEr score and then used CIDEr together with other metrics 
to evaluate the quality of the generated remote sensing captions. When calculating the 
CIDEr score baseline in the self-critical technique, we sampled 5 captions for each remote 
sensing image. The beam size of the beam search was taken as 5. The optimizer we used 
was Adam with weight decay, and the initial learning rate was 2.5 × 10−4. The weight decay 
was set as 5 × 10−4. A total of 100 epochs were trained. During this period, the learning rate 
was annealed by a factor of 0.8 every 3 epochs. The batch size during training was set to 
30. 

4.4. Quantitative Results 
We conduct quantitative comparison experiments between our proposed SFRC 

method and some classical remote captioning methods as well as recently proposed meth-
ods in each of the three datasets. These methods include soft attention [18], hard attention 
[18], RNNLM [69], AoANet [70], SAT [71], FC-Att + LSTM [72], SM-Att + LSTM [72], 
sound-a-a [73], RTRMN [74], M-M-GRU [75], SAT(LAM) [76], and multi-level ATT [77]. 

Ref. [18] mentioned two remote sensing caption generation algorithms, soft attention 
and hard attention. Both methods use the encoder-decoder architecture: the encoder 
adopts VGG-16, and the decoder adopts LSTM. The difference between them lies in the 
attention mechanism used. Soft attention determines a certain area of remote sensing im-
age through a certain weight. Hard attention uses a sampling strategy to focus on remote 
sensing images and uses reinforcement learning to train the model. Soft attention and 
hard attention are two classical and widely used remote sensing image captioning meth-
ods. 

The RNNLM method proposed by [69] first uses the convolutional neural network 
CaffeNet to obtain labels containing the main targets in the remote sensing images and 
then uses the RNN to generate descriptive sentences about the important targets. 

Ref. [70] proposed an AoA attention module. This module uses a self-attention mech-
anism to measure the correlation between image features. The AOA module is applied to 
the encoder and decoder in the caption generation model at the same time. At this time, 
the network is named AoANet. 

In [71], a classical attention-based image captioning model, Show-Attend-and-Tell 
(SAT), is proposed. SAT extracts features from the middle layer of the convolutional neu-
ral network to feed into the LSTM containing an attention mechanism for image caption-
ing. 

FC-Att + LSTM and SM-Att + LSTM were proposed by [72]. They all use an attribute 
attention mechanism to process the high-level semantic features in remote sensing images 
and use the extracted high-level attributes to generate description statements. The differ-
ence between FC-Att + LSTM and SM-Att + LSTM is the output source of their high-level 
attributes. The mid-level and high-level attributes of FC-Att + LSTM come from the last 
full connection layer of the CNN. The mid-level and high-level attributes of SM-Att + 
LSTM come from the softmax layer of the CNN. 

The sound-a-a method, proposed by [73], is an active attention mechanism con-
structed from sound. The sound information processed by the attention module can guide 
the model to generate descriptive sentences of interest to the observer. Both the sound 
module and the attention module in sound-a-a contain gated recurrent units (GRU). 

The RTRMN method in [74] is designed to overcome the problem of long-range in-
formation dilution in RNNs. The RTRMN uses a topic word strategy to extract topic in-
formation from the captions corresponding to the input remote sensing images and then 
feeds this topic information into the RNN to generate captions to the remote sensing im-
ages. 
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M-M-GRU was proposed by [75], which has a convolutional neural network as the 
encoder and gated recurrent units (GRU) as the decoder. This method uses the image fea-
tures extracted by the convolutional neural network to generate descriptive sentences that 
can vary in length. 

Unlike the conventional attention caption generation model, SAT (LAM) [40,76] uses 
the LAM method additionally. The LAM method does not use high-level remote sensing 
image features to guide the attention calculation process. LAM implicitly introduces ad-
ditional label information into the model, which can help the attention mechanism better 
focus on important areas and key categories and provide more useful semantic infor-
mation for the model to generate description statements. 

Ref. [77] proposed a multi-level ATT mechanism imitating human beings to generate 
remote sensing image captions. This attention mechanism includes attention to remote 
sensing image areas, words and semantic information. The encoder is ResNet, and the 
decoder is LSTM. 

