Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019
Abstract
:1. Introduction
2. Study Area, Data Period, and Datasets
2.1. Study Area and Period
2.2. Data Description
3. Large-Scale Thermodynamic Environments
4. Cloud-Top-Phase Climatology
4.1. Seasonal Variation
4.2. Diurnal Variation
5. Conclusions and Discussions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bergeron, T. On the physics of clouds and precipitation. In Procès-Verbaux de l’Association de Météorologie; International Union of Geodesy and Geophysics: Potsdam, Germany, 1935; pp. 156–178. [Google Scholar]
- Korolev, A.; McFarquhar, G.; Field, P.R.; Franklin, C.; Lawson, P.; Wang, Z.; Williams, E.; Abel, S.J.; Axisa, D.; Borrmann, S.; et al. Mixed-phase clouds: Progress and challenges. Meteorol. Monogr. 2017, 58, 5.1–5.50. [Google Scholar] [CrossRef]
- Sun, Z.; Shine, K.P. Studies of the radiative properties of ice and mixed-phase clouds. Q. J. R. Meteorol. Soc. 1994, 120, 111–137. [Google Scholar] [CrossRef]
- Wolters, E.L.A.; Roebeling, R.A.; Feijt, A.J. Evaluation of cloud-phase retrieval methods for SEVIRI on Meteosat-8 using ground-based lidar and cloud radar data. J. Appl. Meteorol. Clim. 2008, 47, 1723–1738. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. Simulation of present-day and twenty-first-century energy budgets of the Southern Oceans. J. Clim. 2010, 23, 440–454. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Hill, P.G.; Furtado, K.; Williams, K.D.; Field, P.R.; Manners, J.C.; Hyder, P.; Kato, S. Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Clim. 2016, 29, 4213–4228. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, D.; Liu, X.; Wang, Z. Distinct contributions of ice nucleation, large-scale environment, and shallow cumulus detrainment to cloud phase partitioning with NCAR CAM5. J. Geophys. Res. Atmos. 2018, 123, 1132–1154. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Thompson, G. An evaluation of WRF simulations of clouds over the Southern Ocean with A-Train observations. Mon. Weather. Rev. 2014, 142, 647–667. [Google Scholar] [CrossRef]
- Huang, Y.; Franklin, C.N.; Siems, S.T.; Manton, M.J.; Chubb, T.; Lock, A.; Alexander, S.; Klekociuk, A. Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations. Q. J. R. Meteorol. Soc. 2015, 141, 2259–2276. [Google Scholar] [CrossRef]
- Naud, C.M.; Booth, J.F.; Del Genio, A.D. Evaluation of ERA-Interim and MERRA cloudiness in the Southern Ocean. J. Clim. 2014, 27, 2109–2124. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Williams, K.D.; Field, P.; Lock, A. The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Clim. 2012, 25, 7467–7486. [Google Scholar] [CrossRef]
- Bodas-Salcedo, A.; Williams, K.D.; Ringer, M.A.; Beau, I.; Cole, J.; Dufresne, J.L.; Koshiro, T.; Stevens, B.; Wang, Z.; Yokohata, T. Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models. J. Clim. 2014, 27, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Franklin, C.N.; Sun, Z.; Bi, D.; Dix, M.; Yan, H.; Bodas-Salcedo, A. Evaluation of clouds in ACCESS using the satellite simulator package COSP: Global, seasonal and regional cloud properties. J. Geophys. Res. Atmos. 2013, 118, 732–748. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; CloudSat Science Team. The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Protat, A.; Delanoë, J. A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophy. Res. 2012, 117, D18204. [Google Scholar] [CrossRef]
- Williams, K.D.; Bodas-Salcedo, A.; Déqué, M.; Fermepin, S.; Medeiros, B.; Watanabè, M.; Jakob, C.; Klein, S.; Senior, C.A.; Williamson, D.L. The Transpose-AMIP II Experiment and its application to the understanding of Southern Ocean cloud biases in climate models. J. Clim. 2013, 26, 3258–3274. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Rodier, S.; Xu, K.; Sun, W.; Huang, J.; Lin, B.; Zhai, P.; Josset, D. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements. J. Geophys. Res. Atmos. 2010, 115, D00H34. [Google Scholar] [CrossRef]
- Morrison, A.E.; Siems, S.T.; Manton, M.J. A cloud-top phase climatology of Southern Ocean clouds. J. Clim. 2011, 24, 2405–2418. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Hande, L.B.; Haynes, J.M. The Structure of low-altitude clouds over the Southern Ocean as seen by CloudSat. J. Clim. 2012, 25, 2535–2546. [Google Scholar] [CrossRef]
