Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Multiple Linear Regression
3. Results
3.1. Meteorology Changes Have Larger Influences on Inter-Annual Variations of AOD than Those of Surface PM2.5
3.2. Meteorology Changes in Spring Are Beneficial to Aerosol Reduction
3.3. Meteorology Changes in Summer Are Unfavourable to Aerosol Reduction
3.4. Meteorology Changes in Fall Show Different Effects on Trends of Aerosols in Different Key Regions
3.5. Meteorology Changes in Winter Show Opposite Effects on Trends of AOD and Surface PM2.5
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noll, K.E.; Mueller, P.K.; Imada, M. Visibility and Aerosol Concentration in Urban Air. Atmos. Environ. 1968, 2, 465–475. [Google Scholar] [CrossRef]
- Zhang, Q.; Quan, J.; Tie, X.; Li, X.; Liu, Q.; Gao, Y.; Zhao, D. Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 2015, 502, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A. Model calculated global, regional and megacity premature mortality due to air pollution. Atmos. Chem. Phys. 2013, 13, 7023–7037. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Crutzen, P.J.; Kiehl, J.R.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Jones, C.D.; Cox, P.M. Strong present-day aerosol cooling implies a hot future. Nature 2005, 435, 1187–1190. [Google Scholar] [CrossRef]
- Niu, F.; Li, Z.; Li, C.; Lee, K.-H.; Wang, M. Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading. J. Geophys. Res. 2010, 115, D00K20. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, G.; Kong, F.; Chen, D.; Azorin-Molina, C.; Guijarro, J.A. Variability of winter haze over the Beijing-Tianjin-Hebei region tied to wind speed in the lower troposphere and particulate sources. Atmos. Res. 2019, 215, 1–11. [Google Scholar] [CrossRef]
- Cai, W.; Li, K.; Liao, H.; Wang, H.; Wu, L. Weather conditions conducive to Beijing severe haze more frequent under climate change. Nat. Clim. Chang. 2017, 7, 257–262. [Google Scholar] [CrossRef]
- Li, Z.; Lau, W.K.M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Yang, Y.; Russell, L.M.; Lou, S.; Liao, H.; Guo, J.; Liu, Y.; Singh, B.; Ghan, S.J. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat. Commun. 2017, 8, 15333. [Google Scholar] [CrossRef]
- Geng, G.; Zhang, Q.; Martin, R.V.; van Donkelaar, A.; Huo, H.; Che, H.; Lin, J.; He, K. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sens. Environ. 2015, 166, 262–270. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.K.; Herman, J.R.; Sinyuk, A.; Ginoux, P.; Holben, B. A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci. 2002, 59, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.E.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The cloudsat mission and the a-train—A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Bilal, M.; Nazeer, M.; Nichol, J.; Qiu, Z.; Wang, L.; Bleiweiss, M.; Shen, X.; Campbell, J.; Lolli, S. Evaluation of Terra-MODIS C6 and C6.1 Aerosol Products against Beijing, XiangHe, and Xinglong AERONET Sites in China during 2004–2014. Remote Sens. 2019, 11, 486. [Google Scholar] [CrossRef] [Green Version]
- Xue, T.; Zheng, Y.; Tong, D.; Zheng, B.; Li, X.; Zhu, T.; Zhang, Q. Spatiotemporal continuous estimates of PM2.5 concentrations in China, 2000–2016: A machine learning method with inputs from satellites, chemical transport model, and ground observations. Environ. Int. 2019, 123, 345–357. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Huang, L.; Bi, J.; Liu, Y. Estimating Ground-Level PM2.5 in China Using Satellite Remote Sensing. Environ. Sci. Technol. 2014, 48, 7436–7444. [Google Scholar] [CrossRef]
- Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Guo, X.Y.; Wang, L.; Tian, L.D.; Li, X.P. Elevation-dependent reductions in wind speed over and around the Tibetan Plateau. Int. J. Climatol. 2017, 37, 1117–1126. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Tao, J.; Zhang, Y.; Su, L. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sens. Environ. 2010, 114, 50–63. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Huang, Y.; Zhang, T.; Zhu, Z.; Ji, Y.; Xiang, H. Impact and Suggestion of Column-to-Surface Vertical Correction Scheme on the Relationship between Satellite AOD and Ground-Level PM2.5 in China. Remote Sens. 2017, 9, 1038. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Liu, R.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017: A satellite-based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [Google Scholar] [CrossRef] [Green Version]
- Park, R.J.; Jacob, D.J.; Field, B.D.; Yantosca, R.M.; Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy. J. Geophys. Res. Atmos. 2004, 109, D15204. [Google Scholar] [CrossRef]
- Qi, L.; Li, Q.; Li, Y.; He, C. Factors controlling black carbon distribution in the Arctic. Atmos. Chem. Phys. 2017, 17, 1037–1059. [Google Scholar] [CrossRef] [Green Version]
- van der A, R.J.; Mijling, B.; Ding, J.; Koukouli, M.E.; Liu, F.; Li, Q.; Mao, H.; Theys, N. Cleaning up the air: Effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 2017, 17, 1775–1789. [Google Scholar] [CrossRef] [Green Version]
- Park, R.J.; Jacob, D.J.; Chin, M.; Martin, R.V. Sources of carbonaceous aerosols over the United States and implications for natural visibility. J. Geophys. Res. Atmos. 2003, 108, 4355. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Chan, A.W.H.; Barkley, M.P.; Seinfeld, J.H. Global modeling of organic aerosol: The importance of reactive nitrogen (NOx and NO3). Atmos. Chem. Phys. 2010, 10, 11261–11276. [Google Scholar] [CrossRef] [Green Version]
- Fairlie, T.D.; Jacob, D.J.; Park, R.J. The impact of transpacific transport of mineral dust in the United States. Atmos. Environ. 2007, 41, 1251–1266. [Google Scholar] [CrossRef]
- Fairlie, T.D.; Jacob, D.J.; Dibb, J.E.; Alexander, B.; Avery, M.A.; van Donkelaar, A.; Zhang, L. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes. Atmos. Chem. Phys. 2010, 10, 3999–4012. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kok, J.F.; Henze, D.K.; Li, Q.; Zhao, C. Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution. Geophys. Res. Lett. 2013, 40, 3270–3275. [Google Scholar] [CrossRef]
- Jaeglé, L.; Quinn, P.K.; Bates, T.S.; Alexander, B.; Lin, J.T. Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations. Atmos. Chem. Phys. 2011, 11, 3137–3157. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhao, B.; Wang, S.; Wang, T.; Ding, D.; Chang, X.; Liu, K.; Xing, J.; Dong, Z.; Aunan, K.; et al. Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environ. Int. 2019, 132, 105111. [Google Scholar] [CrossRef] [PubMed]