In Tables 1–3, the highest scores under each evaluation metric are marked in bold. 
For these methods used for quantitative comparison with SFRC, their evaluation metric 
scores are derived from their paper experimental results. Of these, soft attention [18] and 
hard attention [18] do not provide SPICE scores in the original paper, and these scores are 
replaced with “-” in Tables 1–3. As can be seen from Tables 1–3, our proposed SFRC re-
ceived the highest scores in most of the metrics. Even if some index scores do not get the 
highest score, they are not far from the highest score and belong to the category of high 
scores. The high scores obtained under the BLEU-1, BLEU-2, BLEU-3 and BLEU-4 evalu-
ation metrics of the BLEU series mean that SFRC translates words accurately and sen-
tences smoothly. The high scores under the METEOR evaluation metric mean that the 
matching rate between captions generated by SFRC and ground truth captions is high, 
and the gap is small. The high scores under the ROUGE evaluation metric indicate that 
SFRC generates accurate captions. The high score for CIDEr indicates that SFRC describes 
key information and matches human preferences. The high score for SPICE demonstrates 
that SFRC accurately captures the targets, attributes and relationships in remote sensing 
images. 

Table 1. Quantitative comparison results on UCM-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
Soft Attention 0.7454 0.6545 0.5855 0.5250 0.3886 0.7237 2.6124 - 

Hard Attention 0.8157 0.7312 0.6702 0.6182 0.4263 0.7698 2.9947 - 
RNNLM 0.7735 0.7119 0.6623 0.6156 0.4198 0.7233 3.1385 0.4677 
AoANet 0.8185 0.7473 0.6880 0.6327 0.4130 0.7543 3.0873 0.4396 

SAT  0.7995  0.7365  0.6792  0.6244  0.4171  0.7441  3.1044  0.4951  
FC-ATT + LSTM  0.8102 0.7330 0.6727 0.6188 0.4280 0.7667 3.3700 0.4867 
SM-ATT + LSTM  0.8115 0.7418 0.6814 0.6296 0.4354 0.7793 3.3860 0.4875 

sound-a-a  0.7484 0.6837 0.6310 0.5896 0.3623 0.6579 2.7281 0.3907 
RTRMN  0.8028 0.7322 0.6821 0.6393 0.4258 0.7726 3.1270 0.4535 

M-M-GRU 0.4256 0.2999 0.2291 0.1798 0.1941 0.3797 1.2482 - 
SAT(LAM) 0.8195 0.7764 0.7485 0.7161 0.4837 0.7908 3.6171 0.5024 

multi-level ATT 0.8754 0.8295 0.7693 0.7049 0.5279 0.8156 3.0790 0.4619 
SFRC (ours) 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098 
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Table 2. Quantitative comparison results on Sydney-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
Soft Attention 0.7322 0.6674 0.6223 0.5820 0.3942 0.7127 2.4993 - 

Hard Attention 0.7591 0.6610 0.5889 0.5258 0.3898 0.7189 2.1819 - 
RNNLM 0.6861 0.6093 0.5465 0.4917 0.3565 0.6470 2.2129 0.3867 
AoANet 0.7520 0.6620 0.5885 0.5230 0.3792 0.6931 2.2899 0.4209 

SAT  0.7391 0.6402 0.5623 0.5248 0.3493 0.6721 2.2015 0.3945 
FC-ATT + LSTM  0.7383 0.6440 0.5701 0.5085 0.3638 0.6689 2.2415 0.3951 
SM-ATT + LSTM  0.7430 0.6535 0.5859 0.5181 0.3641 0.6772 2.3402 0.3976 

sound-a-a  0.7093 0.6228 0.5393 0.4602 0.3121 0.5974 1.7477 0.3837 
RTRMN  0.6861 0.6093 0.5465 0.4917 0.3565 0.6470 2.2129 0.3867 

M-M-GRU 0.6964 0.6092 0.5239 0.4421 0.3112 0.5917 1.7155 - 
SAT(LAM) 0.7405 0.6550 0.5904 0.5304 0.3689 0.6814 2.3519 0.4038 

multi-level ATT 0.8057 0.7189 0.6448 0.5822 0.4665 0.7472 2.2028 0.4005 
SFRC (ours) 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445 

Table 3. Quantitative comparison results on RSICD dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
Soft Attention 0.6753 0.5308 0.4333 0.3617 0.3255 0.6109 1.9643 - 