- Huang, Y.; Siems, S.T.; Manton, M.J.; Rosenfeld, D.; Marchand, R.; McFarquhar, G.M.; Protat, A. What is the role of sea surface temperature in modulating cloud and precipitation properties over the southern ocean? J. Clim. 2016, 29, 7453–7476. [Google Scholar] [CrossRef]
- Naud, C.M.; Posselt, D.J.; van den Heever, S.C. Observational analysis of cloud and precipitation in midlatitude cyclones: Northern versus Southern Hemisphere warm fronts. J. Clim. 2012, 25, 5135–5151. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.G. Cloud properties and radiative forcing over the maritime storm tracks of the Southern Ocean and North Atlantic derived from A-Train. J. Geophys. Res. 2010, 115, D10201. [Google Scholar] [CrossRef] [Green Version]
- Naud, C.M.; Del Genio, A.D.; Bauer, M. Observational constraints on the cloud thermodynamic phase in midlatitude storms. J. Clim. 2006, 19, 5273–5288. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Yu, H.; Remer, L.A.; Chin, M.; Bian, H.; Tan, Q.; Yuan, T.; Zhang, Y. Aerosols from overseas rival domestic emissions over North America. Science 2012, 337, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhao, C.; Huang, J.; Leung, L.R.; Qian, Y.; Yu, H.; Huang, L.; Kalashnikova, O.V. Trans-Pacific transport and evolution of aerosols: Evaluation of quasi-global WRF-Chem simulation with multiple observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef] [Green Version]
- Coopman, Q.; Riedi, J.; Finch, D.P.; Garrett, T.J. Evidence for changes in arctic cloud phase due to long-range pollution transport. Geophys. Res. Lett. 2018, 45, 10709–10718. [Google Scholar] [CrossRef]
- Jin, Q.; Grandey, B.S.; Rothenberg, D.; Avramov, A.; Wang, C. Impacts on cloud radiative effects induced by coexisting aerosols converted from international shipping and maritime DMS emissions. Atmos. Chem. Phys. 2018, 18, 16793–16808. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jian, B.; Huang, J.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud droplet number concentrations from space-based lidar. Remote Sens. Environ. 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Kanitz, T.; Seifert, P.; Ansmann, A.; Engelmann, R.; Althausen, D.; Casiccia, C.; Rohwer, E.G. Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett. 2011, 38, L17802. [Google Scholar] [CrossRef]
- Burrows, S.M.; Hoose, C.; Pöschl, U.; Lawrence, M.G. Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys. 2013, 13, 245–267. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, R.; Xu, Y.; Zhang, X. Spatial distribution and seasonal variation of cloud over china based on ISCCP data and surface observations. J. Meteor. Soc. Jpn. Ser. II 2004, 82, 761–773. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Wu, T.; Li, L.; Shi, C. Cloudiness characteristics over Southeast Asia from satellite FY-2C and their comparison to three other cloud data sets. J. Geophys. Res. 2009, 114, D17207. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Wang, D.; Xu, H.; Zhai, G. An investigation into the three-dimensional cloud structure over East Asia from the CALIPSO-GOCCP Data. Sci. China Earth Sci. 2015, 58, 2236–2248. [Google Scholar] [CrossRef]
- Chen, D.; Guo, J.; Wang, H.; Li, J.; Min, M.; Zhao, W.; Yao, D. The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from Advanced Himawari Imager. J. Geophys. Res. Atmos. 2018, 123, 3724–3739. [Google Scholar] [CrossRef]
- Yang, S.; Zou, X. Lapse rate characteristics in ice clouds inferred from GPS RO and CloudSat observations. Atmos. Res. 2017, 197, 105–112. [Google Scholar] [CrossRef]
- McCoy, D.T.; Hartmann, D.L.; Zelinka, M.D.; Ceppi, P.; Grosvenor, D.P. Mixed-phase cloud physics and Southern Ocean cloud feedback in climate models. J. Geophys. Res. Atmos. 2015, 120, 9539–9554. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Zhuge, X.; Zou, X.; Wang, Y. Determining AHI Cloud-Top Phase and Intercomparisons with MODIS Products over North Pacific. IEEE Trans. Geosci. Remote Sens. 2021, 59, 436–448. [Google Scholar] [CrossRef]
- Heidinger, A.K. ABI Cloud Height Algorithm Theoretical Basis Document (ATBD). NOAA NESDIS Center for Satellite Applications and Research (STAR), Ver. 3.0, Released 06/11/2013. Available online: http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Height.pdf (accessed on 2 June 2018).
