Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data
Abstract
:1. Introduction
2. Materials
2.1. In Situ Data
2.2. Satellite Data
2.3. Auxiliary Data
3. Methods
3.1. F/T Indices Derived from Active and Passive Microwave Observations
3.1.1. F/T Indices from Radar Observations
3.1.2. F/T Indices from Passive Microwave Observations
3.2. Development of the High-Resolution F/T Detection Algorithm
3.2.1. AIEM Model Simulations of FTI and SSI
3.2.2. Effect of Vegetation on F/T Determination
3.2.3. Pixel-Based Threshold of SSI for Detecting F/T
3.3. Evaluation Metrics
4. Results
4.1. F/Tnew Classification Assessment
4.2. Comparisons of the SSIS1B and SSInew Results
5. Discussion
5.1. The Feasibility of the Method Developed in This Study
5.2. F/T Classification Accuracy Comparisons between F/TS1 and F/Tnew
5.3. F/T Classification Accuracy Comparisons between F/Tnew and F/TAMSR2
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, T.J.; Armstrong, R.L.; Smith, J. Investigation of the near-surface soil freeze-thaw cycle in the contiguous United States: Algorithm development and validation. J. Geophys. Res. Atmos. 2003, 108, 8860. [Google Scholar] [CrossRef] [Green Version]
- Kimball, J.S.; Mcdonald, K.C.; Frolking, S.E.; Running, S.W. Radar remote sensing of the spring thaw transition across a boreal landscape. Remote Sens. Environ. 2004, 89, 163–175. [Google Scholar] [CrossRef]
- McDonald, K.C.; Kimball, J.S. Estimation of Surface Freeze–Thaw States Using Microwave Sensors. In Encyclopedia of Hydrological Sciences; Anderson, M.G., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005; pp. 783–797. [Google Scholar]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z. Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal Displacement over Qinghai–Tibetan Plateau Using Sentinel-1 Data. Remote Sens. 2019, 11, 1000. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Han, J.; Hao, T.; Li, R.; Qiao, G. Seasonal Deformation of Permafrost in Wudaoliang Basin in Qinghai-Tibet Plateau Revealed by StaMPS-InSAR. Mar. Geod. 2020, 43, 248–268. [Google Scholar] [CrossRef]
- Wang, J.; Wang, C.; Zhang, H.; Tang, Y.; Zhang, X.; Zhang, Z. Small-Baseline Approach for Monitoring the Freezing and Thawing Deformation of Permafrost on the Beiluhe Basin, Tibetan Plateau Using TerraSAR-X and Sentinel-1 Data. Sensors 2020, 20, 4464. [Google Scholar] [CrossRef] [PubMed]
- Gabrielle, W. Climate Change 2007: A world melting from the top down. Nature 2007, 446, 718–721. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Abbott, B. High risk of permafrost thaw. Nature 2011, 480, 32–33. [Google Scholar] [CrossRef]
- Christensen, T.R. It’s a gas. Nat. Geosci. 2016, 9, 647–648. [Google Scholar] [CrossRef]
- Wang, J.Y.; Song, C.C.; Hou, A.X.; Xi, F.M. Methane Emission Potential from Freshwater Marsh Soils of Northeast China: Response to Simulated Freezing-Thawing Cycles. Wetlands 2017, 37, 437–445. [Google Scholar] [CrossRef]
- Swindles, G.T.; Morris, P.J.; Mullan, D.; Watson, E.J.; Turner, T.E.; Roland, T.P.; Amesbury, M.J.; Kokfelt, U.; Schoning, K.; Pratte, S.; et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 2015, 5, 17951. [Google Scholar] [CrossRef] [Green Version]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Touzi, R.; Feng, W.; Hong, G.; Lantz, T.C.; Kokelj, S.V. Landscape-scale variations in near-surface soil temperature and active-layer thickness: Implications for high-resolution permafrost mapping. Permafr. Periglac. Process. 2021, 32, 627–640. [Google Scholar] [CrossRef]
