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Abstract: Permafrost is widely distributed in the Tibetan Plateau. Seasonal freeze–thaw cycles of
permafrost result in upward and downward surface displacement. Multitemporal interferometric
synthetic aperture radar (MT-InSAR) observations provide an effective method for monitoring
permafrost displacement under difficult terrain and climatic conditions. In this study, a seasonal
sinusoidal model-based new small baselines subset (NSBAS) chain was adopted to obtain a
deformation time series. An experimental study was carried out using 33 scenes of Sentinel-1
data (S-1) from 28 November 2017 to 29 December 2018 with frequent revisit (12 days) observations.
The spatial and temporal characteristics of the surface displacements variation combined with different
types of surface land cover, elevation and surface temperature factors were analyzed. The results
revealed that the seasonal changes observed in the time series of ground movements, induced by
freeze–thaw cycles were observed on flat surfaces of sedimentary basins and mountainous areas with
gentle slopes. The estimated seasonal oscillations ranged from 2 mm to 30 mm, which were smaller
in Alpine deserts than in Alpine meadows. In particular, there were significant systematic differences
in seasonal surface deformation between areas near mountains and sedimentary basins. It was also
found that the time series of deformation was consistent with the variation of surface temperature.
Based on soil moisture active/passive (SMAP) L4 surface and root zone soil moisture data, the
deformation analysis influenced by soil moisture factors was also carried out. The comprehensive
analysis of deformation results and auxiliary data (elevation, soil moisture and surface temperature
et al.) provides important insights for the monitoring of the seasonal freeze-thaw cycles in the
Tibetan Plateau.

Keywords: Tibetan Plateau; MT-InSAR; NSBAS; seasonal displacements

1. Introduction

The Qinghai–Tibetan Plateau (QTP) is the largest area with permafrost outside the polar regions,
occupying up to 50% of the plateau [1]. The upper layer of the permafrost is overlain by an active layer
that undergoes seasonal freezing and thawing [2]. The amplitude of the surface uplift or subsidence
varies spatially and temporally, scaling with the active layer thickness (ALT) and water–ice phase [3].
Time-series measurements of surface deformation of permafrost are of great significance for assessing
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the displacement response of seasonal variations and environmental factors, mitigating geohazards
and climate change, and planning future land use.

In the past two decades, various studies have been successfully conducted to map and investigate
natural environment surface displacements of permafrost areas [4–8]. Those studies have focused on
the selection of SAR interferometry (InSAR) method, seasonal displacement model, SAR band selection,
etc. For example, Liu et al. [9] applied InSAR to measure surface deformation over permafrost on the
North Slope of Alaska during thawing season. Antonova et al. [10] measured seasonal and multiyear
ground movements in a yedoma region of the Lena River Delta, Siberia. Two studies (Wolfe et al.
and Beck et al. [6,7]) investigated the permafrost terrain stability by the differential InSAR (DInSAR)
method. Two other studies Short et al. and Wang et al. [2,4] compared the performance of TerraSAR-X,
ALOS PALSAR and RADARSAT-2 data in monitoring ground displacement over continuous and
discontinuous permafrost regions. To assess surface deformation over QTP, a number of studies
have reported a centimeter-scale seasonal and multiyear isotropic thaw subsidence and freezing
uplift in permafrost areas with different scales by DInSAR [2,5,8] or multitemporal interferometric
synthetic aperture radar (MT-InSAR) methods [11–14]. High-resolution images, such as TerraSAR-X
and COSMO-SkyMed, can greatly improve the level of the details compared with medium-resolution
SAR images, and can monitor the detailed displacement of man-made features such as railway and
highway [10,13–16]. However, those studies are done in limited study areas and are susceptible to
serious temporal decorrelation due to the short wavelength. Hence, some studies also focused on the
surface deformation in QTP permafrost in regional scale [3,11,17,18]. For example, Daout et al. [3]
retrieved the permafrost related deformation through the entire seasonal cycle over a wide area with
long temporal range (2003–2011).

