Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Sentinel-2 Imagery
2.3. Main Workflow
- (a)
- Cultivated land is identified to exclude non-cultivated land areas. (1) The Sentinel 2 data are cloud masked and max composited; (2) suitable features are selected; (3) training and validation data are obtained; (4) the features and training samples are put into the RF, SVM and CART classifiers for classification; and (5) accuracy evaluation is performed.
- (b)
- Oat pasture identification is carried out based on cultivated land identification. (1) The Sentinel 2 data are cloud masked, smoothed by the Savitzky-Golay (SG) filter and max composited. (2) By comparing the time series differences in vegetation indices between oat pasture and other forage grasses, key phenological periods (June, September, October) are extracted. Next, the suitable features are determined. (3) Training and validation data are obtained. (4) The obtained cultivated land results are masked to remove non-cultivated land areas. Next, the features and training samples are put into the RF, SVM and CART classifiers for classification. (5) Accuracy evaluation is performed.
2.4. Feature Selection
2.4.1. Cultivated Land Identification Feature Selection
2.4.2. Oat Pasture Identification Feature Selection
2.5. Ground Truth Data for Training and Validation
2.6. Classifiers
2.7. Accuracy Verification
3. Results
3.1. Feature Importance Evaluation
3.2. Accuracy Evaluation
3.3. Cultivated Land Identification Results
3.4. Oat Pasture Identification Results
4. Discussion
4.1. Reliability of the Sentinel-2 Data
4.2. Classification Accuracy Evaluation
4.3. Feature Selection Methods
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, J.; Jing, H.; Zhang, W. Greet to the era that grass-based livestock husbandry will become half of our country’s modern agriculture. China Sci. Bull. 2018, 63, 1615–1618. [Google Scholar]
- Fang, J.; Jing, H.; Zhang, W.; Gao, S.; Duan, Z.; Wang, H.; Zhong, J.; Pan, Q.; Zhao, K.; Bai, W.; et al. The concept of “grass-based livestock husbandry” and its practice in Hulun Buir, Inner Mongolia. China Sci. Bull. 2018, 63, 1619–1631. [Google Scholar] [CrossRef]
- Ren, J. Sanlu milk powder incident was a direct consequence of ignored prataculture. Pratacultural Sci. 2009, 26, 1. [Google Scholar]
- Ren, J.; Chang, S. Using grassland agricultural systems to ensure the food security. Chin. J. Grassl. 2009, 31, 3–6. [Google Scholar]
- Sun, J.; Liu, Z.; Zhong, J.; Wang, T.; Wang, X.; Sun, C.; Gao, S.; Pan, Q. Exploration of the stereo development mode of ecological grass-based livestock husbandry in Yunnan-Guizhou Plateau: An example from the Yongshan County, Yunnan Province. Pratacultural Sci. 2022, 39, 381–390. [Google Scholar]
- Duan, C.; Shi, P.; Zhang, X.; Zong, N. Suitability analysis for sown pasture planning in an alpine rangeland of the northern Tibetan Plateau. Acta Ecol. Sin. 2019, 39, 5517–5526. [Google Scholar]
- Qian, S. Development status and countermeasures of oat hay industry in Shandan racecourse. Mod. Agric. Sci. Technol. 2017, 233+237. [Google Scholar]
- Han, L.; Shang, Z.; Ren, G.; Wang, Y.; Ma, Y.; Li, X.; Long, R. The response of plants and soil on black soil patch of the Qinghai-Tibetan Plateau to variation of bare-patch areas. Acta Prataculturae Sin. 2011, 20, 1. [Google Scholar]
- Huang, J.; Hou, Q.; Su, W.; Liu, J.; Zhu, D. Mapping corn and soybean cropped area with GF-1 WFV data. Trans. Chin. Soc. Agric. Eng. 2017, 33, 164–170. [Google Scholar]
