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Abstract: Hydrological connectivity is an important characteristic of wetlands that maintains the
stability and functions of an ecosystem. This study investigates the temporal variations of
hydrological connectivity and their driving mechanism in Baiyangdian Lake, a large shallow
wetland in North China, using a time series of open water surface area data derived from 36 Landsat
8 multispectral images from 2013-2019 and in situ measured water level data. Water area
classification was implemented using the Google Earth Engine. Six commonly used indexes for
extracting water surface data from satellite images were compared and the best performing index
was selected for the water classification. A composite hydrological connectivity index computed
from open water area data derived from Landsat 8 images was developed based on several
landscape pattern indices and applied to Baiyangdian Lake. The results show that, reflectance in
the near-infrared band is the most accurate index for water classification with >98% overall accuracy
because of its sensitivity to different land cover types. The slopes of the best-fit linear relationships
between the computed hydrological connectivity and observed water level show high variability
between years. In most years, hydrological connectivity generally increases when water levels
increase, with an average R? of 0.88. The spatial distribution of emergent plants also varies year to
year owing to interannual variations of the climate and hydrological regime. This presents a
possible explanation for the variations in the annual relationship between hydrological connectivity
and water level. For a given water level, the hydrological connectivity is generally higher in spring
than summer and autumn. This can be explained by the fact that the drag force exerted by emergent
plants, which reduces water flow, is smaller than that for summer and autumn owing to seasonal
variations in the phenological characteristics of emergent plants. Our study reveals that both
interannual and seasonal variations in the hydrological connectivity of Baiyangdian Lake are
related to the growth of emergent plants, which occupy a large portion of the lake area. Proper
vegetation management may therefore improve hydrological connectivity in this wetland.

Keywords: Baiyangdian Lake; hydrological connectivity; water index; Landsat 8; temporal
variation

1. Introduction

Wetlands are critical and vulnerable ecosystems that provide essential ecological
services and account for 47% of the global ecosystem [1]. The service values of wetlands
are strongly influenced by hydrological processes such as interception, infiltration,
evapotranspiration, and surface water flow movement [2]. The interaction between a
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floodplain wetland and its adjacent river owing to flood pulses is the major control over
floodplain biota [3]. Within a wetland, water-mediated connections contribute to the
exchange of material, energy, and information with their surrounding environment,
which plays an important role in maintaining the stability and functions of the ecosystem
[4]. Hydrologic connectivity is defined as the water-mediated transport of matter, energy,
and organisms within or between elements of the hydrologic cycle [5]. Hydrological
connectivity has been identified as an important factor that influences water quality and
provides suitable habitats for aquatic organisms in wetlands [6-9]. Climate change and
human activities pose serious threats to the hydrological connectivity of wetlands, which
can degrade wetland functions and lead to a series of environment problems [10,11]. An
evaluation of hydrological connectivity changes is therefore important for understanding
the driving mechanism of wetland ecosystem changes and formulating effective strategies
to improve the health of wetland ecosystems [5]. However, there remains a lack of
consensus regarding how to measure hydrological connectivity [12].

Tracking water surface dynamics is essential for understanding hydrological
connectivity variations in wetlands. Satellite remote sensing technology has shown great
potential in recent decades for tracing changes in terrestrial surface water from space [13-
15]. Satellite images of optical bands have been widely used to trace changes in land
surface features with the advantages of easy accessibility and diversity in terms of spatial
and temporal resolutions [16-18]. They have been applied to evaluate the hydrologic
connectivity of floodplains [19], freshwater deltas [20], and oxbow lakes [21].
Classification algorithms have been developed to discriminate between waterbody and
non-waterbody pixels [22-24]. However, surface water areas beneath cloud and
vegetation cover cannot be detected from optical images alone. Synthetic aperture radar
imagery has been useful for detecting water surfaces in wetlands because of its strong
penetration capability [25,26], whereas the image accuracy can be influenced by uneven
topography and surface roughness. Light Detection and Ranging (LiDAR) technology
also has potential to detect the extent of flood inundation under vegetation canopy [27-
29]; however, high costs limit its routine use in studies that cover large spatial scales
[30,31]. To more effectively monitor water surface dynamics in wetlands, the integration
of optical images and ancillary data, such as terrain information from LiDAR or in situ
water level data, has been shown to be effective [29,32,33]. Water level is also an important
indicator to quantify hydrological connectivity [34,35].