- Wesely, M.L. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 1989, 23, 1293–1304. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, S.; Padro, J.; Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Liu, H.; Jacob, D.J.; Bey, I.; Yantosca, R.M. Constraints from 210Pb and 7Be on wet deposition and transport in a global three-dimensional chemical tracer model driven by assimilated meteorological fields. J. Geophys. Res. Atmos. 2001, 106, 12109–12128. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jacob, D.J.; Fisher, J.A.; Mao, J.; Leibensperger, E.M.; Carouge, C.C.; Le Sager, P.; Kondo, Y.; Jimenez, J.L.; Cubison, M.J.; et al. Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: Implications for radiative forcing. Atmos. Chem. Phys. 2011, 11, 12453–12473. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jacob, D.J.; Spackman, J.R.; Perring, A.E.; Schwarz, J.P.; Moteki, N.; Marais, E.A.; Ge, C.; Wang, J.; Barrett, S.R.H. Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. J. Geophys. Res. Atmos. 2014, 119, 195–206. [Google Scholar] [CrossRef]
- Qi, L.; Li, Q.; He, C.; Wang, X.; Huang, J. Effects of the Wegener-Bergeron-Findeisen process on global black carbon distribution. Atmos. Chem. Phys. 2017, 17, 7459–7479. [Google Scholar] [CrossRef] [Green Version]
- Drury, E.; Jacob, D.J.; Spurr, R.J.D.; Wang, J.; Shinozuka, Y.; Anderson, B.E.; Clarke, A.D.; Dibb, J.; McNaughton, C.; Weber, R. Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources. J. Geophys. Res. Atmos. 2010, 115, D14204. [Google Scholar] [CrossRef] [Green Version]
- Curci, G.; Hogrefe, C.; Bianconi, R.; Im, U.; Balzarini, A.; Baró, R.; Brunner, D.; Forkel, R.; Giordano, L.; Hirtl, M.; et al. Uncertainties of simulated aerosol optical properties induced by assumptions on aerosol physical and chemical properties: An AQMEII-2 perspective. Atmos. Environ. 2015, 115, 541–552. [Google Scholar] [CrossRef]
- Guo, J.; Xia, F.; Zhang, Y.; Liu, H.; Li, J.; Lou, M.; He, J.; Yan, Y.; Wang, F.; Min, M.; et al. Impact of diurnal variability and meteorological factors on the PM2.5—AOD relationship: Implications for PM2.5 remote sensing. Environ. Pollut. 2017, 221, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Guo, J.; Song, L.; Li, J.; Liu, L.; Cohen, J.B. Inter-annual variation of the spring haze pollution over the North China Plain: Roles of atmospheric circulation and sea surface temperature. Int. J. Climatol. 2019, 39, 783–798. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, D. A new East Asian winter monsoon intensity index and atmospheric circulation comparison between strong and weak composite. Quat. Sci. 2004, 24, 19–27. (In Chinese) [Google Scholar]
- Lau, K.M.; Kim, K.M.; Yang, S. Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Clim. 2000, 13, 2461–2482. [Google Scholar] [CrossRef]
- Shi, Z.; Huang, L.; Li, J.; Ying, Q.; Zhang, H.; Hu, J. Sensitivity Analysis of the Surface Ozone and Fine Particulate Matter to Meteorological Parameters in China. Atmos. Chem. Phys. 2020, 20, 13455–13466. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, G.; Yang, J.; Zhi, R.; Wang, Q. Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific sub-tropical high. Acta Meteorol. Sin. 2012, 70, 1021–1031. (In Chinese) [Google Scholar]