Due to the global and seasonal temperature changes, without dominant scatter and phase
variation, the backscattering and phase features of the ground targets in the permafrost region
are significantly affected by spatial-temporal decorrelation, which obscures the underlying signal
and limits the application of InSAR [19,20]. To reduce and overcome those limitations, MT-InSAR
methods, including small baselines subset (SBAS) techniques [21], persistent scatter interferometry
(PSI) techniques [22–24], and other PSI- and SBAS-like methods (Stanford method for persistent
scatters (StaMPS) [19], temporally coherent point InSAR (TCP-InSAR) [25–27]) have been applied
to numerous examples of surface displacement [12,28–30]. Compared with conventional InSAR
methods, MT-InSAR shows better performance in urban environments. However, in mountainous or
plateau permafrost regions, the MT-InSAR method is restricted by the decorrelation or insufficient
coherence points created by cryoturbation of the surface, steep terrains, dense vegetation and snow/ice
cover in winter [31]. To overcome those shortcomings, methods have been proposed that explore
distributed scatterers (DS) [32], quasi-persistent scatterers (QPS) [33] and temporarily coherent points
(TCPs) [34]. In addition, in MT-InSAR methods, the linear deformation model cannot properly describe
the deformation processes of permafrost, which will result in large estimation error. To overcome
those limitations, choosing the appropriate seasonal deformation model is crucial to MT-InSAR
analysis over permafrost. For example, Liu et al. [9] proposed a simplified Stefan model-based season
deformation model, which took the settlement accumulation time during the thawing of frozen soil
into consideration. Others, Zhao et al. [12] considered the climatic factors, tectonic activities and
thermal characteristics of frozen soil in surface deformation modeling. Another group, Dong et al. [35],
simulated the common sinusoidal approximation model of ground deformation due to annual and
biannual seasonal variations, which is capable of mapping those variations and parameterizing known
and unknown nonlinear processes.

In this paper, the new SBAS (NSBAS) technique with a sinusoidal seasonal model is developed to
monitor freeze–thaw seasonal displacement of QTP. Unlike Stefan [9] or other climatic factor-dependent
seasonal models, the sinusoidal model does not need to prepare auxiliary data for modeling. It is a
better choice for seasonal displacement estimation when climatic data are not available. To understand
the spatial patterns of seasonal displacement in detail and reduce the temporal decorrelation effects, a
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total of 33 S-1 images taken at intervals as short as 12 days from 28 November 2017 to 29 December
2018 were collected to build the MT-InSAR analyzing network. The seasonal oscillations of QTP under
different land cover types were discussed and analyzed in detail. To describe seasonal oscillations
more accurately, high resolution TerraSAR-X images were used to distinguish land cover. We carried
out the evaluation and comparison of seasonal displacement variation and influencing factor analysis
of different surface features corresponding to surface temperature data (SMAP L4 surface temperature
product), soil moisture data (SMAP L4 surface/root zone soil moisture products), elevation, slope and
in situ ALT. The cross-correlations between time-series displacement and processes involved in the
freeze-thaw cycle and permafrost evolution are also discussed.

2. Study Area and Datasets

2.1. Study Area

The study area was located in the south of Qinghai province (longitude: 90.715–93.751, latitude:
34.204–35.836), covering an area of about 37440 km2 (Figure 1a). The elevation ranges from 4400 to
5455 m (Figure 1b). The QTR across our study area is about 221 km long, accounting for about 20% of
total QTR. The QTR in high altitude areas is significantly impacted by the permafrost environment.
According to the Google Map (Figure 1a) and a TerraSAR-X amplitude image (Figure 1d), the land
cover is classified into three types, i.e., alpine steppe, barren, and alpine meadow [36]. The study area
experiences a continental climate characterized by extremely cold and dry winters, warm and humid
summers with plenty of rain, and the maximum and minimum air temperatures of 23 and −38 ◦C,
respectively [36]. The annual precipitation ranges from 50 to 400 mm, due to cold and arid environment.Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 22 
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precision land cover classification, detailed description of the TerraSAR-X data can be found 
in [39]. We derived the SMAP level 4 daily surface temperature and surface/root zone soil 
moisture products from National Aeronautics and Space Administration (NASA), distributed 
over a 9 km grid. These data are available at https://nsidc.org/. The introduction of those data 
were shown in [40]. The time series distribution of those products from 28 November, 2017 to 
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mountainous areas [41]. The in situ ALT data were measured by GPR in August 28, 2018. The 

Figure 1. (a) Google Earth image of study area. (b) Shuttle radar topography mission (SRTM) digital
elevation model (DEM) map of study area. (c) Sentinel-1 amplitude image of study area and location of
Qinghai–Tibetan Plateau (QTR). (d) TerraSAR-X amplitude image in the blue box of (c).
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2.2. Dataset

2.2.1. Sentinel-1 Data

We collected 33 descending Sentinel-1A images from 28 November 2017 to 29 December 2018,
which covered the entire seasonal cycle for MT-InSAR analysis. All of the Sentinel-1A scenes used in this
study were VV-polarized with incidence angles of approximately 39.5◦. The ranges of perpendicular
baseline were from −59.77 to 77.22.