Many shallow wetland lakes in arid or semiarid areas face the problem of reduced
water resource storage owing to climate change and/or reservoir construction in upstream
rivers, which can seriously damage wetland ecosystems and degrade their service
functions [36,37]. Environmental water allocation to these lakes is an important approach
to alleviate this damage and restore damaged wetland ecosystems. However, such water
allocation changes the natural water level pulse, which is a primary factor that influences
connectivity processes [38]. Exploring the dynamics of water surface area and
hydrological connectivity on the landscape scale is important to better understand the
influence of environmental water allocation on wetland ecosystems. Baiyangdian Lake
(BYDL) is the largest natural freshwater wetland in the North China Plain, and is a typical
wetland-type lake that highly relies on such water allocation. Previous studies have
explored surface water changes and monitored landscape patterns in BYDL. Zhuang et al.
[36] detected water body changes between 1974 and 2007 and analyzed the impacts of
human activities in BYDL. Li et al. [37] used Landsat images from four periods to monitor
BYDL landscape patterns. Liu et al. [39] simulated the water area under different water
levels using the MIKE21 model and calculated landscape connectivity to determine the
minimum ecological lake level in BYDL. Wang et al. [40] extracted BYDL water surface
area data and analyzed water area changes in spring from 1984 to 2018. However, there
remains a lack of knowledge regarding intra-annual or seasonal variations in surface
water area as well as hydrological connectivity, which are vital for understanding the
responses of wetland ecosystems to environmental water allocation processes that
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strongly influence water level dynamics. Numerous studies have shown intense
interactions between hydrological connectivity and riparian vegetation [41,42]. In BYDL,
previous studies have indicated that the spatial extent of open water area, which is the
major water flow medium, is strongly affected by the spatial distribution of closed
riparian canopies of emergent plants [43—45]. Dense roots in the water lead to low
hydrological connectivity under these emergent plants (mainly reeds), whose growth is
driven by their seasonal phenological characteristics. Detailed study of these seasonal
variations is therefore required to better understand the influence of riparian vegetation
on hydrological connectivity.

The objective of this study is to obtain knowledge regarding the interannual and
seasonal variations of hydrological connectivity in BYDL and their driving mechanisms.
Landsat 8 satellite images from 2013-2019 were used to detect the open water surface area
dynamics of BYDL using the Google Earth Engine (GEE). Commonly used index methods
for detecting water surface area from optical images were first applied and their
accuracies were evaluated. The open water surface areas of BYDL were then extracted
from all of the Landsat images using the most accurate method. A comprehensive index
method based on several indices to describe landscape patterns was established to
quantify hydrological connectivity in the wetland from water surface area data detected
from the Landsat 8 images. The changes of water area and hydrological connectivity of
the wetland in different seasons were analyzed, as well as their relationship with the in
situ observed water level data. Previous studies in BYDL did not discuss the seasonal
variation of hydrological connectivity in detail. Our study examines the interannual and
seasonal variations of hydrological connectivity while considering the simultaneous
influence of water level and vegetation growth. The results provide valuable insight for
decision-making in environmental water allocation projects and ecosystem restoration for
typical shallow lakes and other lakes in semiarid and arid regions worldwide.

2. Materials and Methods
2.1. Study Area and Data

BYDL is the largest shallow wetland in North China (Figure 1, 115°45-116°05" E,
38°44'-38°59" N) with an area of approximately 320 km? and average water depth of 2.84
m. BYDL plays an important role in maintaining biological diversity and regulating
climate in the Beijing-Tianjin-Hebei region. There are approximately 143 lakes of different
sizes in the wetland and a few rural villages with more than 100,000 residents, which
aggravates the plight of environmental water shortage and wetland fragmentation. The
inflow of BYDL has gradually decreased owing to upstream reservoir operations and
higher human water use, including agricultural irrigation and industrial and household
water consumption. A series of environmental water allocation actions have been adopted
in recent years to improve the health condition of the wetland ecosystem [46]. The wetland
has also drawn increasing attention with the establishment of the Xiong’an New Area,
which receives some noncapital functions from China’s capital, Beijing.



Remote Sens. 2021, 13, 1214 4 of 22

IlS°4§'0"E IIS°5|0'0"E IIS°5I5'0"E II6°Q'0"E ll6°5l'0"E

S

=W

(l’h

o

lag]

z

S

e

:)l‘:

Il

Lag]

Zz Zz

< Y

w, =

b4 b4

* . . . ®

[ o ® Shifangyuan Hydrological Station | ©

= - Open Water Area
0 25 5 10 . .
4 o s Km Baiyangdian Lake L
T T T T T

115°45'0"E 115°50'0"E 115°55'0"E 116°0'0"E 116°5'0"E

Figure 1. Landsat 8 image of Baiyangdian Lake (acquired on April a29, 2014) and its location in China.

The region has a semihumid continental monsoon climate with a mean annual
precipitation and evaporation of 563.9 and 1369 mm, respectively. More than half of the
water area grows a variety of seasonal aquatic vegetation including emergent plants such
as Phragmites australis, which cover the water area beneath [47]. In this study, the water
body area observed by satellite images refers to the uncovered water surface and is
hereafter called the open water area.