Hard Attention 0.6669 0.5182 04164 0.3407 0.3201 0.6084 1.7925 - 
RNNLM 0.6098 0.5078 0.4367 0.3814 0.2936 0.5456 2.4015 0.4259 
AoANet 0.6718 0.5552 0.4735 0.4101 0.3251 0.5852 2.5647 0.4612 

SAT  0.6707  0.5438  0.4550  0.3870  0.3203  0.5724  2.4686  0.4539  
FC-ATT + LSTM  0.6671 0.5511 0.4691 0.4059 0.3225 0.5781 2.5763 0.4673 
SM-ATT + LSTM  0.6699 0.5523 0.4703 0.4068 0.3255 0.5802 2.5738 0.4687 

sound-a-a  0.6196 0.4819 0.3902 0.3195 0.2733 0.5143 1.6386 0.3598 
RTRMN  0.6102 0.4514 0.3535 0.2859 0.2751 0.5452 1.4820 0.3236 

M-M-GRU 0.4256 0.2999 0.2291 0.1798 0.1941 0.3797 1.2482 - 
SAT(LAM) 0.6753 0.5537 0.4686 0.4026 0.3254 0.5823 2.5850 0.4636 

multi-level ATT 0.7905 0.6782 0.5743 0.5031 0.4640 0.7247 2.6310 0.4548 
SFRC (ours) 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5067 

On the UCM-Captions dataset, our SFRC method achieved the highest scores for 
BLEU-1, BLEU-3, ROUGE, CIDEr and SPICE. This indicates that SFRC has captured key 
information in the remote sensing images in the UCM-Captions dataset. The multi-level 
ATT method achieved the highest scores for BLEU-2 and METEOR. SAT (LAM) achieved 
the highest score for BLEU-4. This means that there is room for improvement in the match-
ing rate between the captions generated by the SFRC and the ground truth captions. The 
fluency of the generated descriptive sentences also needs to be improved. 

Our SFRC method obtained the highest scores for all metrics on the Sydney-Captions 
dataset, which contains the fewest samples. This indicates that our series of designs for 
the few-shot remote sensing image captioning task is fruitful. The generated captions have 
high accuracies and matching rates while extracting key information and important tar-
gets from the remote sensing images. 

The SFRC method obtained the highest scores for BLEU-1, BLEU-2, BLEU-3, BLEU-
4, CIDEr and SPICE on the RSICD dataset. The highest scores for METEOR and ROUGE 
came from the multi-level ATT method. This is because the RSICD dataset contains the 
richest amount of words, and the attention mechanism in the multi-level ATT method 
facilitates the selection of appropriate words to describe the remote sensing images and 
generate captions that match the ground truth captions. 
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From the overall perspective of the three datasets, SAT (LAM) and multi-level ATT, 
which use a strong attention mechanism, still perform well in some metrics, especially 
METEOR. Our method has obtained competitive scores in most metrics, which means that 
the overfitting of the model in few-shot scenarios has been alleviated. 