- Ji, F.; Liu, J.; Wang, L. Summary of remote sensing algorithm in crop type identification and its application based on Gaofen satellites. Chin. J. Agric. Resour. Reg. Plan. 2021, 42, 254–268. [Google Scholar]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, Y.; Sang, H.; Zhai, L.; Li, S. Research on crop classification method based on Sentinel-2 time series combined vegetation index. Remote Sens. Technol. Appl. 2020, 35, 702–711. [Google Scholar]
- Jin, Z.; Azzari, G.; Burke, M.; Aston, S.; Lobell, D.B. Mapping smallholder yield heterogeneity at multiple scales in Eastern Africa. Remote Sens. 2017, 9, 931. [Google Scholar] [CrossRef]
- Jain, M.; Srivastava, A.K.; Balwinder, S.; Joon, R.K.; McDonald, A.; Royal, K.; Lisaius, M.C.; Lobell, D.B. Mapping smallholder wheat yields and sowing dates using micro-satellite data. Remote Sens. 2016, 8, 860. [Google Scholar] [CrossRef]
- Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc. Natl. Acad. Sci. USA 2017, 114, 2189–2194. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Traore, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating smallholder crops production at village level from Sentinel-2 time series in mali’s cotton belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Parameter tuning in the support vector machine and random forest and their performances in cross- and same-year crop classification using TerraSAR-X. Int. J. Remote Sens. 2014, 35, 7898–7909. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Cai, Y.; Lin, H.; Zhang, M. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Adv. Space Res. 2019, 64, 2233–2244. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, Y.; Wu, H.; Peng, T.; Huangfu, B.; He, M. Study on extracting crop planting information by object-oriented method—Taking Qitai County of Xinjiang as example. Shandong Agric. Sci. 2020, 52, 137–143. [Google Scholar]
- Guo, M.; Liu, T.; Han, P.; Dong, J.; Niu, J. Discriminating data of spatial distribution of artificial grassland based on multi-source satellite remote sensing date fusion. Chin. J. Grassl. 2019, 41, 53–62. [Google Scholar]
- Bai, X.; Wu, H.; Lu, Y.; Fan, Y. Identification of crop species in Shawan County based on Landsat8 and GF-1 remote sensing images. Shandong Agric. Sci. 2020, 52, 156–162. [Google Scholar]
- Saltykov, M.; Yakubailik, O.; Bartsev, S. Identification of vegetation types and its boundaries using artificial neural networks. In Proceedings of the International Workshop on Advanced Technologies in Material Science, Mechanical and Automation Engineering (MIP)-Engineering, Krasnoyarsk, Russia, 4–6 April 2019. [Google Scholar]
- Liu, T.; Han, P.; Guo, M.; Dong, J.; Ren, J.; Tian, W.; Li, Y.; Niu, J. Extracting spatial distribution of rainfed artificial alfalfa grassland based on multi-temporal remote sensing data. Chin. J. Grassl. 2018, 40, 56–63. [Google Scholar]
- Ren, H.; Dong, J.; Li, X.; Niu, J.; Zhang, X. Extraction artificial alfalfa grassland information using Landsat8 remote sensing data. Chin. J. Grassl. 2015, 37, 81–87+120. [Google Scholar]
- Bao, X.; Wang, Y.; Feng, Q.; Ge, J.; Hou, M.; Liu, C.; Gao, X.; Liang, T. Spatial distribution extraction of alfalfa based on Sentinel-2 and GF-1 images. Trans. Chin. Soc. Agric. Eng. 2021, 37, 153–160. [Google Scholar]
- Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296. [Google Scholar] [CrossRef]