Landsat 8 multispectra images (spatial resolution: 30 m) from 2013 to 2019 were used
to map the water surface. We queried and analyzed the surface reflectance products of
Landsat 8 on the GEE, which has been atmospherically corrected. GEE is a cloud platform
with a multi-petabyte catalog of satellite imagery and planetary-scale analysis capabilities,
and has been widely used in time series to monitor and analyze terrestrial water [14,48,49].
AsBYDL freezes in the winter season, our analysis in this study focuses on the three other
seasons, i.e., spring, summer, and autumn. Using the GEE platform, 36 cloud-free Landsat
8 scenes of BYDL for the three seasons were selected and processed to extract the open
water area. The daily surface water level data of the Shifangyuan Hydrological Station
(Figure 1) operated by the Ministry of Water Resources was used in this study.

2.2. Methodology
2.2.1. Surface Open Water Mapping

Low reflectance in the near-infrared (NIR) band is a distinct characteristic of water
surfaces compared with other land cover types. The detection of surface water from
remote sensing data is most effective over NIR and visible wavelengths [50]. The use of
water indexes computed from the reflectance of two or more spectral bands is an easy and
effective method to identify water area from satellite images [16]. Five commonly used
indexes were used and compared in this study. Water has higher green band reflectance
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within the visible band and lower NIR reflectance. The normalized difference of green
and NIR reflectance (NDWI) has been established to enhance the presence of water [22].
The short-wave infrared band (SWIR) is less sensitive to sediments within the water than
NIR, and the modified normalized difference water index MNDWTI has been created for
water detection [51]. Feyisa et al. [52] established a multiple-band index (AWEInsh) to
accurately distinguish water from a shadowed surface with a stable threshold. Fisher et
al. [53] created the WI2015 index that combines reflectance data from five bands, whose
empirical parameters are determined by statistical analysis from more than 400,000
training pixels of different types of water and nonwater surfaces from Landsat 8 images.

We used the reflectance of six bands of Landsat 8 images (Table 1) to compute the
five indexes:

Nowi-B=E .
B, + B
MNDWI:M 2
B, + B,
AWEL ,=4x(B,—B,)—(0.25x B, +2.75x B,) 3)
AVVEIsh=Bz+2'5XB3_1-5X(B5 '|'B6)—0.25><B7 (4)

WI2015=1.7204+171x B, +3x B, ~10x B, ~45x B, ~71xB,  (5)

where Bz, Bs, By, Bs, Bs, and B are the surface reflectance of the blue band (wavelength:
0.45-0.51 pm), green band (wavelength: 0.53-0.59 um), red band (wavelength: 0.64-0.67
um), NIR band (wavelength: 0.85-0.88 pum), and shortwave infrared bands 1 (wavelength:
1.57-1.65 pm) and 2 (wavelength: 2.11-2.29 um) of the Landsat 8 images, respectively.

Table 1. Bands of Landsat 8 image used in this study.

Band Description Wavelength (um)
B, Blue Band 0.45-0.51
B, Green Band 0.53-0.59
B, Red Band 0.64-0.67
B, Near-infrared Band 0.85-0.88
B, Shortwave infrared Band 1 1.57-1.65
B Shortwave infrared Band 2 2.11-2.29

)

The threshold of the above-mentioned water index methods must be determined to
divide all of the pixels into water and nonwater areas. Two steps were carried out to
determine the most feasible threshold. In the first step, box plots were drawn of the
computed indexes for each land cover type. If the index ranges for open water and other
landcover types did not overlap or only slightly overlap, water bodies were considered to
be well distinguished. The land use of BYDL was divided into five types: open water;
emergent plants; urban; paddy field; dryland. We chose 18 images of the different seasons
from 2013 to 2019 as sampling images. For each land use type in each image, 70-100
sampling pixels were selected based on visual interpretation and index values were
computed for each pixel. A similar box plot was also drawn for the grayscale images of
the NIR band reflectance, because of its high sensitivity for water area detection [16]. A
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total of six box plots were drawn from the sampling images, five for the composite water
indexes and one for the NIR band reflectance, which can also be considered as a water
index. An assessment of the box plots allowed the index that most effectively
discriminated water and nonwater areas to be determined based on the above-mentioned
principle and that index was used for further study.

In the second step, the water area classification threshold was determined for each
image considering the temporal variation of open water reflectance. If the histogram of
the selected index for all pixels in an image showed a distinct bimodal distribution, the
threshold was determined with the 2-mode method [54], which uses the index value with
the lowest frequency between the two histogram peaks as the threshold. The Otsu method
[55] was used in the other cases, in which we selected the index value that maximizes the
variance between water pixels and nonwater pixels as the threshold. These methods were
applied to all of the images to detect the water surface area.