- Black, R.F. Features Indicative of Permafrost. Annu. Rev. Earth Planet. Sci. 1976, 4, 75–94. [Google Scholar] [CrossRef]
- Davitt, A.; Schumann, G.; Forgotson, C.; McDonald, K.C. The Utility of SMAP Soil Moisture and Freeze-Thaw Datasets as Precursors to Spring-Melt Flood Conditions: A Case Study in the Red River of the North Basin. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2848–2861. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, Y.; Zhu, J.; Liu, W.; Wang, F.; Wang, L.; Jiang, L. An estimation method of soil freeze-thaw erosion in the Qinghai–Tibet Plateau. Nat. Hazards 2015, 78, 1843–1857. [Google Scholar] [CrossRef]
- Zuerndorfer, B.; England, A.W. Radiobrightness decision criteria for freeze/thaw boundaries. IEEE Trans. Geosci. Remote Sens. 1992, 30, 89–102. [Google Scholar] [CrossRef]
- Rignot, E.; Way, J.B. Monitoring freeze—thaw cycles along North—South Alaskan transects using ERS-1 SAR. Remote Sens. Environ. 1994, 49, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Wake, T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR. Cold Reg. Sci. Technol. 2009, 59, 34–41. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.S.; Glassy, J.; Du, J.Y. An Extended Global Earth System Data Record on Daily Landscape Freeze-Thaw Status Determined from Satellite Passive Microwave Remote Sensing. Earth Syst. Sci. Data 2017, 9, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.K.; Zhao, T.J.; Shi, J.C.; Hu, T.X.; Roy, A.; Qiu, Y.B.; Lu, H. Parameterization of the freeze/thaw discriminant function algorithm using dense in-situ observation network data. Int. J. Digit. Earth 2018, 12, 980–994. [Google Scholar] [CrossRef]
- Rautiainen, K.; Parkkinen, T.; Lemmetyinen, J.; Schwank, M.; Wiesmann, A.; Ikonen, J.; Derksen, C.; Davydov, S.; Davydova, A.; Boike, J. SMOS prototype algorithm for detecting autumn soil freezing. Remote Sens. Environ. 2016, 180, 346–360. [Google Scholar] [CrossRef]
- Derksen, C.; Xu, X.L.; Dunbar, R.S.; Colliander, A.; Kim, Y.; Kimball, J.S.; Black, T.A.; Euskirchen, E.; Langlois, A.; Loranty, M.M. Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sens. Environ. 2017, 194, 48–62. [Google Scholar] [CrossRef]
- Prince, M.; Roy, A.; Brucker, L.; Royer, A.; Kim, Y.; Zhao, T.J. Northern Hemisphere surface freeze-thaw product from Aquarius L-band radiometers. Earth Syst. Sci. Data 2018, 10, 2055–2067. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, V.; Paulik, C.; Bartsch, A.; Wagner, W.; Kidd, R.; Park, S.E.; Elger, K.; Boike, J. ASCAT Surface State Flag (SSF): Extracting Information on Surface Freeze/Thaw Conditions From Backscatter Data Using an Empirical Threshold-Analysis Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2566–2582. [Google Scholar] [CrossRef]
- Park, S.-E. Variations of Microwave Scattering Properties by Seasonal Freeze/Thaw Transition in the Permafrost Active Layer Observed by ALOS PALSAR Polarimetric Data. Remote Sens. 2015, 7, 17135–17148. [Google Scholar] [CrossRef] [Green Version]
- Muhuri, A.; Manickam, S.; Bhattacharya, A. Snow Cover Mapping Using Polarization Fraction Variation with Temporal RADARSAT-2 C-Band Full-Polarimetric SAR Data Over the Indian Himalayas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Azarderakhsh, M.; McDonald, K.; Norouzi, H.; Barros, A.; Arunvavikul, P.; Blake, R. Using Sentinel-L Sar Measurements to Detect High Resolution Freeze and Thaw States in Alaska. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2398–2399. [Google Scholar]