- Luo, C.; Liu, H.; Lu, L.; Liu, Z.; Kong, F.; Zhang, X. Monthly composites from Sentinel-1 and Sentinel-2 images for regional major crop mapping with Google Earth Engine. J. Integr. Agric. 2021, 20, 1944–1957. [Google Scholar] [CrossRef]
- He, Y.; Dong, J.; Liao, X.; Sun, L.; Wang, Z.; You, N.; Li, Z.; Fu, P. Examining rice distribution and cropping intensity in a mixed single- and double-cropping region in South China using all available Sentinel 1/2 images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102351. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, B.; Ponce-Campos, G.E.; Zhang, M.; Chang, S.; Tian, F. Mapping up-to-date paddy rice extent at 10 m resolution in China through the integration of optical and synthetic aperture radar images. Remote Sens. 2018, 10, 1200. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 814. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, X.; Wu, L. Method for mapping rice fields in complex landscape areas based on pre-trained convolutional neural network from HJ-1 A/B data. ISPRS Int. J. Geo Inf. 2018, 7, 418. [Google Scholar] [CrossRef]
- Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [Google Scholar] [CrossRef]
- Nguyen, D.B.; Clauss, K.; Cao, S.; Naeimi, V.; Kuenzer, C.; Wagner, W. Mapping rice seasonality in the Mekong Delta with multi-year Envisat ASAR WSM data. Remote Sens. 2015, 7, 15868–15893. [Google Scholar]
- Tuvdendorj, B.; Zeng, H.; Wu, B.; Elnashar, A.; Zhang, M.; Tian, F.; Nabil, M.; Nanzad, L.; Bulkhbai, A.; Natsagdorj, N. Performance and the optimal integration of Sentinel-1/2 time-series features for crop classification in Northern Mongolia. Remote Sens. 2022, 14, 1830. [Google Scholar] [CrossRef]
- Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Z.; Baig, M.H.A.; Wang, Y.; Li, Y.; Chen, Y. Mapping sugarcane in complex landscapes by integrating multi-temporal Sentinel-2 images and machine learning algorithms. Land Use Policy 2019, 88, 104190. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, C.; Xue, H.; Li, J.; Fang, X.; Zhou, J. Identification of wheat by integrating active and passive remote sensing data based on Google Earth Engine platform. Trans. Chin. Soc. Agric. Mach. 2021, 52, 195–205. [Google Scholar]
- Hassan, F.; Safdar, T.; Irtaza, G.; Khan, A.U.; Kazmi, S.M.H.; Murtaza, F. Urbanization change analysis based on SVM and RF machine learning algorithms. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 591–601. [Google Scholar] [CrossRef]
- Shaharum, N.S.N.; Shafri, H.Z.M.; Ghani, W.A.W.A.K.; Samsatli, S.; Al-Habshi, M.M.A.; Yusuf, B. Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sens. Appl.-Soc. Environ. 2020, 17, 100287. [Google Scholar] [CrossRef]
- Bar, S.; Parida, B.R.; Pandey, A.C. Landsat-8 and Sentinel-2 based forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya. Remote Sens. Appl.-Soc. Environ. 2020, 18, 100324. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and Sentinel 2 satellite images for crop mapping. Appl. Sci. 2021, 11, 10104. [Google Scholar] [CrossRef]
- Salinero-Delgado, M.; Estevez, J.; Pipia, L.; Belda, S.; Berger, K.; Paredes Gomez, V.; Verrelst, J. Monitoring cropland phenology on Google Earth Engine using gaussian process regression. Remote Sens. 2022, 14, 146. [Google Scholar] [CrossRef]
- You, N.; Dong, J. Examining earliest identifiable timing of crops using all available Sentinel 1/2 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 161, 109–123. [Google Scholar] [CrossRef]