To evaluate the classification accuracy, we chose seven images in three seasons
(spring, summer and autumn) with different water levels, excluding the sampling images.
Two hundred water and nonwater verification pixels from each of the seven images were
identified and combined with high-resolution Google Earth images through visual
interpretation. These pixels were nearly evenly distributed in the study area to maximize
the degree of objectivity of the evaluation. The results of the classification using six
indexes with a segmentation threshold derived from the box plot were compared. The 2-
mode method and Otsu method were then applied to the seven images for further
accuracy evaluation. The confusion metrics [56] and overall accuracy (OA) were
calculated to assess the classification accuracy. The OA measures the proportion of the
number of correctly classified pixels out to the total number of sampling pixels.

2.2.2. Assessment of Hydrological Connectivity in BYDL

The hydrological connectivity considered in this study is defined as the mobility of
water flow and its carried materials in the wetland. Several indices describing landscape
patterns were adopted to develop a composite index for quantifying the overall
hydrological connectivity of BYDL based on water patches detected from the Landsat 8
images. The index was built from four aspects: shape of the water patches; distance
between water patches; spatial distribution pattern of the water patches (aggregation);
water patch fragmentation. A total of seven indexes were used to describe the four aspects
of hydrological connectivity, as shown in Table 2, were computed as follows.

Table 2. Evaluation system for the wetland hydrological connectivity of Baiyangdian Lake (BYDL).

Aspect Index Interpretations

Shape Related circumscribing circle (C1) Movement efficiency within a water patch.

. Euclidean nearest neighbor distance (C2) Mean distance between water patches.

Distance - . - .
Probability of connectivity (C3) Possibility of connection between patches.
. Shannon’s evenness index (C4) Evenness of water patch distribution in the landscape.
Aggregation . . .
Aggregation index (C5) Like adjacency among water patches
Fragmentation Splitting index (C6) Fragmentation degree of water patches
Average area (C7) Average water patch area.

The related circumscribing circle index (C1) [57] was used to describe the closeness
of the water patch shape to a circle. Patch shape influences the material transfer efficiency
[58]. The shape of the circle processes the highest movement efficiency within a patch [59].
The index measures how close the water surface is to a circle and is calculated by the
following equation:
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n

18]l a
C1 nz : (©)

i=1 a

i

where ¢, istheareaof water patchi, a, is the area of the smallest circumscribing circle

around patch i, and 7 is the number of water patches. C1 is not influenced by patch size
and equals O for circular patches and approaches 1 for linear patches.

The Euclidean nearest-neighbor distance index (C2) is defined using simple
Euclidean geometry as the shortest distance between one water patch and its nearest
neighboring water patch [60]. Lower values demonstrate stronger connectivity
conditions. C2 can be calculated by the following equation:

1 n
C2==>h, @)
n'ig

where /i, is the distance from water patch i to its nearest neighboring water patch. C2 is

larger than 0 and the minimum value is constrained by the cell size.

The probability of connectivity index (C3) [61] quantifies the possibility of
connectivity between patches, which decreases with distance. C3 can be calculated by the
following equation:

C3= z;z;l’; "84

®)
AL

k-di
=e

Pi )

where p: ; is the maximum product probability of all possible paths between patch i and

Jjo @& and a; are the area of water patch i and j, A, is the total landscape area (both

water and nonwater areas); d” is the edge-to-edge interpatch distance, and k is a
constant based on the user-specified threshold distance. The distance threshold is set to
2000 m according to previous studies of BYDL [39]. C3’s value ranges from 0 to 1 and
increases with increasing connectivity probability.

Shannon’s evenness index (C4) [62] describes the evenness of the water patch
distribution in the landscape. An even distribution of water patches promotes the
homogenization of physicochemical characteristics and increases the connectivity
conditions in a wetland [63]. C4 is calculated as:

2
Cae. zi=1Pi ‘InP, (10)

In2

where F is the proportion of the area of the ith patch class to the total lake area. BYDL

is considered to be composed of water patches and nonwater patches when computing
the index. C4 equals 1 when the distribution of area among different patch type is perfectly
even and decreases to 0 as the distribution of different patch types becomes increasingly
uneven.

The aggregation index (C5) [64] quantifies the aggregation level using the like
adjacency among patches of the same type. Energy, nutrients and material exchanges are
influenced by landscape aggregation [64,65]. C5 can be calculated by the following
equation:
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C 5 = g water ( 11 )
max — g water

where g . is the number of like adjacencies (joins) between water patch pixels and

max — g . is the maximum number of like adjacencies (joins) between water patch

pixels. C5 is larger than 1, increases with increasing landscape aggregation, and equals
100 when the landscape aggregates into one patch.