2.2.2. Ancillary Data

In this study, some auxiliary data were also used to analyze the results of MT-InSAR. A scene
of High-resolution TerraSAR-X image (11 December 2015) was used to acquire high precision land
cover classification, detailed description of the TerraSAR-X data can be found in [36]. We derived the
SMAP level 4 daily surface temperature and surface/root zone soil moisture products from National
Aeronautics and Space Administration (NASA), distributed over a 9 km grid. These data are available
at https://nsidc.org/. The introduction of those data were shown in [37]. The time series distribution of
those products from 28 November 2017 to 29 December 2018 was extracted. Ground-penetrating radar
(GPR) has been widely used in detecting shallow underground conditions of permafrost, such as ALT
over polar and mountainous areas [38]. The in situ ALT data were measured by GPR in 28 August 2018.
The electromagnetic characteristics of stratum was collected using LTD-2100, detailed introduction
of the instrument can be found in [39], the collected data were processed based on software IDSP5.0
(China Research Institute of Radiowave Propagation (CRIRP), Xinxiang, China), subsequently.

3. Methodology

In the QTP area, the surface displacement shows obvious seasonal variation. It was worth
exploring an effective procedure to evaluate the deformation of permafrost in more detail. The objective
of this study was to monitor the freeze-thaw seasonal displacement of QTP based on MT-InSAR.
The processing flow chart consists of four main steps: (1) InSAR processing of the images, including
preprocessing (interferogram network selection, co-registration, differential interferogram phase
generation, phase unwrapping) and phase correction; (2) seasonal displacement modeling; (3) NSBAS
deformation estimation; (4) spatial variation analysis of seasonal oscillation amplitude and time-series
variation analysis of deformation based on auxiliary data. An overview of the methodology is
illustrated in Figure 2, and the detailed steps are as follows.

3.1. InSAR Processing

In our study area, the permafrost nature surface experiences seasonal dynamic changes caused
by vegetation, which contributes to spatial-temporal decorrelation. To accommodate this limitation,
it was necessary to adjust the set of interferogram pairs based on spatial-temporal baseline distribution
and coherence. After all the SAR images were co-registered, with perpendicular baseline <100 m
and temporal baseline <40 days, and the interferograms in fine coherence were checked and selected,
a total of 77 interferometric pairs were used to generate interferograms. They allowed us to monitor
the deformation in short time intervals through the year.

The topographic phase was removed from the observed interferometric phase using the 1-arcsecond
grid (30 m) shuttle radar topography mission (SRTM) digital elevation model (DEM) [40]. The phase
term from noise was removed by means of adaptive filtering and multilooking (the averaging of two
pixels in range and 10 pixels in azimuth). After removing or reducing the topography and noise
phase, the remaining phase was mainly related to ground deformation, atmospheric and orbital errors.
A minimum cost flow (MCF) phase unwrap technique [41] was used for unwrapping the phase.
We generated the unwrapped interferograms for the selected image pairs using the InSAR processing
system based on generic mapping tools (GMTSAR) [42]. Then, the interferometric atmospheric
phase delay and orbital error corrections were implemented by PyAPS [43] and network de-ramping

https://nsidc.org/
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methods [44]. Finally, time-series retrieval of displacement changes based on the unwrapped and
corrected phase was conducted.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 22 
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Figure 2. The flow chart of multitemporal interferometric synthetic aperture radar (MT-InSAR) applied
in this study.