There is a widely accepted consensus that using more samples tends to mitigate over-
fitting to a certain extent and allows the model to perform better. However, by vertically 
comparing the evaluation metric scores of the same method in Tables 1–3, we find that 
image captioning methods usually have the highest scores on the UCM-Captions dataset, 
followed by the Sydney-Captions dataset, and lowest on the RSICD dataset. Although we 
cannot draw firm conclusions directly from the evaluation metric scores alone, these re-
sults do suggest that the RSICD dataset in all three datasets is the most difficult for the 
models to learn, followed by the Sydney-Captions dataset, with the UCM-Captions da-
taset being the easiest to learn. This is at variance with our analysis of the datasets above: 
using the RSICD dataset with the most remote sensing image samples and the richest de-
scriptive sentences resulted in a model with lower evaluation metric scores. Using the 
UCM-Captions dataset with fewer remote sensing data samples and the simplest sen-
tences often resulted in a model with high evaluation scores. This counter-intuitive phe-
nomenon makes us rethink how the few-shot problems in remote sensing image caption-
ing should be determined. It is evident from the above phenomenon that the performance 
of the model is also limited when the quality and quantity of remote sensing samples in 
the dataset equipped with ground truth captions cannot support the model for full train-
ing. This is also a few-shot problem in one sense. At the same time, excessively long de-
scriptive sentences equipped with remote sensing images and too many total words used 
in the ground truth captions in the dataset will add difficulty and burden to the learning 
of the models, resulting in a steep increase in the quantity and quality of caption-labeled 
remote sensing samples required by the model. The richer the words contained in the 
ground truth captions, the wider the search scope in the caption generation process, and 
the difficulty of model learning becomes greater. This requires a larger number of training 
samples to support the training. The training of remote image captioning requires a bal-
ance between a sufficient number of samples and sufficient quality of ground truth cap-
tions. This can be confirmed by the metric scores of the Sydney-Captions dataset: the 
ground truth captions in the Sydney-Captions dataset are more detailed than those in the 
UCM-Captions dataset and less complex than those in the RSICD dataset. However, the 
Sydney-Captions dataset contains the smallest number of samples. The final metric scores 
in the Sydney-Captions dataset were second. Of course, the low scores of the models 
trained on the RSICD dataset do not mean that the qualities of the generated captions are 
poor. The high qualities of the ground truth captions naturally improve the criteria for 
evaluating the captions generated. This issue would become clearer if there were a metric 
for evaluating model-generated descriptive sentences that did not rely on the ground 
truth captions provided by the dataset. 

4.5. Percentage Sampling Few-Shot Experiments 
In order to further test the performance of our proposed method for image captioning 

in few-shot remote sensing scenarios, we conducted an in-depth exploration of the UCM-
Captions dataset, Sydney-Captions dataset and RSICD dataset. We introduced percentage 
sampling in the model training process: the model was trained using a randomly selected 
percentage of samples in the dataset. This method of sampling according to a certain per-
centage can reduce the sampling scale and try not to change the original sample distribu-
tion of the train set. Both the UCM-Captions and Sydney-Captions datasets contain only 
a few hundred caption-labeled samples, which is more compatible with the definition of 
“few-shot” in terms of sample size. When we experiment with percentage sampling in 
these two datasets, the samples we can obtain will become extremely scarce. This puts 
forward high requirements for the ability of the method to adapt to few-shot scenarios. 
Therefore, we paid special attention to the results of the experiments on the UCM-
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Captions dataset and the Sydney-Captions dataset. We set different sampling percentages 
in our experiments: 60%, 80% and 100%. The percentage sampling experimental results 
are shown in Tables 4–6. 

Table 4. Percentage sampling experimental results on UCM-Captions dataset. 

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
60% 0.8226 0.7765 0.7265 0.6898 0.4626 0.7951 3.2346 0.4665 
80% 0.8557  0.8015  0.7504  0.7017  0.4536 0.8113  3.3721  0.4883  

100% 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098 

Table 5. Percentage sampling experimental results on Sydney-Captions dataset. 

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
60% 0.7813 0.6906 0.6069 0.5358 0.4015 0.7026 2.1933 0.4091 
80% 0.8063  0.7210  0.6437  0.5743  0.4322  0.7403  2.4926  0.4346  

100% 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445 

Table 6. Percentage sampling experimental results on RSICD dataset. 

Percentage BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
60% 0.7391  0.6402  0.5617 0.4879  0.3493  0.6571 2.2015  0.3945  
80% 0.7736 0.6630 0.5727 0.4968 0.3872 0.6889 2.7579 0.4741 