The splitting index (C6) [66] measures the fragmentation degree of the same type of
patch. It is sensitive to structural differences of landscape patterns and can be interpreted
as the number of patches with a constant patch size by dividing the landscape into C6
number of patches. C6 can be calculated by the following equation:

& o (12)

Coé

a
i=1

where @, isthe areaof patchjand 4, is the total landscape area. C6 equals 1 when the

landscape contains one patch and increases with decreasing water patch area and
increasing subdivision into smaller patches.

The average area (C7) is a fundamental measure of subdivision. It reflects the average
conditions of patches and is sensitive to small patches. C7 is calculated by the following
equation:

A
C7 = water (13)
n
where A, .. is the total area of the water patches and 7 is the total number of water
patches.

The seven indexes were computed from the water area derived from Landsat 8
images. C1, C2, and C4-C7 were computed using FRAGSTATS [60] and C3 was calculated
using Conefor software [67]. The Analytic Hierarchy Process (AHP) was applied to
determine the weights of each indicator and compute a composite index that condenses
all of the seven indicators of hydrological connectivity. We conducted pairwise
comparisons of the importance of hydrological connectivity representation among the
seven indexes to form a reciprocal decision matrix, which was solved to acquire the weight
of each index. C3, C4, C5, and C7 show a positive relationship with hydrological
connectivity, whereas C1, C2, and C6 show a negative relationship with hydrological
connectivity. The values of all indexes were normalized to 0-1 by the following equation.

For indexes with positive relationship:

X -X_.
Zl — l min (14)
X, max X, min
For indexes with negative relationship:
X _—X,
Zi — max i ( 1 5)
Xmax - Xmin

where Zi is the normalized value of ith index and Xi, Xmax, and Xmin are the unnormalized,
maximum, and minimum values of ith index, respectively.

The comprehensive index, called BYDLCO, was then computed for each image as
follows:
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0.0+

AWEInsh

-1.04

NDWI

BYDLCO=0.078xC1+0.13xC2+0.39xC3+0.1005xC4+0.1005x C5 16)
+0.1005x C6+0.1005x C7

3. Results
3.1. Comparison of Open Water Surface Extraction Methods

Box plots of six indices for different landcover types based on the chosen sample
points are shown in Figure 2. All of the indices can distinguish open water surfaces from
dryland, emergent plants, and urban. However, the ranges of water and paddy field
overlap to some extent, except for the NIR band reflectance index. From the boxplots, the
minimum values of NDWI, MNDWI, AWEInsh, AWEIsh, and WI2015 and the maximum
NIR band reflectance value for the sampled water area were applied as the thresholds to
distinguish open water surface pixels from nonwater pixels to the seven images
representing different water levels and seasons.

AWEIsh
MNDWI

= =
0251 l;l "
= :Fi ol

-1.004

0.0

= ‘
. |
| 0.4 |
| 2710_ 1 S ‘
=
= l% z
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-307
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Figure 2. Box plots of the six indices for different landcover types computed from 18 sampling images. Each boxplot shows
the location of the 25th, 50th, and 75th percentiles using horizontal lines (boxes and whiskers) and the whiskers extend to
the largest and smallest values no further than 1.5 times the interquartile range.

The OA values of the six indices for the seven images and their averages and standard
deviations are listed in Table 3. An OA value of 1 means that all of the sampled pixels of
open water area were correctly detected. A low OA standard deviation among the
different satellite images is also expected, which indicates the stability of the classification
method under different hydrological conditions. The classification method that uses the
NIR band reflectance demonstrates the highest average accuracy and lowest accuracy
variation among the seven images, followed by NDWI, which uses the differences in
green band and NIR band reflectance. The 2-mode and Otsu methods were then used for
classification based on the NIR band reflectance. Compared with using a fixed threshold
obtained from the box plots, the two methods perform better by adjusting the threshold
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for each image. We therefore used the NIR band reflectance to classify the water area in
all of the satellite images. We adopted the 2-mode method when the histogram showed
notable bimodal features, otherwise we used the threshold obtained from the Otsu
method.

Table 3. Overall accuracies of different open water surface classification methods.