- Li, Q.; Zhang, R.; Wang, Y. Interannual variation of the wintertime fog-haze days across central and eastern China and its relation with East Asian winter monsoon. Int. J. Climatol. 2016, 36, 346–354. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Fu, Y.F.; Yang, Y.J.; Liu, G.S. Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: Observational evidence. Atmos. Chem. Phys. 2015, 15, 12115–12138. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Sheng, L.; Cao, Z.; Diao, Y.; Wang, W.; Zhou, Y. Dual effects of the winter monsoon on haze-fog variations in eastern China. J. Geophys. Res. Atmos. 2017, 122, 5857–5869. [Google Scholar] [CrossRef]
- Yi, K.; Liu, J.; Wang, X.; Ma, J.; Hu, J.; Wan, Y.; Xu, J.; Yang, H.; Liu, H.; Xiang, S. A combined Arctic-tropical climate pattern controlling the inter-annual climate variability of wintertime PM2.5 over the North China Plain. Environ. Pollut. 2019, 245, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liao, H.; Li, J. Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett. 2012, 39, L09809. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yan, L.; Yang, P.; Yin, Z.-Y.; North, G.R. Influence of Indian Summer Monsoon on Aerosol Loading in East Asia. J. Appl. Meteorol. Climatol. 2011, 50, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Liu, X.; Yang, P.; Yin, Z.-Y.; North, G.R. Study of the Impact of Summer Monsoon Circulation on Spatial Distribution of Aerosols in East Asia Based on Numerical Simulations. J. Appl. Meteorol. Climatol. 2011, 50, 2270–2282. [Google Scholar] [CrossRef]
- Gao, M.; Liu, Z.; Zheng, B.; Ji, D.; Sherman, P.; Song, S.; Xin, J.; Liu, C.; Wang, Y.; Zhang, Q. China’s emission control strategies have suppressed unfavorable influences of climate on wintertime PM2.5 concentrations in Beijing since 2002. Atmos. Chem. Phys. 2020, 20, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; An, X.; Zhang, P.; Sun, Z.; Cui, M.; Ma, L. Comparing the impact of strong and weak East Asian winter monsoon on PM2.5 concentration in Beijing. Atmos. Res. 2019, 215, 165–177. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, H. The relationship between the subtopical Western Pacific SST and haze over North-Central North China Plain. Int. J. Climatol. 2016, 36, 3479–3491. [Google Scholar] [CrossRef]
- Pei, L.; Yan, Z.; Sun, Z.; Miao, S.; Yao, Y. Increasing persistent haze in Beijing: Potential impacts of weakening East Asian winter monsoons associated with northwestern Pacific sea surface temperature trends. Atmos. Chem. Phys. 2018, 18, 3173–3183. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Wang, Y.; Zhang, Y.; Koo, J.-H. Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci. Adv. 2017, 3, e1602751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, Z.; Wang, H. The strengthening relationship between Eurasian snow cover and December haze days in central North China after the mid-1990s. Atmos. Chem. Phys. 2018, 18, 4753–4763. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Zhang, H.; Xie, B. The effects of El Niño–Southern Oscillation on the winter haze pollution of China. Atmos. Chem. Phys. 2018, 18, 1863–1877. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Geng, F.; Li, C.; Mu, H.; Zhou, G.; Liu, X.; Gao, W.; Wang, Y.; Cheng, T. Long-term variation of satellite-based PM2.5 and influence factors over East China. Sci. Rep. 2018, 8, 11764. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Z.; Qi, L.; Zhao, Q.; He, J.; Wang, J.X.L. Two pathways of how remote SST anomalies drive the interannual variability of autumnal haze days in the Beijing-Tianjin-Hebei region, China. Atmos. Chem. Phys. 2019, 19, 1521–1535. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Cheng, T.; Chen, H.; Gu, X.; Yu, T.; Guo, J.; Guo, H. The inter-comparison of MODIS, MISR and GOCART aerosol products against AERONET data over China. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2135–2145. [Google Scholar] [CrossRef]