100% 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5067 

As seen in Tables 4 and 5, our proposed SFRC method can still play a good role in 
image captioning when trained with only 80% of the caption-labeled samples in the UCM-
Captions dataset and Sydney-Captions dataset. When only 60% of the caption-labeled 
samples are used for training, the performance of the model does not collapse. SFRC can 
adapt to sparse data modalities with few samples. From the overall view of Tables 4–6, 
SFRC does not lose too much performance in all three datasets due to the reduction of 
caption-labeled samples with the gradual reduction of sampling percentage. These sug-
gest that our designs for few-shot scenarios are meaningful and effective. We also found 
that SFRC loses the most performance on the RSICD dataset when we reduce the sampling 
percentage. We think that this is consistent with our discussion in Section 4.5: the RSICD 
dataset with the largest sample size and the richest vocabulary is, in fact, severely insuffi-
cient in terms of model training, and the model is more prone to overfitting. Of course, 
these experimental results also imply that increasing the number of samples can bring 
some performance gains to the SFRC method. When the remote sensing samples with se-
mantic captions are added in a certain range, self-supervised learning can better play its 
advantages in obtaining supervision information from the internal structure of the sam-
ples that are not class-labeled. Self-ensemble and self-distillation can produce more 
pseudo labels, the number of iterations of training can be increased, and the training pro-
cess will become more stable. The baselines obtained by self-ensemble calculation in the 
self-critical technique will also become more diverse. However, this does not mean that 
by continuously increasing the number of remote sensing samples, the performance of the 
few-shot image captioning model in the test set can always be improved. When the sam-
ples become adequate, the performance of the model will be limited by the data distribu-
tion difference between the train set and the test set. If the difference between the test set 
and the train set is too large, increasing only the number of samples can yield a limited 
improvement. 

In order to more clearly show the advantages of SFRC in few-shot scenarios, we also 
compared SFRC with the other three remote sensing image captioning methods in a series 
of experiments with a sample sampling percentage of 60%. The three methods used for 
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comparison are RNNLM, AoANet and hard attention. The experimental results are 
shown in Tables 7–9. 

Table 7. Comparison of evaluation metric scores of methods on 60% UCM-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
RNNLM 0.7480 0.6359 0.6192 0.5569 0.3565 0.6826 2.7189 0.4083 
AoANet 0.7587 0.6756 0.6115 0.5709 0.3557 0.6937 2.7672 0.3893 

Hard-Attention  0.7315  0.6838 0.6074  0.5645  0.3944  0.6542  2.5157  0.3677  
SFRC (ours) 0.8226 0.7765 0.7265 0.6898 0.4626 0.7951 3.2346 0.4665 

Table 8. Comparison of evaluation metric scores of methods on 60% Sydney-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
RNNLM 0.6712 0.5834 0.5011 0.4780 0.3369 0.6051 1.9105 0.3371 
AoANet 0.6552 0.6218 0.5315 0.5003 0.3465 0.6530 1.9042 0.3461 

Hard-Attention  0.6376  0.6109  0.5586  0.4837  0.3322  0.6439  1.8853  0.3218  
SFRC (ours) 0.7813 0.6906 0.6069 0.5358 0.4015 0.7026 2.1933 0.4091 

Table 9. Comparison of evaluation metric scores of methods on 60% RSICD dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
RNNLM 0.5632 0.4501 0.4082 0.3387 0.2714 0.5232 1.6532 0.3498 
AoANet 0.5749 0.4437 0.4334 0.3439 0.2669 0.5401 1.7680 0.3536 

Hard-Attention  0.5099  0.4292  0.3672  0.3059  0.2461  0.4738  1.5647  0.3053  
SFRC (ours) 0.7391  0.6402  0.5617 0.4879  0.3493  0.6571 2.2015  0.3945  

It can be seen from Tables 7–9 that the SFRC method achieves its best score when 
only 60% of the remote sensing samples are used for training. Compared with the other 
three remote sensing image captioning methods, SFRC better adapts to few-shot scenarios 
and makes use of the limited remote sensing samples to generate nice quality description 
sentences. Comparing Tables 7–9 and Tables 1–3, when the sampling percentage is re-
duced from 100% to 60%, SFRC can still generate captions of good quality. However, the 
performances of other remote sensing image captioning methods are greatly reduced. The 
excellent performance of SFRC in percentage sampling few-shot experiments proves the 
effectiveness of a series of designs for few-shot scenarios. 

4.6. Ablation Experiments 
To explore the impact of each self-learning component of our proposed SFRC method 

in the remote sensing image captioning tasks with sparse samples, we also designed a 
series of ablation experiments in the three datasets. We set up four methods for ablation 
comparison. They were the complete SFRC method we propose, the SFRC method with 
the self-supervised learning part removed and the rest unchanged (No SSL), the SFRC 
method with the self-ensemble and self-distillation parts removed and the rest unchanged 
(No SE and SD), and the SFRC method with the self-critical part removed and the rest 
unchanged (No SC). Self-ensemble and self-distillation are combined here because they 
are mutually coupled and contribute to each other during the operation of the SFRC 
method. Self-ensemble itself is also a part of the self-distillation design. Therefore, in the 
ablation of the components here, we process the self-ensemble and self-distillation simul-
taneously rather than separately. A comparison of the evaluation metric scores of the cap-
tions generated by each method on the three datasets in the ablation experiments is shown 
in Tables 10–12. 
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Table 10. Comparison of evaluation metric scores of methods for removing different components 
on UCM-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
No SSL 0.8455 0.7889 0.7352 0.6843 0.4576 0.8033 3.5091 0.4936 