- Baghdadi, N.; Bazzi, H.; El Hajj, M.; Zribi, M. Detection of Frozen Soil Using Sentinel-1 SAR Data. Remote Sens. 2018, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Fayad, I.; Baghdadi, N.; Bazzi, H.; Zribi, M. Near Real-Time Freeze Detection over Agricultural Plots Using Sentinel-1 Data. Remote Sens. 2020, 12, 1976. [Google Scholar] [CrossRef]
- Cohen, J.; Rautiainen, K.; Ikonen, J.; Lemmetyinen, J.; Smolander, T.; Vehvilêinen, J.; Pulliainen, J. A Modeling-Based Approach for Soil Frost Detection in the Northern Boreal Forest Region with C-Band SAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1069–1083. [Google Scholar] [CrossRef]
- Cohen, J.; Rautiainen, K.; Lemmetyinen, J.; Smolander, T.; Vehvilainen, J.; Pulliainen, J. Sentinel-1 based soil freeze/thaw estimation in boreal forest environments. Remote Sens. Environ. 2021, 254, 112267. [Google Scholar] [CrossRef]
- Kou, X.K.; Jiang, L.M.; Yan, S.; Zhao, T.J.; Lu, H.; Cui, H.Z. Detection of land surface freeze-thaw status on the Tibetan Plateau using passive microwave and thermal infrared remote sensing data. Remote Sens. Environ. 2017, 199, 291–301. [Google Scholar] [CrossRef]
- Zhao, T.J.; Zhang, L.X.; Jiang, L.M.; Zhao, S.J.; Chai, L.N.; Jin, R. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol. Process. 2011, 25, 1704–1716. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Hu, T.; Zhao, L.; Zou, D.; Wang, T.; Ji, D.; Li, R.; Wang, P. Estimation of High-resolution Near-surface Freeze/thaw State by the Integration of Microwave and Thermal Infrared Remote Sensing Data on the Tibetan Plateau. Earth Space Sci. 2017, 4, 472–484. [Google Scholar] [CrossRef]
- Zhong, W.; Yuan, Q.; Liu, T.; Yue, L. Freeze/thaw onset detection combining SMAP and ASCAT data over Alaska: A machine learning approach. J. Hydrol. 2022, 605, 127354. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1504–1512. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Kim, S.; Jagdhuber, T.; Dunbar, S.; Yueh, S.; Colliander, A. High-Resolution Enhanced Product based on SMAP Active-Passive Approach using Sentinel 1 Data and its Applications. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA, 2017; pp. 2493–2494. [Google Scholar]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 17. [Google Scholar] [CrossRef]
- Piles, M.; Entekhabi, D.; Camps, A. A Change Detection Algorithm for Retrieving High-Resolution Soil Moisture From SMAP Radar and Radiometer Observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4125–4131. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Cui, H.; Wang, G.; Zhao, T.; Zhao, S.; Chai, L.; Liu, X.; Yang, J. In situ soil moisture and temperature network in genhe watershed and saihanba area in China. Data Brief 2020, 31, 105693. [Google Scholar] [CrossRef]
- Cui, H.Z.; Jiang, L.M.; Du, J.Y.; Zhao, S.J.; Wang, G.X.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [Google Scholar] [CrossRef]
- Yang, K.; Qin, J.; Zhao, L.; Chen, Y.Y.; Tang, W.J.; Han, M.L.; Lazhu; Chen, Z.Q.; Lv, N.; Ding, B.H. A Multi-Scale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. [Google Scholar] [CrossRef]