Water Indexes

Water NDWI MNDWI AWEILs:n AWELsw WI2015  NIR NIR NIR
Threshold for Open Water Surface
Date Level
(m) Based on Based on 2-
>-0.049 >0.251  >0.005 >0.024 >3.219  <0.007 Otsu Mode
Method Method
22 August, 2015 7.68 0.9650 0.9775 0.9475 0.9775 0.9475 0.9925 0.9950 0.9875
28 September, 2017 7.90 0.9775 0.9825  0.9650 0.9825 0.9600  0.9875 0.9900 0.9900
30 June, 2019 8.21 0.9750 0.9700  0.9650 0.9700 0.9625  0.9925 0.9875 0.9925
4 March, 2017 8.47 0.9725 0.9675  0.9700 0.9675 0.9700  0.9750 0.9750 0.9750
28 November, 2016 8.50 0.9850 0.9725 0.9825 0.9775 0.9850 0.9825 0.9800 0.9900
3 October, 2013 8.82 0.9825 0.9825 0.9850 0.9850 0.9850 0.9350 0.9775 0.9850
3 December, 2018 8.69 0.9875 0.6000 0.8775 0.6075 0.8325 0.9950 0.9925 0.9925
Average 0.9779 0.9218 0.9561 0.9239 0.9489 0.9800 0.9854 0.9875
Standard deviation 0.0078 0.1420  0.0368 0.1397 0.0531  0.0210 0.0078 0.0061

3.2. Variations in Open Water Surface with Water Level and Season

Figure 3a shows the correlation of the open water surface extracted from all of the
Landsat 8 images from 2013-2019 and corresponding in situ observed water levels. A
scattered and weakly positive relationship is observed. When the data are grouped by
year, the positive correlation becomes considerably stronger in most years (Figure 3b-h).
The R? is higher than 0.6 for all years except 2018, for which the number of satellite
observations is very limited due to cloud cover. The slope of the best-fit linear relation
varies from year to year. These features indicate large interannual variations in the
relationship between open water surface area and water level.
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Figure 3. (a) Scatter plot of water level and water area from 2013 to 2019; (b-h) scatter plots of water level and water area

during each year.

The relationship between open water area and water level is also assessed in different
seasons. Figure 4 shows that the positive correlations for spring, summer, and autumn are
all higher than the correlation for all of the data (Figure 3a). This indicates that the pattern
and magnitude of open water area variation with water level differ between spring,
summer, and autumn. In all three seasons, the open water area generally increases with
increasing water level, but the increase is not linear for all seasons and a certain degree of
fluctuation is observed. The water area is highest when the water level reaches the upper
limit of its range, whereas peaks of open water areas are also found when the water level
is between 8.0 and 8.2 m. This implies, that the topographic features are unique in this
elevation range, compared with other ranges, and further examination is required. For a
given water level in most of the elevation ranges, the open water area is considerably
higher in spring than in summer and autumn, the latter of which show a similar
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relationship between open water area and water level. This indicates that a certain type
of landcover occupies a portion of the open water area in the spring season.
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Figure 4. Change of water area with increasing water level in spring, summer, and autumn seasons.

We examined the spatial distributions of the water area detected from satellite
images in different seasons with the same water levels to constrain the seasonal variations
in this relationship. Figure 5 depicts the open water areas at water levels of 7.95 and 8.50
m in spring, summer, and autumn. The water area in spring is substantially higher than
that in summer and autumn, especially in the northern part of BYDL. For the water level,
the spatial distribution of the open water area is similar for both summer and autumn.
This can be explained by the fact that during spring, reeds are in the early growth stage
and the biomass is low. After maturing in the summer, the area of reed land reaches a
maximum and does not change with time for the remainder of the growth season. When
the water level increases, the open water area increases significantly in summer and
autumn. However, this is not the case in spring, when the water area only increases
slightly when water level rises from 7.99 to 8.47 m. One possible reason is that the latter
image was taken in early March when some part of the lake was still frozen. Lake ice has
high reflectance in the NIR band, which causes the current classification method to
underestimate open water area.
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Figure 5. Water surface distributions corresponding to water levels of 7.95 and 8.50 m in spring, summer, and autumn,
derived from Landsat 8 images.

3.3. Temporal Variation in BYDL Hydrological Connectivity

The relationship between the hydrological connectivity composite index, BYDLCO,
and water level for the entire period and each of the individual years is shown in
Figure 6. Similar to the open water surface area, the relationship for the entire period
shows a high level dispersion, whereas strong positive correlations are detected for each
individual year, except 2018. The slope of the best-fit line varies from 0.1633 in 2015 to
1.5001 in 2014, which indicates that the relationship between BYDLCO and water level
exhibits high interannual variability.
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Figure 6. (a) Scatter plot of water level and BYDLCO index from 2013 to 2019; (b-h) scatter plots of water level and
BYDLCO index during each year.

The BYDLCO values were also grouped by season and their relationship with water
level is shown in Figure 7. For a similar given water level, the hydrological connectivity is
higher in spring than the other two seasons for most of the water level range, similar to
that observed for the open water surface area. There is a resemblance of a relationship for
summer and autumn in the range that satellite observations are available in both seasons,
with that of autumn being slightly higher than that in summer. For each season, the
hydrological connectivity generally increases with increasing water level. A certain level
of fluctuation occurs, which can be attributed to the interannual variation of the

relationship.
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Figure 7. Change of BYDLCO with rising water level in spring, summer, and autumn seasons.