No SE and SD 0.8104 0.7397 0.6809 0.6274 0.4248 0.7538 3.3272 0.4743 
No SC 0.8405 0.7892 0.7406 0.6936 0.4648 0.8037 3.4055 0.4875 

SFRC (ours) 0.8856 0.8143 0.7778 0.7149 0.4706 0.8167 3.7595 0.5098 

Table 11. Comparison of evaluation metric scores of methods for removing different components 
on Sydney-Captions dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
No SSL 0.8165 0.7313 0.8264 0.5809 0.4228 0.7409 2.5936 0.4359 

No SE and SD 0.7999 0.7095 0.6221 0.5419 0.3951 0.7133 2.3578 0.4029 
No SC 0.8095  0.7302  0.6549  0.5789  0.4192  0.7301  2.5212  0.4395  

SFRC (ours) 0.8256 0.7449 0.6678 0.5939 0.4349 0.7560 2.6388 0.4445 

Table 12. Comparison of evaluation metric scores of methods for removing different components 
on RSICD dataset. 

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE 
No SSL 0.7895 0.6810 0.5922 0.5175 0.3901 0.6941 2.8573 0.5067 

No SE and SD 0.7491 0.6375 0.5479 0.4732 0.3831 0.6729 2.6696 0.4881 
No SC 0.7739 0.6615 0.5738 0.4990 0.3842 0.6876 2.7033 0.5017 

SFRC (ours) 0.8009 0.6952 0.6084 0.5345 0.3882 0.6974 2.8727 0.5096 

We select the experimental ablation results (Table 11) of the model in the Sydney-
Captions dataset with the least number of samples as the example for quantitative analy-
sis. Self-supervised learning changed the CIDEr score of the algorithm on the Sydney-
Captions dataset from 2.5936 to 2.6388, an improvement of 1.7%. SPICE score changed 
from 0.4359 to 0.4445, an increase of 1.9%. This demonstrates the effectiveness of using a 
small number of unlabeled samples for a self-supervised learning training encoder. How-
ever, the effect is not very prominent. This is the result of not using a large amount of 
additional remote sensing data. If more unlabeled remote sensing samples are used for 
self-supervised training or additional labeled remote sensing samples are used for train-
ing, the performance of the encoder will be more powerful. The use of the self-ensemble 
and self-distillation modules changes the CIDEr score of the method on the Sydney-Cap-
tions dataset from 2.3578 to 2.6388, an increase of 11.9%. The SPICE score changed from 
0.4029 to 0.4445, an increase of 10.3%. From the improvement of the evaluation metric 
scores, we can see the effectiveness of the combination of self-ensemble and self-distilla-
tion. Whether it is the ensemble model under different time nodes in self-ensemble or the 
previous generation model in self-distillation, the “pseudo features” they produce can 
provide effective and robust additional knowledge and supervision information for the 
training of the next generation model. The mutual promotion of self-ensemble and self-
distillation also makes the training process stable, prevents error information from 
spreading in the model, reduces the adverse impact of a single sample or error on the 
model, and avoids the occurrence of overfitting in the process of describing remote sens-
ing images. It can be seen from the significant improvement of the evaluation indicators 
that the fusion of self-ensemble and self-distillation also makes the description of remote 
sensing images and human description of the model gradually close. It is worth noting 
that these improvements are achieved without using additional external data. The self-
critical technique changes the CIDEr score of the method on the Sydney-Captions dataset 
from 2.5212 to 2.6388, an increase of 4.7%. SPICE score changed from 0.4395 to 0.4445, an 
increase of 1.1%. From the effectiveness of self-critical, we can find that the parameter 
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optimization process of remote sensing image captioning model training is a noteworthy 
point of view to improve the performance of the model. The reinforcement learning de-
sign in self-critical mode and the baseline design with self-ensemble have a good effect on 
improving the overfitting. We believe that designing a baseline more suitable for few-shot 
scenarios for self-critical techniques in the follow-up work can enable the model to gain 
more benefit in evaluation metric scores. We can see from the comparison that the mod-
ules have different contributions to the performance of SFRC in the task of few-shot re-
mote sensing image captioning. Among them, self-ensemble and self-distillation contrib-
ute the most to performance, followed by the self-critical technique, and finally self-su-
pervised learning. The effect of the SFRC method on the three datasets is also different. 
The most improved dataset is the UCM-Captions dataset, followed by the Sydney-Cap-
tions dataset, and finally RSICD dataset. This is consistent with our analysis of the three 
datasets in Section 4.4. In a word, the experimental results of the ablation of different mod-
ules in the SFRC method show that our self-learning designs in the SFRC method are con-
ducive to the remote sensing image captioning model to adapt to few-shot scenarios. 