- Ojo, E.R.; Bullock, P.; L’Heureux, J.; Powers, J.; McNairn, H.; Pacheco, A. Calibration and Evaluation of a Frequency Domain Reflectometry Sensor for Real-Time Soil Moisture Monitoring. Vadose Zone J. 2015, 14, vzj2014.08.0114. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. Isprs J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Konstantinos, T.; Suman, S.; Dimitra, K. Incidence angle normalization of Wide Swath SAR data for oceanographic applications. Open Geosci. 2016, 8, 450–464. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product From Time-Series MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Xiao, Z.Q.; Liang, S.L.; Wang, J.D.; Xiang, Y.; Zhao, X.; Song, J.L. Long-Time-Series Global Land Surface Satellite Leaf Area Index Product Derived From MODIS and AVHRR Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5301–5318. [Google Scholar] [CrossRef]
- Rodionova, N.V. Identification of Frozen/Thawed Soils in the Areas of Anadyr (Chukotka) and Belaya Gora (Sakha) from the Sentinel 1 Radar Data. Izv. Atmos. Ocean. Phys. 2019, 55, 1314–1321. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.M.; Cui, H.Z.; Wang, G.X.; Yang, J.W.; Liu, X.J.; Su, X. Evaluation and analysis of SMAP, AMSR2 and MEaSUREs freeze/thaw products in China. Remote Sens. Environ. 2020, 242, 111734. [Google Scholar] [CrossRef]
- Mcfarland, M.J.; Miller, R.L.; Neale, C.M.U. Land surface temperature derived from the SSM/I passive microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens. 1990, 28, 839–845. [Google Scholar] [CrossRef]
- Kou, X.K.; Jiang, L.M.; Yan, S.; Wang, J.; Gao, L.Y. Research on the Improvement of Passive Microwave Freezing and Thawing Discriminant Algorithms for Complicated Surface Conditions. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Valencia, Spain, 22–27 July 2018; pp. 7161–7164. [Google Scholar]
- Mironov, V.L.; Kosolapova, L.G.; Lukin, Y.I.; Karavaysky, A.Y.; Molostov, I.P. Temperature- and texture-dependent dielectric model for frozen and thawed mineral soils at a frequency of 1.4GHz. Remote Sens. Environ. 2017, 200, 240–249. [Google Scholar] [CrossRef]
- Zhang, L.X.; Shi, J.C.; Zhang, Z.J.; Zhao, K.G. The estimation of dielectric constant of frozen soil-water mixture at microwave bands. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing, Toulouse, France, 21–25 July 2003; pp. 2903–2905. [Google Scholar]
- Hallikainen, M.; Ulaby, F.T.; Dobson, M.; El-Rayes, M. Dielectric measurements of soils in the 3- to 37-GHz band between-50 °C and 23 °C. In Proceeding of International Geoscience and Remote Sensing Symposium, (IGARSS’84), Strasbourg, France, 27–30 August 1984; pp. 163–168. [Google Scholar]
- He, L.; Hong, Y.; Wu, X.L.; Ye, N.; Walker, J.P.; Chen, X.N. Investigation of SMAP Active-Passive Downscaling Algorithms Using Combined Sentinel-1 SAR and SMAP Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4906–4918. [Google Scholar] [CrossRef]
- Chen, K.S.; Tzong-Dar, W.; Leung, T.; Qin, L.; Jiancheng, S.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, T.; Jiang, L.; Zhao, S. Estimate of Phase Transition Water Content in Freeze–Thaw Process Using Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4248–4255. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, T.; Pan, J.; Xue, H.; Zhao, L.; Shi, J. Improvement in Modeling Soil Dielectric Properties during Freeze-Thaw Transitions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 2001005. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, L.; Zhang, L.; Chen, K.-S.; Wigneron, J.; Chanzy, A. A parameterized multifrequency-polarization surface emission model. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2831–2841. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, K.; Zhu, Y.; Qin, B. Simulated radiation characteristics of frozen soil surface at typical microwave bands. In Proceedings of the IGARSS 2004, 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, Alaska, 20–24 September 2004; Volume 4316, pp. 4310–4313. [Google Scholar]