3.2. Seasonal Deformation Model-Based NSBAS Method

The conventional MT-InSAR uses a linear phase model to monitor surface movement [36].
However, the ground surface underlain by permafrost generally exhibits characteristics of both
long-term linear deformation and seasonal variations [45]. The long-term linear deformation
contribution can be ignored when the observation time is shorter than 14 months [14]. In this
paper, considering the effect of permafrost thawing and freezing and observation time span, a
sinusoidal seasonal model was adopted [17,46]:

∆ϕmodel = ∆ϕε + ∆ϕseasonal

=
4π
λ
(

B⊥∆ε
R sinθ

+ a1· sin(
2π
T
·t) + a2· cos(

2π
T
·t))

(1)

where λ is wavelength; B⊥ denotes perpendicular baseline; θ and R denote the incidence angle and
slant range distance, respectively; T is the period of the seasonal undulations (assumed to be one year
in this study); t represents the time interval between two SAR scenes; a1, a2 are the parameters to be
estimated; and

√
a1

2 + a22 is the peak-to-peak amplitude of seasonal oscillations (unit: millimeters).
The NSBAS was proposed by Doin et al. [47] in 2009 and the method chain described in [48],

which can be applied over pixels where critical interferometric links are missing, is effective for the
situation when strong spatial-temporal decorrelation occurs in an interferometry network [47–49].
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In traditional SBAS, the linear relation between the set of interferometric phase observations and
individual SAR scene phase values is as follows [21]:

∀I ∈ [1, M] dl = Glml ⇔ ΦI =

j−1∑
n=i

δϕn (2)

where M is the number of interferograms; i, j denote acquisition time; l is a specific pixel; dl is the vector
including the interferometric phase (ΦI); ml is a vector containing the phase delay increments between
two successive images; Gl is a matrix of zeros and ones directly related to the set of interferograms
generated from the available data. The singular value decomposition (SVD) method was used to solve
Equation (2). To overcome the SVD biases when independent images do not overlaps, NSBAS uses
additional constraints provided by Equation (3) [47,49]:

∀k ∈ [2, N]
k−1∑
n=1

δϕn − f (∆tk) + eBk
⊥ = 0, (3)

where N denotes acquisition dates; Bk
⊥

is the perpendicular baseline between satellite paths at
acquisitions 1 and k; f(·) is a parametric representation of the temporal form of the deformation, used
as a regularization function; and ∆tk = tk − t0. By default, f(·) is assumed to be of the form:

f(t) = at2 + vt + c. (4)

In a seasonal deformation surface, the parameters in (4) could be modified as follows:

f(t) = a1 sin(
2π
T

t) + a2 cos(
2π
T

t) + c. (5)

Then, the constrained system can be solved by a least-square inversion in Equation (6).
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The contribution of the regularization function f(·) in the linear operator G is controlled by γ; this
parameter can be modified by the user. By introducing Equation (6), the artifacts associated with the
singularity of GT

l Gl will be significantly reduced [47].
In this study, the GIAnT [50,51] was used to perform the integration of NSBAS and the sinusoidal

seasonal model. The inverse problem in Equation (6) is solved by GIAnT and then the amplitude
of seasonal deformation

√
a1

2 + a22 is produced. Similar to the parameters of thawing and freezing
coefficients in Stefan model [9],

√
a1

2 + a22 is a key indicator for charactering the spatial variability
of the seasonal deformation amplitude. After the coefficients a1 and a2 are obtained, the time-series
surface elevation changes can be deduced from these parameters.
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4. Results

We applied the sinusoidal seasonal deformation–based NSBAS technique described in Section 3 to
monitor the freeze-thaw seasonal surface deformation over QTP. The amplitudes of seasonal oscillations
corresponding to different land cover and along the QRT and its surroundings were assessed. At the
same time, temporal analysis with 12-day intervals was conducted, and the details of the time series of
displacement varying with land cover type were shown.

4.1. Spatial Analysis of Seasonal Oscillations Amplitude

The amplitude of the seasonal displacement ranged from 0 to 48.7 mm. In most parts of the
region, the amplitude of the seasonal signal was lower than 30 mm (Figure 3a), which is similar to
the result of [36]. The DEM errors inferred from Figure 3b ranged from −50 to 50 m in most study
areas, with the mean and standard deviation of 16.49 m and 12.67 m, respectively. As shown in
Figure 3c the relative accuracy of SRTM DEM is not consistent in some areas. Phase correction or
physical changes caused by errors are the factors affecting the results of DEM errors. The freeze-thaw
depth in permafrost regions is extremely sensitive to ALT, while the change of soil moisture over the
years has a great influence on the ALT [36], which explains the high amplitude of the seasonal trend.
As shown in Figure 3a, the amplitude of seasonal displacement was relatively low near mountainous
areas (0–10 mm), while larger spatial variation and amplitude were obtained in basin regions, with
amplitudes ranging from 10 to 30 mm. In our pervious study, the ALT in Figure 1d was retrieved using
the TerraSAR-X InSAR technique. It has been found that the ALT between near mountain alpine desert
region and alpine meadow region shows obvious difference, with a mean ALT of 1.5 m in meadow
area and 3m in the near mountain alpine desert area [36], which is an effective indicator to verify the
seasonal displacement results.