- Tao, S.Y.; Chen, L.X. A review of recent research on the East Asian summer monsoon in China. In Monsoon Meteorology; Chang, C.P., Krishnamurti, T.N., Eds.; Oxford University Press: New York, NY, USA, 1987; pp. 60–92. [Google Scholar]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Blackmon, M.L. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere. J. Atmos. Sci. 1976, 33, 1607–1623. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Chang, C.P.; Fu, C.; Qi, Y.; Robock, A.; Robinson, D.; Zhang, H.M. Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed. J. Geophys. Res. Atmos. 2006, 111, D24111. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Liu, Q.; Fu, Y.-F. Cloud variations under subtropical high conditions. Adv. Atmos. Sci. 2011, 28, 623–635. [Google Scholar] [CrossRef]
- Jin, X.; Wu, T.; Li, L. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau. Clim. Dyn. 2013, 41, 977–994. [Google Scholar] [CrossRef] [Green Version]
- Zhuge, X.; Zou, X. Summertime convective initiation nowcasting over southeastern China based on Advanced Himawari Imager observations. J. Meteor. Soc. Jpn. Ser. II 2018, 96, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.J.; Lu, C.S.; Yu, H.Y.; Zhao, L.J.; Lv, J.J. Fog research in China: An overview. Adv. Atmos. Sci. 2010, 27, 639–662. [Google Scholar] [CrossRef]
Region | Geographical Range | Brief Description |
---|---|---|
R1 | 42–47° N, 155–170° E | WNP east of Hokkaido |
R2 | 32–38° N, 145–170° E | Mid-latitude WNP |
R3 | 15–25° N, 162–178° E | Subtropical WNP |
R4 | 24–28° N, 122–127° E | East China Sea |
R5 | 11–15° N, 115–120° E | South China Sea |
R6 | 42–48° N, 122–127° E | Manchurian Plain |
R7 | 31–35° N, 114–119° E | Yangtze-Huai Plain |
R8 | 13–17° N, 103–107° E | Indo-China Peninsula |
R9 | 28–32° N, 103–107° E | Sichuan Basin |
Summer | Winter | |||||
---|---|---|---|---|---|---|
Tsfc (°C) | SWC Freq. (%) | SWC Frac. (%) | Tsfc (°C) | SWC Freq. (%) | SWC Frac. (%) | |
R1 | 11.7 | 15.0 | 25.4 | 2.5 | 46.2 | 93.4 |
R2 | 23.0 | 4.6 | 17.1 | 12.9 | 26.5 | 55.2 |
R3 | 27.5 | 1.8 | 8.7 | 24.3 | 1.3 | 3.4 |
R4 | 27.5 | 3.7 | 22.4 | 17.2 | 25.5 | 37.4 |
R5 | 27.9 | 1.7 | 20.6 | 26.0 | 1.9 | 8.2 |
R6 | 21.0 | 8.9 | 39.6 | -13.9 | 6.8 | 97.5 |
R7 | 25.8 | 7.9 | 38.3 | 3.5 | 26.6 | 90.0 |
R8 | 25.9 | 6.6 | 43.9 | 23.0 | 2.8 | 14.9 |
R9 | 19.9 | 14.4 | 49.1 | 2.4 | 53.3 | 91.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuge, X.; Zou, X.; Li, X.; Tang, F.; Yao, B.; Yu, L. Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019. Remote Sens. 2021, 13, 1687. https://doi.org/10.3390/rs13091687
Zhuge X, Zou X, Li X, Tang F, Yao B, Yu L. Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019. Remote Sensing. 2021; 13(9):1687. https://doi.org/10.3390/rs13091687
Chicago/Turabian StyleZhuge, Xiaoyong, Xiaolei Zou, Xin Li, Fei Tang, Bin Yao, and Lu Yu. 2021. "Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019" Remote Sensing 13, no. 9: 1687. https://doi.org/10.3390/rs13091687
APA StyleZhuge, X., Zou, X., Li, X., Tang, F., Yao, B., & Yu, L. (2021). Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019. Remote Sensing, 13(9), 1687. https://doi.org/10.3390/rs13091687