- England, A.W.; Galantowicz, J.F.; Zuerndorfer, B.W. A volume scattering explanation for the negative spectral gradient of frozen soil. In Proceedings of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991; pp. 1175–1177. [Google Scholar]
- Hao, Z.; Zhao, S.; Zhang, L.; Jiang, L.; Xiao, L. Comparison of microwave emission model for frozen soil and field observation. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3097–3100. [Google Scholar]
- Wang, J.; Jiang, L.; Kou, X.; Cui, H.; Yang, J. Downscaling method for near-surface freeze/thaw state monitoring in Genhe area of China. J. Remote Sens. 2019, 26, 1209–1222. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Prévot, L.; Champion, I.; Guyot, G. Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer. Remote Sens. Environ. 1993, 46, 331–339. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Allen, C.T.; Eger, G.; Kanemasu, E. Relating the microwave backscattering coefficient to leaf area index. Remote Sens. Environ. 1984, 14, 113–133. [Google Scholar] [CrossRef]
- Lievens, H.; Verhoest, N.E.C. On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters. IEEE Geosci. Remote Sens. Lett. 2011, 8, 740–744. [Google Scholar] [CrossRef]
- Hosseini, M.; McNairn, H.; Merzouki, A.; Pacheco, A. Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data. Remote Sens. Environ. 2015, 170, 77–89. [Google Scholar] [CrossRef]
- Cao, B.; Gruber, S.; Zheng, D.; Li, X. The ERA5-Land soil temperature bias in permafrost regions. Cryosphere 2020, 14, 2581–2595. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Li, R.; Wu, X.; Wu, T.; Xie, C.; Zhu, X.; Su, Y. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 2019, 337, 893–905. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, J. Evaluation of reanalysis datasets against observational soil temperature data over China. Clim. Dyn. 2018, 50, 317–337. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. Environ. 2003, 84, 42–52. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Kim, S.; Jagdhuber, T.; Dunbar, S.; Yueh, S.; O’Neill, P.E.; Colliander, A.; Walker, J.; Jackson, T.J.; et al. High resolution soil moisture product based on smap active-passive approach using copernicus sentinel 1 data. In Proceedings of the Igarss 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018; pp. 3768–3770. [Google Scholar]
- Alemohammad, S.H.; Kolassa, J.; Prigent, C.; Aires, F.; Gentine, P. Global downscaling of remotely sensed soil moisture using neural networks. Hydrol. Earth Syst. Sci. 2018, 22, 5341–5356. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Zhou, J.; Gottsche, F.M.; Zhan, W.F.; Liu, S.M.; Cao, R.Y. A Method Based on Temporal Component Decomposition for Estimating 1-km All-Weather Land Surface Temperature by Merging Satellite Thermal Infrared and Passive Microwave Observations. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4670–4691. [Google Scholar] [CrossRef]
- Che, D.; Chen, B.; Zhang, H.; Fang, S.; Xu, G.; Lin, X.; Wang, Y. A New Equation for Deriving Vegetation Phenophase from Time Series of Leaf Area Index (LAI) Data. Remote Sens. 2014, 6, 5650–5670. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhang, W.; Yi, Y.; Yang, K.; Li, G.; Wang, G. The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct. Antarct. Alp. Res. 2018, 50, e1439155. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jin, R.; Du, P.; Hao, D. Trend of surface freeze-thaw cycles and vegetation green-up date and their response to climate change on the Qinghai-Tibet Plateau. J. Remote Sens. 2018, 22, 508–520. [Google Scholar] [CrossRef]
