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Abstract: Long-term continuous time series of SO2 emissions are considered critical elements of
both volcano monitoring and basic research into processes within magmatic systems. One highly
successful framework for computing these fluxes involves reconstructing a representative time-
averaged SO2 plume from which to estimate the SO2 source flux. Previous methods within this
framework have used ancillary wind datasets from reanalysis or numerical weather prediction (NWP)
to construct the mean plume and then again as a constrained parameter in the fitting. Additionally,
traditional SO2 datasets from ultraviolet (UV) sensors lack altitude information, which must be
assumed, to correctly calibrate the SO2 data and to capture the appropriate NWP wind level which
can be a significant source of error. We have made novel modifications to this framework which do
not rely on prior knowledge of the winds and therefore do not inherit errors associated with NWP
winds. To perform the plume rotation, we modify a rudimentary computer vision algorithm designed
for object detection in medical imaging to detect plume-like objects in gridded SO2 data. We then fit
a solution to the general time-averaged dispersion of SO2 from a point source. We demonstrate these
techniques using SO2 data generated by a newly developed probabilistic layer height and column
loading algorithm designed for the Cross-track Infrared Sounder (CrIS), a hyperspectral infrared
sensor aboard the Joint Polar Satellite System’s Suomi-NPP and NOAA-20 satellites. This SO2 data
source is best suited to flux estimates at high-latitude volcanoes and at low-latitude, but high-altitude
volcanoes. Of particular importance, IR SO2 data can fill an important data gap in the UV-based
record: estimating SO2 emissions from high-latitude volcanoes through the polar winters when there
is insufficient solar backscatter for UV sensors to be used.

Keywords: SO2 emissions; computer vision; time-averaged dispersion model; CrIS; JPSS

1. Introduction

Many methods now exist to estimate volcanic sulfur dioxide (SO2) fluxes from satellite
data. Over the last decade, much work has focused on long term, global monitoring of
continuous low–moderate level volcanic SO2 emissions. These efforts are particularly
useful for monitoring trends in volcanic activity as well as constraining the global volcanic
SO2 flux for weather and climate studies. These methods for estimating long-term emission
rates have relied on constructing and analyzing a time-averaged volcanic plume from
satellite SO2 data generated by ultraviolet (UV) sensors. To do this, either the wind field
advecting SO2 emissions must be remarkably stable e.g., [1] or the many plume observa-
tions in the averaging period must be rotated into a common wind field and then averaged
together e.g., [2–5]. Once the time-averaged plume is constructed, a simplified plume
dispersion model is fit to the time-averaged data. As described by [2], the measurement of
SO2 flux is controlled by an estimate of the cloud mass and of the decay time which are
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estimated from the fitting results. Since the mean cloud mass is directly accessible from
satellite measurements, the decay time (or lifetime) is the primary uncertain parameter.

Typically, numerical weather prediction (NWP) or re-analysis winds are used to
analyze the wind direction to determine the rotation and then the wind speeds are used in
the plume model fitting process. Errors in NWP, particularly in wind direction can have
a significant effect on the reconstructed plume. In this process, a plume dispersal height
must be assumed at which to capture the wind direction and speed and to estimate the
SO2 vertical column density (VCD) itself. Typically, individual SO2 plume observations are
assumed to have been advected by straight-line winds at one altitude; however, volcanic
plumes are hot-sourced and can rise through many altitude levels each with its own wind
speed and direction, resulting in the satellite observation of a distorted plume that may not
be well-represented by an single local wind vector. These issues further complicate the use
of wind data in reconstructing the time-averaged behavior.

Here we have made novel modifications in adopting this general approach which do
not rely on prior knowledge of the winds and therefore do not inherit errors associated
with NWP winds. In reconstructing the time-averaged plume, we exploit the geometry
of the emitted SO2 clouds themselves to inform the wind-reconstruction. To perform the
plume rotation, we modify a rudimentary computer vision algorithm designed for object
detection in medical imaging to detect plume-like objects in gridded SO2 data. In light of
the observation that many emissions of SO2 are offset from their sources along a different
vector from their primary dispersal, we also allow short translations of the data so that
these puffs can still be reconstructed in the case that there is a significant lag between
emission and satellite overpass time.

In the fitting stage, we employ a solution to the general time-averaged dispersion of
SO2 from a point source. This fitting function incorporates the time-averaged physics of
SO2 decay, advection and turbulent mixing from a point source. This fitting function is
more flexible than that employed by previous studies since it more closely approximates
stream-wise eddy-diffusion mixing and is better suited to examining persistent point
source emissions.

We demonstrate these techniques using SO2 data generated by a newly developed
probabilistic layer height and VCD algorithm designed for the Cross-track Infrared Sounder
(CrIS), a hyperspectral infrared (IR) sensor aboard the Joint Polar Satellite System (JPSS)
series satellites: Suomi-NPP (SNPP) and NOAA-20 [6]. Since this algorithm retrieves the
SO2 layer height, the retrieved VCD estimate is already calibrated for the appropriate
altitude. This CrIS SO2 algorithm is currently integrated into the NOAA/CIMSS VOLcanic
Cloud Analysis Toolkit VOLCAT; [7–10], where it is used to generate SO2 alerts as well as
probabilistic cloud object properties for real-time detection, characterization, and tracking
of volcanic clouds in support of aviation safety.