The seasonal relationships between water level and each of the seven indexes
composing BYDLCO were also analyzed (Figure 8). The index values are generally
highest in the spring for a given water level that is the same, followed by the autumn
value, except for C1 (Figure 8a). In most cases, each index value increases with increasing
water level with different degrees of fluctuations. Interestingly, the fluctuation is highest
for most indexes when the water level is in the range of 8.0-8.2 m, followed by a rapid rise

and decent with further increasing water level.
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Figure 8. Change of the seven normalized indexes in three seasons with rising water levels: (a) related circumscribing
circle index (C1); (b) Euclidean nearest neighbor distance index (C2); (c) probability of connectivity index(C3); (d)
Shannon’s evenness index(C4); (e) aggregation index (C5); (f) splitting index(C6); (g) average area (C7).

The interpretations of each index provide insights regarding the variations of
BYDLCO. The shape factor of C1 (Figure 8a) indicates how easily matter is exchanged
within an individual water patch. The relationship of C1 and water level shows the highest
fluctuation in autumn. The indexes related to mean distance (C2) and the possibility of a
direct path between water patches (C3) are shown in Figure 8b,c, respectively. For most
water level ranges, the two spring index values are higher than those for summer and
autumn. However, their variations patterns with changing water level differ in spring.
The properties of aggregation are quantified by C4 and C5, which focus on the distribution
evenness and adjacency of the water patches, respectively. The seasonal relationships
between these two indexes and water level are quite similar (Figure 8d,e): both C6 and C7
quantify the fragmentation level of the water patches. C6 puts more weight on relatively
small water patches. Their relationships with water level (Figure 8f,g) differ substantially,
indicating that the water patch size is uneven and that the existence of small patches
cannot be ignored. The C6 value is close to 1 over the entire water level range. The degree
of fragmentation level of water patches is lower in spring and does not change
significantly with increasing water level.
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4. Discussion
4.1. Accuracy of Extracting Open Water Area in BYDL from Landsat 8 Images

The water indexes combine reflectance values from different wavelengths and are
formulated to maximize the reflectance differences between water and nonwater areas for
classification. Our study shows that the accuracy of the water area classification is higher
when using the NIR band reflectance index, and the variance is lower than the other five
indexes using information from multiple bands. The index that performs second best,
NDW], also intensively uses NIR band reflectance. This can be explained by the fact that
the reflectance differences between land cover types considered in this study are highest
in the NIR band (Figure 9). For medium spatial resolution like Landsat 8, Fisher et al. [53]
found that no single index performed better in all of the evaluated water bodies and
depended on the composition of the land and water types. Huang et al. [16] also indicated
that differences in sediments and other optical active constituents within the water can
influence the applicability of certain water indexes to certain water bodies. Zhang et al.
[68] compared the accuracy of commonly used water indexes in an open water body at
five sites in North America, Australia, North Africa, and East Asia with different climates
and found that NDWI, AWEInsh, and AWELx have limitations when extracting turbid
water. From three sites in the Yangtze River Basin, Yellow River Basin, and Haihe River
Basin in China, Jiang et al. [23] concluded that AWEInsh and MNDWI are more vulnerable
to shadow pixels. Our results show that for Landsat 8 images, the reflectance of the NIR
band is the most effective water index in BYDL, which has a moderate level of
eutrophication [69,70]. Han and Cui [71] found that water transparency has high spatial
heterogeneity in BYDL that must be considered to better classify open water areas in
future studies. Indeed, the reflectance characteristics of inland surface water bodies are
complex and highly influenced by local conditions. A full evaluation of the commonly
used water index methods, such as that performed here, is therefore necessary to
determine the best index for a particular water body.

0.5
——Water ——Emergent plants
S 0.4 ——Urban Paddy field
: .
s ——Dryland
203
2
2 0.2
£
= 0.1
T \
0
B1 B2 B3 B4 BS B6 B7
Bands of Landsat 8

Figure 9. Spectral pattern of reflectance of the different land cover types in spring, summer, and
autumn.