In order to observe the spatial distribution and variability characteristics of the seasonal amplitude
in the study area, the elevation and seasonal amplitude profiles of A2−A2, and two profile zones of
slope and seasonal amplitude (B1−B2, C1−C2) were extracted (Figure 3a). As seen from Figure 4a,
the opposite fluctuation tendencies between the elevation and seasonal amplitude were presented,
wherein the area with high elevation showed relatively low deformation (<10 mm in R1, R2, and R3),
and the deformation of the flat surface with low altitude reached 25 mm in some areas (R4). To further
confirm the relationship between topography and seasonal amplitude, the profile zones B1−B2 and
C1−C2 were divided into 1000 subregions, and the mean value of the slope and seasonal amplitude
were computed. As shown in Figure 4b,c, the correlation coefficients of slope and seasonal amplitude
of B1−B2 and C1−C2 were 0.6 and 0.49, respectively.
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To assess in detail the influence of surface characteristics on the displacement, we chose a region
where the high-resolution SAR image was available (Figures 1d and 5a). The land cover was finely
classified using K-means clustering [52] (Figure 5a,b) [36]. After obtaining the classification information
of the region, the seasonal amplitude was extracted along profile lines A−B, where alpine meadow
and alpine desert were included (Figure 5a,c). Figure 5c shows the estimated seasonal amplitude of
profile A−B. Obvious differences between alpine meadow and alpine desert are observed. In the alpine
meadow area, the season amplitude ranged from 11.8 to 19.6 mm, while the alpine desert area was
characterized by lower seasonal oscillation (0.1−10 mm).
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Figure 5. The amplitude of seasonal oscillation under different land covers. (a) The amplitude map
of high-resolution TerraSAR-X image (11 December 2015); (b) the classification result of TerraSAR-X
image. (c) the amplitude of seasonal oscillations along profile A−B.

The surface deformation along the QTR was monitored, shown in Figure 6. We noticed that the
amplitudes within 0–100 m buffer of QTR were generally lower than those in the 100−1000 m buffer
region, shown in Figure 6b,c, but there were still some areas with large deformation, which meant
that the displacement along QTR was relatively lower than that of adjacent regions. According to our
previous study [14], the segments of the railway are unstable and the displacement is heterogeneous
due to due to underlying permafrost conditions and cooling measurements. Due to the limitation of
resolution after two pixels in a range of 10 pixels in the azimuth multilooking, the stability of QTR was
monitored based on the deformation of the surrounding area. The displacement of surrounding area
was an effective indicator to character the stability of pavement structure. We observed in Region A
that the amplitude of displacement along QTR was low over mountainous areas and large over alpine
meadow areas (Figure 6b). As observed in Figure 6c, the amplitude showed strong spatial variability
over the alpine desert near Salt Lake (Figure 6a) compared with other alpine desert regions.
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4.2. Deformation Time Series