- Xiao, W.; Xu, S.; He, T. Mapping paddy rice with Sentinel-1/2 and Phenology-, object-based algorithm—A implementation in Hangjiahu plain in China using GEE platform. Remote Sens. 2021, 13, 990. [Google Scholar] [CrossRef]
- Hu, Y.; Zeng, H.; Tian, F.; Zhang, M.; Wu, B.; Gilliams, S.; Li, S.; Li, Y.; Lu, Y.; Yang, H. An interannual transfer learning approach for crop classification in the Hetao Irrigation district, China. Remote Sens. 2022, 14, 1208. [Google Scholar] [CrossRef]
- Kushal, K.C.; Zhao, K.; Romanko, M.; Khanal, S. Assessment of the spatial and temporal patterns of cover crops using remote sensing. Remote Sens. 2021, 13, 2689. [Google Scholar]
- Yang, G.; Yu, W.; Yao, X.; Zheng, H.; Cao, Q.; Zhu, Y.; Cao, W.; Cheng, T. AGTOC: A novel approach to winter wheat mapping by automatic generation of training samples and one-class classification on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102446. [Google Scholar] [CrossRef]
- Tian, F.; Wu, B.; Zeng, H.; Zhang, X.; Xu, J. Efficient identification of corn cultivation area with multitemporal synthetic aperture radar and optical images in the Google Earth Engine cloud platform. Remote Sens. 2019, 11, 629. [Google Scholar] [CrossRef]
- Ganbaatar, G.; Lee, K.-S. Classification of crop lands over Northern Mongolia using multi-temporal Landsat TM data. Korean J. Remote Sens. 2013, 29, 611–619. [Google Scholar] [CrossRef]
- Cao, X.; Chen, X.; Zhang, W.; Liao, A.; Chen, L.; Chen, Z.; Chen, J. Global cultivated land mapping at 30 m spatial resolution. Sci. China Earth Sci. 2016, 59, 2275–2284. [Google Scholar] [CrossRef]
- Chakhar, A.; Hernandez-Lopez, D.; Ballesteros, R.; Moreno, M.A. Improving the accuracy of multiple algorithms for crop classification by integrating Sentinel-1 observations with Sentinel-2 data. Remote Sens. 2021, 13, 243. [Google Scholar] [CrossRef]
- Blickensdoerfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
Name | Description | Resolution | Wavelength |
---|---|---|---|
B1 | Aerosols | 60 m | 443.9 nm (S2A)/442.3 nm (S2B) |
B2 | Blue (B) | 10 m | 496.6 nm (S2A)/492.1 nm (S2B) |
B3 | Green (G) | 10 m | 560 nm (S2A)/559 nm (S2B) |
B4 | Red (R) | 10 m | 664.5 nm (S2A)/665 nm (S2B) |
B5 | Red Edge 1 | 20 m | 703.9 nm (S2A)/703.8 nm (S2B) |
B6 | Red Edge 2 | 20 m | 740.2 nm (S2A)/739.1 nm (S2B) |
B7 | Red Edge 3 | 20 m | 782.5 nm (S2A)/779.7 nm (S2B) |
B8 | Near infrared (NIR) | 10 m | 835.1 nm (S2A)/833 nm (S2B) |
B8A | Red Edge 4 | 20 m | 864.8 nm (S2A)/864 nm (S2B) |
B9 | Water vapour | 60 m | 945 nm (S2A)/943.2 nm (S2B) |
B11 | SWIR 1 | 20 m | 1613.7 nm (S2A)/1610.4 nm (S2B) |
B12 | SWIR 2 | 20 m | 2202.4 nm (S2A)/2185.7 nm (S2B) |
QA60 | Cloud mask | 60 m |
Number | Index | Full Name | Equation | Reference |
---|---|---|---|---|
1 | NDVI | Normalized difference vegetation index | NDVI = | Tucker [32] |
2 | EVI | Enhanced vegetation index | EVI = 2.5 × | Liu [33] |
3 | SR | Sample Ratio | SR = | Jordan [34] |
4 | SAVI | Soil adjusted vegetation index | SAVI = | Marsett [35] |
5 | NDPI | Normalized difference phenology index | NDPI = | Wang [36] |
6 | NDWI | Normalized difference water index | NDWI = | Gao [37] |
Features of Cultivated Land Identification | Importance | Features of Oat Pasture Identification | Importance |
---|---|---|---|
Elevation | 983.10 | ndvi_09 (NDVI in September) | 74.70 |
SAVI | 639.83 | savi_10 (SAVI in October) | 70.37 |
EVI | 612.84 | ndvi_10 (NDVI in October) | 68.00 |
NDWI | 597.67 | sr_10 (SR in October) | 67.72 |
Slope | 593.44 | ndpi_10 (NDPI in October) | 66.22 |
NDVI | 548.67 | sr_09 (SR in September) | 57.88 |