The water surface area and corresponding estimated hydrological connectivity in the
water level range of 8.0-8.2 m show significantly high fluctuations for spring, summer,
and autumn in all of the years, which implies high water surface classification errors over
this range. Figure 10 shows the relationship between lake level and total lake water surface
area in 10-cm increments (including open water area and surface of water under emergent
plants) derived from a field survey [72]. The water area variation is approximately 10 km?
when water level is lower than 8.0 m. The total water area increases significantly in the
water level range of 8.0-8.3 m, which indicates that the lake topography changes
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remarkably and that the Landsat 8 images and water index methods used here do not
trace the changes in open water areas with sufficient accuracy over this water level range.
Many small dikes and sand bars exist in BYDL [73] due to aquaculture, rice farming, and
the deposition of materials particles via inflow from upstream rivers. When the water
level rises from 8.0 to 8.3 m, the above-mentioned landforms change from being exposed
above the water surface to being submerged by the lake water. This explains the sharp
increase of open water area over this range. A similar phenomenon [74] is found in some
segments of the lower Mekong River, where sandbars exist in the river channel. The
increment of water area variation decreases with increasing water level. The number of
pixels that mix water and land is higher for the 8.0-8.3 m water level range in the Landsat
8 images, compared with other water level ranges, which increases the error in the water
area classification. This error can be reduced by using pixel unmixing schemes (e.g.,
[75,76]) or by classifying water area based on satellite images with spatial resolutions
higher than that in Landsat 8 images. High-resolution DEM data derived from a LiDAR
system can also be introduced to quantify elevation variations under complex topographic
conditions in water bodies to better the understand hydrological connectivity (e.g.,
Hudson et al. [77]).
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Figure 10. (a) Change of water area for every 0.1 m rise of water level. (b) Cumulative water area with water level in BYDL.

4.2. Interannual and Seasonal Variations in Hydrological Connectivity of BYDL

Although the number of satellite observations is relatively low, our results clearly
indicate that hydrological connectivity increases with increasing lake water level. This is
intuitive because isolated water patches will connect with each other when the water level
increases. The interannual and seasonal variations in the relationship between water level
and hydrological connectivity are worthy of further attention.

The differences in extraction results may be affected from water surface classification
errors, but more importantly, they are caused by differences in the spatial coverage of
emergent plants, which occupy large areas of water surface in BYDL. The water area
under the canopy of such plants cannot be detected from optical images, such as Landsat
8 images used in this study. The dense roots of such plants can obstruct water flow by
increasing the local hydraulic roughness [78] and lowering the hydrological connectivity
of the entire BDYL. This is the most important assumption made to assess hydrological
connectivity using open water surface area data. Strong positive relationships between
hydrological connectivity and water level were found in most years, but the slope of the
best-fit linear equations vary between years, thus indicating that the spatial distribution
and total area of emergent plants undergoes large interannual variations, which are likely
influenced by the climate and lake hydrological regime [31,79].

For the same water level, hydrological connectivity is mostly higher in spring than
summer and autumn, with minor differences between the latter two seasons. This can be
attributed to the phenological characteristics of emergent plants. In spring, emergent
plants are in the germination and leaf development stage. Their stems are thin and short
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compared with those in summer and autumn, and their canopy cannot be detected from
satellite images. The drag force exerted by emergent plants, which reduces water flow
[80,81], is therefore lower in spring than summer and autumn. Correspondingly, their
influence on water flow is not apparent. After maturation in the summer season, their
canopy and stems in the water do not significantly change before harvesting in early
winter [82] and the obstruction to water flow is the strongest. This is consistent with the
results of Liu et al. [73] who mapped hydrological connectivity using an interferometric
synthetic aperture radar-based methodology and reported that 40% of permanent and
33% of conditional barriers to hydrological connectivity are related to reed land. Our
study also reveals that the seasonal variation of hydrological connectivity may be
connected with emergent plant phenological characteristics. The influence of vegetation
growth in temperate wetlands where emergent plants occupy large portions of area must
be examined to better understand the driving mechanisms of hydrological connectivity
variations. Proper vegetation management may improve hydrological connectivity in
such wetlands.

5. Conclusions

Hydrological connectivity is of great ecological importance to wetland systems.
Although numerous studies have addressed hydrological connectivity in wetlands, the
interannual and seasonal variations of hydrological connectivity and their driving
mechanism remain poorly understood. This study established a composite index of
hydrological connectivity based on the extent of open water derived from Landsat 8
images in Baiyangdian Lake and investigated its temporal dynamic changes with
changing water levels. Reflectance in NIR band is the most accurate and robust index for
detecting water compared with other indexes, including NDWI, MNDWI, AWElIxsh,
AWEILs, and WI2015. The relationship between extracted water area and water level
demonstrates significant interannual variability, which may result from interannual
growth differences of emergent plants. Hydrological connectivity generally increases with
increasing water level. For a given water level, hydrological connectivity is mostly higher
in spring than in summer and autumn largely because of seasonal variations in the
phenological characteristics of emergent plants. These findings provide insight regarding
the impact of water level regimes and phenological characteristics of emergent plants on
the variation of hydrological connectivity in BYDL and guidance for decision-making in
the management of this important wetland in North China.
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