The deformation time series of the study area is presented in Figure 7. It can be seen that the
peak-to-peak seasonal displacements within the year from December 2017 to December 2018 reached
80 mm in some areas. Most of the areas had peak-to-peak seasonal displacement of nearly 40 mm
(Figure 7, Figure 8 box of median value). Temporal deformation statistics (Figure 8a,b) showed that
the surface deformation over the permafrost region was characterized by a periodicity cycle within
the year, in which freeze-thaw induced alternating uplift and subsidence. Therefore, the surface
subsided significantly from April to October and uplifted from October to March. Discontinuous
surface subsidence or uplift were found in some time periods (Figure 8a,b). For example, deformation
abnormality occurred on 31 August 2018 both on the alpine meadow and in the alpine desert region.
It can also be seen from Figure 8a,b that rapid uplift and subsidence occurred in the first one to two
months of a deformation transition period and then slowed down in the following months. The reason
was that the thaw of the active layer was the greatest early in the summer, slowing considerably in
August and September. Active layers thaw from ground surface to bottom depended on the heat
transmission, the melting rate decreased with the deepening of the ALT, and correspondingly, the thaw
settled down. For the temporal deformation of different soil characteristics, the alpine meadow had
higher peak-to-peak seasonal displacement (box median value from −20 to 25 m) compared with alpine
desert (box median value from −10 to 15 mm), which is consistent with the results in Figure 5. It can be
seen from the box plot in Figure 8a that the alpine meadow had larger spatial variation (as indicated by
box) within a specific period, while more outliers (red point) existed over the alpine desert. The reason
is that the ALT and soil moisture vary more in vegetated regions than on bare lands, contributing to
the large range of spatial variation, whereas due to the dry conditions and deep ALT over some areas
of alpine desert, the displacement process did not correspond well to a seasonal model, which led
to outliers.

Considering the spatial−temporal hydrological properties of permafrost, the soil moisture variation
patterns of various types of land cover have been analyzed [53]. The results show that a positive
temporal-spatial correlation was found between soil moisture and displacement in different land
cover types. The surface/root zone soil moisture is a critical factor for discovering the origin of
surface deformation variation. In this study, SMAP L4_SM surface and root zone daily soil moisture
products were introduced to perform the analysis. SMAP L4_SM data provide quantitative estimates
of surface and root zone soil moisture with −5 cm and 1 m depth over a 9 km grid [37], respectively.
Although the 9 km-resolution grid is insufficient to characterize the spatial variation at a fine scale, it
is a quite effective way to describe the temporal variation of deformation. As shown in Figure 8c,d,
the surface and root zone soil moisture increased from June to October and was relatively stable in
winter. It is obvious that the soil moisture storage in this year was higher than the previous year
due to abundant rainfall (Figure 8c,d). The surface soil moisture in summer strongly varies because
rainfall and evapotranspiration/infiltration occurred alternately, while the root zone soil moisture
increased steadily due to the continuous melting process of ALT and surface soil moisture permeation
in summer. According to Figure 8c,d, large surface soil moisture variation was found from 1 April to 9
June, whereas the root zone soil moisture was still low, which means that the soil moisture variation in
the early stage was mainly caused by soil thawing, while subsidence occurred in this period (Figure 8).
The intrinsic difference in soil moisture content between different soil types affected the deformation
rate (Figure 5). To quantitatively evaluate the influence of soil moisture on settlement deformation, the
correlation analysis between relative deformation reference to 28 November 2017 and root zone soil
moisture during thawing season (from 9 April 2018 to 6 October 2018) were performed. The correlation
coefficient in alpine desert and alpine meadow were 0.45 and 0.81, respectively. Same as [53] positive
temporal-spatial correlation was found in this study(Figure 9). As seen from Figure 9, the deformation
in alpine meadow region is more susceptible to soil moisture than that of alpine desert.
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Figure 7. Maps showing the deformation time series in the study area, relative to the first acquisition
on 28 November 2017.

The climatic conditions represent a key factor influencing the seasonal variations of the deformation.
The interseason uplift and subsidence were mainly caused by variations of air and soil temperatures.
Time-series verification statistics with three-day intervals were performed. As shown in Figure 10,
the soil surface melting period ranged from 1 April to 7 October, which was consistent with the
settlement period of the study area (Figure 8a,b). It should be noted that temperature oscillation
existed in the beginning and ending periods, and recurrent subsidence and uplift were found in 3
May 2018–27 May 2018 (Figures 7 and 8a,b). However, deformation oscillation during the thawing
period also existed, because in reality, seasonal deformation is affected by many other factors, such as
precipitation [45].
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Figure 8. (a) Deformation time series statistics results over alpine meadow (P1); (b) Deformation time
series statistics results over alpine desert (P2) (the positions of P1 and P2 are shown in Figure 5a).
Time-series surface soil moisture (c) and root zone soil moisture (d) for soil moisture active/passive
(SMAP) L4 data over the study area( Presented are the median (red line), the first quantile Q1 and third
quantile Q3 (as indicated by box), and the Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1) value(whiskers)
and outliers (red point)).
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5. Discussion