- He, Q.; Li, C.; Tang, X.; Li, H.; Geng, F.; Wu, Y. Validation of MODIS derived aerosol optical depth over the Yangtze River Delta in China. Remote Sens. Environ. 2010, 114, 1649–1661. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Harrison, D.; Maggs, R.; Booker, J. UK Equivalence Programme for Monitoring of Particulate Matter; BV/AQ/AD202209/DH/2396; Bureau Veritas: London, UK, 2006. [Google Scholar]
- Li, S.; Yu, C.; Chen, L.; Tao, J.; Letu, H.; Ge, W.; Si, Y.; Liu, Y. Inter-comparison of model-simulated and satellite-retrieved componential aerosol optical depths in China. Atmos. Environ. 2016, 141, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, L.; Cai, K.; Ge, W.; Zhang, X. Comparisons of the vertical distributions of aerosols in the CALIPSO and GEOS-Chem datasets in China. Atmos. Environ. X 2019, 3, 100036. [Google Scholar] [CrossRef]
- Hammer, M.S.; Martin, R.V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D.A.; Spurr, R.J.D. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: Implications for atmospheric oxidation and direct radiative effects. Atmos. Chem. Phys. 2016, 16, 2507–2523. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chen, L.; Fan, M.; Tao, J.; Wang, Z.; Yu, C.; Si, Y.; Letu, H.; Liu, Y. Estimation of GEOS-Chem and GOCART Simulated Aerosol Profiles Using CALIPSO Observations over the Contiguous United States. Aerosol Air Qual. Res. 2017, 16, 3256–3265. [Google Scholar] [CrossRef] [Green Version]
- Sogacheva, L.; Rodriguez, E.; Kolmonen, P.; Virtanen, T.H.; Saponaro, G.; de Leeuw, G.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; van der A, R.J. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations-Part 2: AOD time series for 1995–2017 combined from ATSR ADV and MODIS C6.1 and AOD tendency estimations. Atmos. Chem. Phys. 2018, 18, 16631–16652. [Google Scholar] [CrossRef] [Green Version]
NCP | YRD | PRD | |||
---|---|---|---|---|---|
Annual | BASE | AOD | −0.020 (−2.1) * | −0.020 (−2.9) * | −0.012 (−2.7) * |
PM2.5 | −2.61 (−3.4) * | −2.12 (−2.9) * | −1.45 (−2.7) * | ||
FIXEMISS | AOD | 0.001 (0.1) | −0.002 (−0.2) | −0.004 (−0.8) * | |
PM2.5 | 0.14 (0.2) | 0.11 (0.2) | −0.33 (−0.8) * | ||
Spring | BASE | AOD | −0.028 (−2.3) + | −0.027 (−2.6) * | −0.015 (−2.1) # |
PM2.5 | −2.57 (−3.1) * | −3.13 (−4.0) * | −2.01 (−4.5) * | ||
FIXEMISS | AOD | −0.010 (−0.8) | −0.006 (−0.5) | −0.009 (−1.2) | |
PM2.5 | −0.03 (0.0) | −0.38 (−0.4) | −0.81 (−1.6) | ||
Summer | BASE | AOD | −0.021 (−1.8) # | −0.018 (−2.8) # | −0.004 (−1.6) |
PM2.5 | −2.33 (−3.1) * | −1.53 (−3.1) + | −0.81 (−3.8) * | ||
FIXEMISS | AOD | 0.011 (0.9) | 0.006 (0.8) | 0.002 (0.5) | |
PM2.5 | 0.12 (0.1) | 0.67 (1.2) | 0.09 (0.0) | ||
Fall | BASE | AOD | −0.005 (−0.7) | −0.016 (−3.2) * | −0.017 (−4.4) + |
PM2.5 | −2.11 (−2.9) * | −1.67 (−3.7) * | −1.70 (−4.6) * | ||
FIXEMISS | AOD | 0.011 (1.4) # | −0.004 (−0.6) | −0.007 (−1.7) | |
PM2.5 | 0.26 (0.3) | −0.13 (−0.2) | −0.60 (−1.3) # | ||
Winter | BASE | AOD | −0.025 (−4.5) * | −0.021 (−3.9) * | −0.013 (−3.1) * |
PM2.5 | −3.45 (−4.2) * | −2.14 (−3.7) * | −1.27 (−3.3) * | ||