- Ulaby, F.; Moore, R.; Fung, A. Microwave Remote Sensing: Active and Passive. Volume 2-Radar Remote Sensing and Surface Scattering and Emission Theory; Addison-Wesley: Norwood, MA, USA, 1982. [Google Scholar]
Area | Site Name | Lat (°) | Long (°) | Land Cover | Site Name | Lat (°) | Long (°) | Land Cover |
---|---|---|---|---|---|---|---|---|
Genhe | Site 1 | 50.507 | 120.529 | Grasslands | Site 17 | 50.451 | 120.987 | Forest |
Site 2 | 50.451 | 120.711 | Forest | Site 18 | 50.327 | 120.484 | Grasslands | |
Site 3 | 50.448 | 120.834 | Grasslands | Site 19 | 50.329 | 120.696 | Cultivated | |
Site 5 | 50.413 | 120.547 | Grasslands | Site 20 | 50.311 | 120.589 | Cultivated | |
Site 9 | 50.556 | 120.955 | Grasslands | Site 24 | 50.309 | 120.927 | Cultivated | |
Site 11 | 50.301 | 120.836 | Cultivated | Site 26 | 50.256 | 120.948 | Cultivated | |
Site 12 | 50.367 | 120.883 | Cultivated | Site 27 | 50.529 | 120.499 | Grasslands | |
Site 14 | 50.511 | 120.581 | Grasslands | Site 28 | 50.463 | 120.537 | Grasslands | |
Site 15 | 50.575 | 120.843 | Forest | Site 29 | 50.341 | 120.977 | Forest | |
Site 16 | 50.492 | 120.926 | Forest | |||||
Saihanba | A3 | 42.312 | 117.242 | Grasslands | P8 | 42.311 | 117.233 | Forest |
A5 | 42.309 | 117.236 | Grasslands | P9 | 42.249 | 117.294 | Grasslands | |
A6 | 42.308 | 117.241 | Grasslands | P10 | 42.255 | 117.359 | Forest | |
A7 | 42.305 | 117.231 | Grasslands | P11 | 42.201 | 117.199 | Forest | |
A11 | 42.307 | 117.233 | Forest | P12 | 42.236 | 117.236 | Grasslands | |
P2 | 42.351 | 117.207 | Forest | P13 | 42.164 | 117.302 | Forest | |
P6 | 42.367 | 117.296 | Forest | P15 | 42.135 | 117.242 | Forest | |
P7 | 42.261 | 117.131 | Forest | P16 | 42.149 | 117.371 | Forest | |
Naqu | BC07 | 31.274 | 92.109 | Grasslands | MS3513 | 31.677 | 91.842 | Grasslands |
BC08 | 31.332 | 92.041 | Grasslands | MS3518 | 31.661 | 91.794 | Grasslands | |
C1 | 31.683 | 91.771 | Grasslands | MS3523 | 31.639 | 91.754 | Grasslands | |
C3 | 31.614 | 91.774 | Grasslands | MS3527 | 31.614 | 91.739 | Grasslands | |
C4 | 31.618 | 91.841 | Grasslands | MS3533 | 31.586 | 91.793 | Grasslands | |
CD01 | 31.712 | 92.458 | Grasslands | MS3545 | 31.573 | 91.912 | Grasslands | |
CD07 | 31.495 | 92.132 | Grasslands | MS3603 | 31.259 | 91.799 | Grasslands | |
F4 | 31.698 | 91.773 | Grasslands | MSNQRW | 31.463 | 92.017 | Grasslands | |
F5 | 31.693 | 91.786 | Grasslands | P1 | 31.782 | 91.729 | Grasslands | |
MS3475 | 31.946 | 91.721 | Grasslands | P10 | 31.807 | 91.845 | Grasslands | |
MS3494 | 31.805 | 91.749 | Grasslands | P11 | 31.815 | 91.795 | Grasslands | |
MS3501 | 31.754 | 91.782 | Grasslands | |||||
RISMA | MB1 | 49.562 | −98.019 | Cultivated | MB8 | 49.752 | −97.982 | Cultivated |
MB2 | 49.492 | −97.933 | Cultivated | MB9 | 49.694 | −98.024 | Cultivated | |
MB3 | 49.519 | −97.956 | Cultivated | MB10 | 49.975 | −97.348 | Cultivated | |
MB4 | 49.636 | −97.988 | Cultivated | MB11 | 50.111 | −97.573 | Cultivated | |
MB5 | 49.621 | −97.957 | Cultivated | MB12 | 50.189 | −97.598 | Cultivated | |
MB6 | 49.678 | −97.959 | Cultivated | MB13 | 49.932 | −99.387 | Cultivated | |
MB7 | 49.665 | −98.007 | Cultivated |