5.1. Comparison with Other Surface Displacement Studies in Permafrost

There are a lot of studies focus on permafrost thaw subsidence and freezing uplift in the QTP using
sinusoidal models. To effectively validate this work, we compared our study with other researches in
QTP permafrost regions using sinusoidal models (Table 1). Daout et al. [3] observed seasonal amplitude
of 2.5–12 mm from 2003 to 2011. Li et al. [45] reported seasonal oscillations ranging from 0.5 to 28 mm
during 2007–2011. Jia et al. [17] showed the peak-to peak amplitudes of seasonal oscillations of an
area along QTR ranging from 0 to 2 cm during 2007–2009. Similar season oscillations and deformation
trends were acquired in our study, but they still had some differences. The reason is that those case
studies were conducted at different study areas and time periods. In this study, the time-series analysis
was conducted in the most recent period, which allowed us to monitor the most recent condition of
deformation. In addition, historical studies mainly focus on the interannual season deformation with a
long temporal baseline, which lacked detailed features of seasonal deformation. We made up for this
deficiency through 12-day interval images, so more detailed temporal displacement was acquired.

Table 1. Parameters of previous studies on Qinghai–Tibetan Plateau (QTP) using sinusoidal models.

Authors Study Area SAR Dataset Observation
Period

Seasonal
Oscillations

Amplitude (mm)

Daout et al.2017 [3] Northwestern QTP Envisat ASAR 2003–2011 2.5–12
Jia et al. 2017 [17] Same as this study ALOS PALSAR 2007–2009 0–20
Li et al. 2015 [46] Southern QTP Envisat ASAR 2007–2011 0.5–28

This study South of Qinghai province Sentinel-1 2017.11–2018.12 0–30

5.2. Seasonal Amplitude Dynamic Response of Topographical Factor

The amplitude of the seasonal movement was large over flat surfaces, while it decreased with the
increase in altitude and slope. One reason is that in mountainous areas with high altitude are in less soil
moisture storage and stable bedrock and the precipitation in these areas can only cause small variations
to soil moisture. Moreover, considering the thermal properties of ALT, the seasonal deformation
is positively related with ALT, whereas the ALT decreases with the increasing elevation due to the
decrease in temperature [54]. The amplitude of the seasonal deformation is influenced by properties of
the ground upper layer, further reflected in ALT [54]. These observations might be explained by a
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difference in the evapotranspiration, sensible heat flux, and surface flux [10,55]. The energy balance is
controlled by the physical state of environment and surface properties, which is ultimately manifested
in different amounts of deformation. A negative correlation was also found in [3].

5.3. Relation between Seasonal Amplitude and ALT

As mentioned above, the effect of deformation is controlled by the spatial and temporal variability
of ALT. Previous studies have estimated ALT based on deformation results, which indicated that a close
correspondence exists between seasonal deformation and ALT [17,36,45]. In those studies, quantitative
relationships between the displacement of the permafrost surface and ALT have been developed.
The relationship models are mainly controlled by multilayered groundwater content distribution and
soil porosity. In this study, topography and geology responses were also discovered (Figures 4 and 8).
GPR is used to study the hydrological features of ice-content melting, and to detect the demarcation line
between melting layers and ice-bearing layers under different types of land cover (Figures 5 and 11).
As shown in Figure 11a,b, ALT varies with vegetation type. The average melting depth in alpine
meadow and alpine desert were 2.5 m and 3 m, respectively. Compared with the amplitude profiles
of seasonal oscillation results shown in Figures 5 and 11c,d, the difference of seasonal amplitude
between two in-situ locations was obvious. The in situ ALT results explained the effect of surface and
underground on displacement. It should be noted that the ALT was not only affected by vegetation
and climatic factors but also by topography, lithology and hydrological conditions. We also found
from the GPR measurements that the ALT showed significant spatial variations even for the same type
of land cover.
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Figure 11. (a) In situ active layer thickness (ALT) profile of Alpine meadow based on ground-penetrating
radar (GPR) (28 August 2018). (b) In situ ALT profile of Alpine desert based on GPR (28 August 2018).
(c) The amplitude of seasonal oscillation surrounding (a). (d) The amplitude of seasonal oscillation
surrounding (b).