5. Conclusions 
We have designed an image captioning method based on self-learning for few-shot 

remote sensing images without relying on external data and external knowledge, which 
is named SFRC. On the premise that only a small amount of remote sensing samples with 
caption labels can be obtained, we use four “self-learning” components to improve the 
performance of the model in few-shot scenarios according to the data structure and the 
internal process design of the model. In training the encoder for feature extraction, we do 
not use additional caption-labeled remote sensing samples but only a small amount of 
remote sensing image samples with caption labels removed and no category labels for 
self-supervised learning. We add an additional consideration of local features of remote 
sensing images to BYOL, so that the encoder can learn a general feature representation 
and extraction method and have a generalization ability in the face of unseen data. In the 
training process of the few-shot image captioning model, we introduce both self-ensemble 
from the perspective of temporal and self-distillation from the perspective of model train-
ing and incorporate the self-ensemble into the self-distillation. The combined application 
of self-ensemble and self-distillation not only improves the quality of the generated re-
mote captions but also improves the efficiency of the circulation of pseudo labels and 
pseudo captions in the model and makes the training process more reliable and stable. 
These are definitely beneficial to solve the few-shot problem. Moreover, self-ensemble and 
self-distillation are also applicable to scenarios with sufficient samples, which allows our 
method to further learn more semantic information as prior knowledge through the use 
of external data and achieve better performance. Our image captioning model training 
strategy is orthogonal to the training strategies of advanced data augmentation, linear 
mixing, and adversarial sample generation, which means we can achieve more perfor-
mance gains by cross-using multiple training strategies. In the process of parameter opti-
mization using self-critical techniques, we construct a baseline function containing a self-
ensemble. The introduction of self-ensemble makes the gradient variance of the whole 
parameter optimization process smaller, the training process smoother, and reduces the 
negative impact of overfitting. The results of few-shot experiments on the UCM-Captions 
dataset, the Sydney-Captions dataset and the RSICD dataset show that the SFRC method 
benefits from the above self-learning designs to generate excellent-quality remote sensing 
captions with higher evaluation metric scores than classical methods as well as recent 
methods. The results of the percentage sampling experiments show that our designed 
SFRC method can better adapt to scenarios with sparse samples. The ablation experiments 
further verify the contribution of each self-learning design to the performance of the SFRC 
method in few-shot scenarios. The SFRC model can not only be used for the task of gen-
erating captions of few-shot remote sensing images but also can be applied to more tasks. 
Captions generated by SFRC can be used as input data in a series of NLP tasks, such as 
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text classification tasks and text clustering tasks. These tasks can further process captions 
containing key information in remote sensing images to obtain more concise information. 
At the same time, the remote sensing image samples and the corresponding description 
sentences obtained by SFRC processing the remote sensing images can form pairs of sam-
ples to train the multi-modal model, such as training a visual question answering (VQA) 
about key information of remote sensing images. The recent training of a multimodal vis-
ual language model named “Flamingo” [78] only requires a small number of labeled sam-
ples and can quickly adapt to many tasks. The captions output from the SFRC model can 
provide sample support for training similar powerful models in remote sensing images. 
The subsequent optimization work can focus on integrating the structure of the method 
into an end-to-end structure, using a more powerful decoder or encoder, designing more 
efficient encoder training methods with higher data utilization efficiency, and so on. 
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