SR | 538.71 | savi_09 (SAVI in September) | 57.75 |
NDPI | 533.18 | ndpi_09 (NDPI in September) | 49.73 |
Aspect | 508.56 | evi_10 (EVI in October) | 46.18 |
B8 | 472.40 | evi_09 (EVI in September) | 45.79 |
B7 | 459.71 | Elevation | 38.35 |
B2 | 459.52 | savi_06 (SAVI in June) | 37.31 |
B4 | 449.29 | ndvi_06 (NDVI in June) | 36.10 |
B3 | 437.30 | NDVI | 34.98 |
B6 | 435.08 | NDPI | 34.56 |
B5 | 427.48 | evi_06 (EVI in June) | 34.29 |
sr_06 (SR in June) | 32.98 | ||
ndpi_06 (NDPI in June) | 32.23 | ||
SR | 31.19 | ||
SAVI | 29.64 | ||
NDWI | 27.56 | ||
EVI | 27.46 | ||
Aspect | 22.08 | ||
Slope | 16.73 |
Algorithms and Classifiers | Identification Type | OA | PA | UA | Kappa | F1 |
---|---|---|---|---|---|---|
RF | Cultivated land in 2019 | 0.79 | 0.89 | 0.85 | 0.71 | 0.87 |
Cultivated land in 2020 | 0.81 | 0.90 | 0.81 | 0.75 | 0.85 | |
Cultivated land in 2021 | 0.81 | 0.96 | 0.83 | 0.75 | 0.89 | |
Oat pasture in 2019 | 0.97 | 1.00 | 0.95 | 0.94 | 0.97 | |
Oat pasture in 2020 | 0.97 | 0.96 | 0.98 | 0.93 | 0.97 | |
Oat pasture in 2021 | 0.99 | 0.99 | 1.00 | 0.99 | 0.99 | |
SVM | Cultivated land in 2019 | 0.67 | 0.86 | 0.72 | 0.55 | 0.78 |
Cultivated land in 2020 | 0.73 | 0.90 | 0.80 | 0.63 | 0.85 | |
Cultivated land in 2021 | 0.68 | 0.83 | 0.76 | 0.57 | 0.79 | |
Oat pasture in 2019 | 0.97 | 0.99 | 0.96 | 0.93 | 0.97 | |
Oat pasture in 2020 | 0.97 | 0.98 | 0.98 | 0.95 | 0.98 | |
Oat pasture in 2021 | 0.97 | 0.96 | 1.00 | 0.95 | 0.98 | |
CART | Cultivated land in 2019 | 0.71 | 0.84 | 0.82 | 0.61 | 0.83 |
Cultivated land in 2020 | 0.75 | 0.88 | 0.84 | 0.67 | 0.96 | |
Cultivated land in 2021 | 0.71 | 0.84 | 0.82 | 0.60 | 0.83 | |
Oat pasture in 2019 | 0.95 | 0.98 | 0.94 | 0.90 | 0.96 | |
Oat pasture in 2020 | 0.97 | 0.96 | 0.99 | 0.95 | 0.97 | |
Oat pasture in 2021 | 0.98 | 0.98 | 1.00 | 0.99 | 0.99 |
Year | Category | cl | tg | mmg | ag | Others | PA |
---|---|---|---|---|---|---|---|
2019 | cl | 62 | 0 | 2 | 0 | 6 | 0.89 |
tg | 0 | 8 | 0 | 0 | 7 | 0.53 | |
mmg | 2 | 0 | 47 | 1 | 0 | 0.94 | |
ag | 1 | 0 | 3 | 10 | 3 | 0.59 | |
others | 8 | 2 | 6 | 5 | 41 | 0.66 | |
UA | 0.85 | 0.8 | 0.81 | 0.63 | 0.72 | ||
2020 | cl | 63 | 0 | 4 | 0 | 3 | 0.9 |
tg | 3 | 10 | 1 | 0 | 1 | 0.67 | |
mmg | 3 | 0 | 46 | 1 | 0 | 0.92 | |
ag | 0 | 0 | 2 | 12 | 3 | 0.71 | |
others | 9 | 1 | 6 | 3 | 43 | 0.69 | |
UA | 0.81 | 0.91 | 0.78 | 0.75 | 0.86 | ||
2021 | cl | 67 | 0 | 1 | 0 | 2 | 0.96 |
tg | 4 | 8 | 0 | 0 | 3 | 0.53 | |
mmg | 2 | 0 | 48 | 0 | 0 | 0.96 | |
ag | 0 | 0 | 3 | 10 | 4 | 0.59 | |
others | 8 | 1 | 8 | 4 | 41 | 0.66 | |
UA | 0.83 | 0.89 | 0.8 | 0.71 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Feng, Q.; Jin, Z.; Ma, K.; Zhang, Z.; Liang, T. Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China). Remote Sens. 2022, 14, 4358. https://doi.org/10.3390/rs14174358
Wang R, Feng Q, Jin Z, Ma K, Zhang Z, Liang T. Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China). Remote Sensing. 2022; 14(17):4358. https://doi.org/10.3390/rs14174358
Chicago/Turabian StyleWang, Ruijing, Qisheng Feng, Zheren Jin, Kexin Ma, Zhongxue Zhang, and Tiangang Liang. 2022. "Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China)" Remote Sensing 14, no. 17: 4358. https://doi.org/10.3390/rs14174358
APA StyleWang, R., Feng, Q., Jin, Z., Ma, K., Zhang, Z., & Liang, T. (2022). Identification and Area Information Extraction of Oat Pasture Based on GEE—A Case Study in the Shandan Racecourse (China). Remote Sensing, 14(17), 4358. https://doi.org/10.3390/rs14174358