FIXEMISS | AOD | −0.007 (−1.2) * | −0.004 (−0.6) | −0.001 (−0.2) | |
PM2.5 | 0.23 (0.2) | 0.27 (0.4) | 0.09 (0.2) |
NCP | YRD | PRD | ||||
---|---|---|---|---|---|---|
Variables | adj R2 | Variables | adj R2 | Variables | adj R2 | |
Spring | T850hPa | 0.34 | Vsurface | 0.18 | V850hPa | 0.11 |
RHsurface | 0.48 | Usurface | 0.36 | dUsurf-850hPa | 0.42 | |
O850hPa | 0.53 | TROPPT | 0.42 | PBLH | 0.56 | |
dTsurf-850hPa | 0.59 | PVsurface | 0.48 | PV500hPa | 0.63 | |
PBLH | 0.67 | dV850hPa–500hPa | 0.53 | |||
O500hPa | 0.62 | |||||
Summer | dVsurf-850hPa | 0.31 | U500hPa | 0.72 | T500hPa | 0.21 |
Vsurface | 0.64 | PREC | 0.31 | |||
O850hPa | 0.70 | V500hPa | 0.38 | |||
RH850hPa | 0.72 | O850hPa | 0.46 | |||
Fall | O850hPa | 0.13 | SLP | 0.47 | PS | 0.12 |
SLP | 0.28 | PV850hPa | 0.57 | SLP | 0.59 | |
PVsurface | 0.36 | dV850hPa–500hPa | 0.72 | U500hPa | 0.70 | |
RHsurface | 0.45 | |||||
Winter | V850hPa | 0.74 | RH850hPa | 0.55 | RH850hPa | 0.28 |
O500hPa | 0.80 | PV500hPa | 0.64 | PV500hPa | 0.45 | |
TROPPT | 0.83 | Vsurface | 0.73 | U500hPa | 0.52 | |
PBLH | 0.56 |
NCP | YRD | PRD | ||||
---|---|---|---|---|---|---|
Variables | adj R2 | Variables | adj R2 | Variables | adj R2 | |
Spring | RHsurface | 0.32 | Vsurface | 0.44 | V850hPa | 0.40 |
O850hPa | 0.53 | Usurface | 0.59 | dUsurf-850hPa | 0.59 | |
O500hPa | 0.61 | |||||
V500hPa | 0.68 | |||||
Summer | dVsurf-850hPa | 0.26 | U500hPa | 0.70 | T500hPa | 0.13 |
Vsurface | 0.60 | PREC | 0.24 | |||
PREC | 0.67 | V500hPa | 0.34 | |||
O850hPa | 0.40 | |||||
Fall | SLP | 0.45 | SLP | 0.66 | PS | 0.46 |
PVsurface | 0.48 | PV850hPa | 0.72 | SLP | 0.76 | |
RHsurface | 0.61 | Vsurface | 0.78 | U500hPa | 0.81 | |
O850hPa | 0.65 | |||||
Winter | RHsurface | 0.48 | Usurface | 0.24 | Vsurface | 0.19 |
PBLH | 0.66 | dU850hPa–500hPa | 0.33 | T850hPa | 0.36 | |
dT850hPa–500hPa | 0.76 | TROPPT | 0.36 | PV850hPa | 0.49 | |
V500hPa_NCP | 0.45 |
NCP~YRD | NCP~PRD | PRD~YRD | ||
---|---|---|---|---|
Spring | AOD | 0.50 | −0.13 | 0.31 |
PM2.5 | 0.09 | −0.29 | 0.10 | |
Summer | AOD | 0.78 | 0.30 | 0.27 |
PM2.5 | 0.83 | 0.22 | 0.28 | |
Fall | AOD | 0.55 | 0.69 | 0.66 |
PM2.5 | 0.77 | 0.79 | 0.76 | |
Winter | AOD | 0.77 | 0.15 | 0.39 |
PM2.5 | 0.43 | 0.14 | 0.29 |
NCP | YRD | PRD | ||
---|---|---|---|---|
EASM Index1 | AOD | 0.61 | 0.35 | −0.29 |
PM2.5 | 0.57 | 0.27 | −0.30 | |
EASM Index2 | AOD | −0.67 | −0.82 | −0.33 |
PM2.5 | −0.67 | −0.76 | −0.45 | |
EAWM | AOD | 0.50 | 0.51 | 0.15 |
PM2.5 | 0.42 | 0.31 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, L.; Zheng, H.; Ding, D.; Ye, D.; Wang, S. Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing. Remote Sens. 2022, 14, 2762. https://doi.org/10.3390/rs14122762
Qi L, Zheng H, Ding D, Ye D, Wang S. Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing. Remote Sensing. 2022; 14(12):2762. https://doi.org/10.3390/rs14122762
Chicago/Turabian StyleQi, Ling, Haotian Zheng, Dian Ding, Dechao Ye, and Shuxiao Wang. 2022. "Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing" Remote Sensing 14, no. 12: 2762. https://doi.org/10.3390/rs14122762
APA StyleQi, L., Zheng, H., Ding, D., Ye, D., & Wang, S. (2022). Effects of Meteorology Changes on Inter-Annual Variations of Aerosol Optical Depth and Surface PM2.5 in China—Implications for PM2.5 Remote Sensing. Remote Sensing, 14(12), 2762. https://doi.org/10.3390/rs14122762