Area | S1A/S1B | Time Period | Number | Overpass Time |
---|---|---|---|---|
Genhe watershed | S1B | June 2017–May 2019 | 55 | 22:10 |
Saihanba | S1B | August 2018–December 2019 | 33 | 22:20 |
Naqu | S1A | January 2018–December 2019 | 59 | 23:50 |
RISMA | S1B | January 2018–December 2019 | 57 | 00:23 |
Area | a | b | c |
---|---|---|---|
Genhe watershed | −0.4552 | −44.3366 | 160.5139 |
Saihanba | −0.3668 | −35.4591 | 129.0621 |
Naqu | −0.279 | 40.1433 | 35.5872 |
RISMA | −0.2266 | −3.3469 | 60.7911 |
Simulation | Frequency (GHz) | Theta (°) | Soil Moisture (m3/m3) | Soil Temperature (°C) | RMS Height (cm) | CL (cm) | Sand Content (%) | Clay Content (%) |
---|---|---|---|---|---|---|---|---|
Radar | 5.406 | 40 | 0.02–0.44 | −50~50 | 2 | 20 | 40 | 30 |
Passive | 6.925 | 55 | 0.02–0.44 | −50~50 | 2 | 20 | 40 | 30 |
36.5 |
Area | F_Right | T_Right | Total_Right |
---|---|---|---|
Genhe watershed | 93.64 | 93.19 | 93.29 |
Saihanba | 93.85 | 89.08 | 90.79 |
Naqu | 93.13 | 85.77 | 88.53 |
RISMA | 85.24 | 90.2 | 88.1 |
Area | Cultivated | Grassland | Forest | |
---|---|---|---|---|
F/Tnew_noLAI | Genhe | 88.66 | 88.23 | 86.16 |
Saihanba | / | 91.3 | 90.22 | |
Naqu | / | 86.4 | / | |
RISMA | 86.87 | / | / | |
F/Tnew | Genhe | 92.24 | 93.36 | 93.79 |
Saihanba | / | 91.53 | 90.34 | |
Naqu | / | 88.53 | / | |
RISMA | 88.1 | / | / |
Area | FF | FT | TT | TF | F_Right | T_Right | Total_Right | |
---|---|---|---|---|---|---|---|---|
F/TS1 | Genhe | 357 | 28 | 486 | 55 | 92.73 | 89.83 | 91.04 |
Saihanba | 221 | 16 | 229 | 62 | 93.25 | 78.69 | 85.23 | |
Naqu | 558 | 38 | 555 | 206 | 93.62 | 72.93 | 82.02 | |
RISMA | 236 | 60 | 365 | 80 | 79.73 | 82.02 | 81.11 | |
F/Tnew | Genhe | 368 | 17 | 505 | 36 | 95.58 | 93.35 | 94.28 |
Saihanba | 221 | 16 | 242 | 49 | 93.25 | 83.16 | 87.69 | |
Naqu | 552 | 44 | 649 | 112 | 92.62 | 85.28 | 88.5 | |
RISMA | 247 | 49 | 417 | 28 | 83.45 | 93.71 | 89.61 |
Area | FF | FT | TT | TF | F_Right | T_Right | Total_Right | |
---|---|---|---|---|---|---|---|---|
F/TAMSR2 | Genhe | 4529 | 725 | 6897 | 134 | 86.2 | 98.09 | 93.01 |
Saihanba | 2262 | 311 | 3819 | 392 | 87.91 | 90.69 | 89.64 | |
Naqu | 4868 | 513 | 5958 | 1024 | 90.47 | 85.33 | 87.57 | |
RISMA | 2891 | 795 | 5083 | 386 | 78.43 | 92.94 | 87.1 | |
F/Tnew | Genhe | 4888 | 366 | 6555 | 476 | 93.03 | 93.23 | 93.29 |
Saihanba | 2823 | 189 | 4353 | 539 | 93.73 | 88.98 | 90.79 | |
Naqu | 6729 | 541 | 8136 | 1384 | 92.56 | 85.46 | 88.53 | |
RISMA | 3273 | 570 | 5088 | 559 | 85.17 | 90.1 | 88.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Jiang, L.; Rautiainen, K.; Zhang, C.; Xiao, Z.; Li, H.; Yang, J.; Cui, H. Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data. Remote Sens. 2022, 14, 2854. https://doi.org/10.3390/rs14122854
Wang J, Jiang L, Rautiainen K, Zhang C, Xiao Z, Li H, Yang J, Cui H. Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data. Remote Sensing. 2022; 14(12):2854. https://doi.org/10.3390/rs14122854
Chicago/Turabian StyleWang, Jian, Lingmei Jiang, Kimmo Rautiainen, Cheng Zhang, Zhiqiang Xiao, Heng Li, Jianwei Yang, and Huizhen Cui. 2022. "Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data" Remote Sensing 14, no. 12: 2854. https://doi.org/10.3390/rs14122854
APA StyleWang, J., Jiang, L., Rautiainen, K., Zhang, C., Xiao, Z., Li, H., Yang, J., & Cui, H. (2022). Daily High-Resolution Land Surface Freeze/Thaw Detection Using Sentinel-1 and AMSR2 Data. Remote Sensing, 14(12), 2854. https://doi.org/10.3390/rs14122854