5.4. Time-Varying Error of Seasonal Displacement

According to the surface and root soil moisture variation result, variation can be used to explain
the deformation caused by rainfall. Comparing Figure 8a,b and Figure 8c,d, it can be observed that the
deformation oscillation (26 July–24 September) occurred in a period of large soil moisture variation.
Rain storms in the thawing season in the area of the QTP can dramatically increase the soil moisture,
causing a ground uplift signal in an interferogram, as well as discontinuous subsidence [9]. The daily
surface soil moisture change is a key indicator for rainfall. Changing soil moisture conditions have
been identified as a potential source of MT-InSAR errors. Table 2 showed the significant impact of
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surface moisture variation. Compared with 19 August 2018 and 12 September 2018, soil moisture on 31
August 2018 was larger, the cumulative displacement anomaly was observed on 31 August 2018. From
3 May 2018 to 27 May 2018, the effect of soil moisture variation was not shown, while the displacement
anomaly could be explained by the surface temperature variation.

First, the climate anomalies during the study period that lead to deformation were not well
described by the sinusoidal function seasonal model. On the other hand, from August to September,
there was abundant rainfall in QTP. According to our in-situ soil moisture measurements from 27 August
27 to 2 September, the soil water content in alpine meadow and alpine desert was very high, while
the soil moisture change impacted the measured phase, which may correspond to the displacement
error of about 10% of the radar wavelength on bare soil and lead to an error of 3 mm–3 cm [56].
In addition, the melting layer on the top of permafrost got drier and drier in summer, and the spurious
drying-induced uplift observed in the DInSAR estimation may mask the actual surface subsidence [57].

Table 2. Cumulative displacements relative to first acquisition date, surface temperature and surface
soil moisture in specific period over P1 (Figure 6).

Observation Date Surface
Temperature (◦)

Surface Soil
Moisture (m3/m−3)

Cumulative
Displacement (mm)

3 May 2018 2.85 0.162 7.8
15 May 2018 4.85 0.154 −1.2
27 May 2018 0.15 0.131 2.1

19 August 2018 5.85 0.256 −7.3
31 August 2018 1.15 0.283 3.2

12 September 2018 1.15 0.25 0.5

In this study, the sinusoidal model–based NSBAS method is proved to be suitable for modeling
of the ground surface deformation of the frozen soil. However, some discrepancies were identified,
especially over mountainous areas, such as the DEM error, which could not be removed through
the error modeling in this study. Moreover, as [17,45] mentioned, the freezing-thawing seasonal
deformation is affected by many factors, such as precipitation, temperature, water content, heat flow,
surface erosion, and tectonic movement, which may cause bias and deviation from the sinusoidal model.

6. Conclusions

In this paper, we applied sinusoidal model–based NSBAS using Sentinel-1 data acquired from
28 November 2017 to 29 December 2018 to monitor the freeze−thaw seasonal displacements over
the selected permafrost region of QTP. Based on the results obtained, the following conclusions can
be drawn.

First, the peak-to-peak amplitude of seasonal surface deformation in the study area ranged from
0 to 30 mm. The amplitude of the seasonal movement was influenced by terrain properties, being
negatively correlated with elevation and slope, with larger amplitude of seasonal movement over flat
surfaces compared with mountainous areas. Spatial variations of the amplitude in different ecosystems
showed obvious differences, with the average amplitude of 15 mm in the alpine meadow and 7 mm
in the alpine desert areas, respectively. Field investigation results of ALT based on GPR verified the
spatial heterogeneity quantitatively. Along the QTR, strong spatial variability was also discovered.

In addition, the deformation of time series in one year was monitored with the peak-to-peak
seasonal displacement of 40 mm. The freeze and thaw time nodes were 24 September and 9 April,
respectively, which are consistent with the surface temperature trends. There were spatial variations
and anomalies in the study area in a specific period.

The NSBAS method based on the seasonal model is an effective method for monitoring freeze-thaw
seasonal displacement of the permafrost on a large scale. Sentinel-1 data with shorter revisit time can
successfully characterize the seasonal deformation response of frozen soil to surface temperature, soil
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moisture, and other factors. The results show that Sentinel-1 data with high temporal resolution are an
effective data source for monitoring short-term surface displacement, which is useful for monitoring
permafrost-related seasonal deformation, thereby helping us to better understand the surface dynamics
of QTP permafrost region.
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