Although the use of hyperspectral IR SO2 data limits the accuracy of plume mea-
surements in the lower troposphere, particularly in very moist tropical atmospheres, this
data can still make useful flux estimates at high-latitude volcanoes and at low-latitude,
but high-altitude volcanoes. Of particular importance, IR SO2 data can fill an important
data gap in the UV-based record: estimating SO2 emissions from high-latitude volcanoes
through the polar winters when there is insufficient solar backscatter for UV sensors due to
the high solar zenith angle (SZA).

Our approach is modular, containing three main components: (1) the gridded SO2
data including a height estimate, (2) a wind-direction reconstruction algorithm to use in
constructing time-averaged plumes, (3) an independent estimation of one of the sought
geophysical parameters (here, SO2 decay rate or lifetime) and (4) a fitting model to estimate
the plume shape and source flux. Consequently, these components are interchangeable
with only minor adjustments which allows for customized application of this technique to
suit the circumstances of measurement. Although we demonstrate this technique here with
IR data, it is sufficiently general to be applied to UV measurements provided that an SO2
layer height can be reliably estimated. Additionally, these methods could be incorporated
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into a hybrid UV-IR technique such as changing from UV- to IR-based SO2 in the winter at
high-latitude volcanoes.

1.1. Basic Principles of Time-Averaged SO2 Flux Estimation

As described above, similar techniques for estimating time-averaged SO2 flux (ṁ) rely
on the ability to reconstruct a representative plume for a given period of time, requiring that
the atmospheric conditions, especially wind direction, are remarkably consistent, or that
separate analyses can be partitioned by wind direction and speed, or that each plume
observation can be rotated as if all were advected by a constant wind. Once a representative
time-averaged plume is reconstructed, the flux can be fit to the VCD or in one-dimension as
a line density. These fitting functions are meant to represent the time-averaged dispersion
of SO2 from a point source and generally reflect some kind of spatial decay due to advection
combined with turbulent diffusive mixing and photochemical oxidation kinetics. In general,
the time-averaged flux is calculated as the ratio of the time-averaged cloud mass and the
SO2 decay timescale or lifetime e.g., [1,2]:

ṁ =
M
τ

. (1)

Since satellite observations have direct access to the cloud mass (M), the SO2 lifetime
(τ) is the principal uncertain parameter and the main target of fitting. In most studies, this
lifetime is interpreted in the context of first-order decay kinetics where the rate of decay
of the SO2 mass in a discrete puff is proportional to the puff mass (dM/ dt = −kM) with
the apparent decay rate k = 1/τ. Since the time-averaged plume represents a steady state
condition, it is useful to convert temporal decay into spatial decay using the mean wind
speed (u) and fit the decay of the time-averaged SO2 cloud over the length scale u/k, using
a wind dataset to estimate u.

In studies without wind-rotation, e.g., [1,11,12], the fitting function is an Exponen-
tially Modified Gaussian (EMG) which combines downwind decay with wind-direction
spreading as the convolution of an exponential and a Gaussian distribution for the SO2:

EMG(x) =
(

Exp(k/u) ∗ N (0, σ2)
)
(x) (2)

where σ is an empirical downwind spreading length. Although these studies did not use
wind-rotation, they used wind datasets to constrain the mean wind, and thus estimate the
SO2 lifetime (τ = 1/k) by fitting the spatial decay of the time-averaged SO2 cloud.

In studies using wind-rotation, the fitting model proposed by [2] and implemented
by [3–5,13] is the product of a traditional one-dimensional EMG model along the wind
direction and a dispersion solution from classical Gaussian plume theory which allows
crosswind spreading only. This approach enables the fitting function to spread out laterally
downstream in a physically realistic way and still accommodate some mass upstream
of the source due to the EMG. Ref. [2] introduced an empirical relationship between the
two spreading parameters (related to the downwind and crosswind eddy diffusivities);
however, this fitting function still requires the fitting of the wind speed, the lifetime (1/k),
the flux, and at least one measure of spread (related to eddy diffusivity). The fitting function
we introduce here is no different in regards to the number of parameters; however, it is a
direct solution to the equation governing the theoretical dispersion of SO2 detailed below.
In both the previous work and this contribution, the set of fitting parameters do not form
an independent basis and thus one must be estimated independently. In these previous
works, ancillary wind data was used to perform the reconstruction and thus a mean wind
speed estimate (u) was readily available. Here, we use no ancillary datasets and choose
instead to estimate the SO2 decay rate (k) within the averaging window as detailed below.

1.2. CrIS SO2 Data

In this study, we demonstrate our analysis technique using SO2 data from the hy-
perspectral IR CrIS instruments aboard SNPP and NOAA-20 satellites. CrIS is a Fourier
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transform Michelson interferometer, having a local time ascending node (LTAN) of 1:30 PM
with NOAA-20 operating approximately 50 min ahead of SNPP [14]. The orbital offset of
SNPP and NOAA-20 allows equatorial swath gaps in SO2 data from each CrIS instrument
to filled by data from the other. The SNPP and NOAA-20 CrIS instruments have generated
infrared spectra that include the ν3 (1300–1410 cm−1) SO2 absorption band at a spectral
resolution of 0.625 cm−1 since December 2014 for SNPP CrIS (except 26 March–1 August
2019) and since February 2018 for NOAA-20 CrIS. CrIS scans between ±48.3◦ with each
scan containing 30 fields of regard (FOR), each of which contains 9 circular fields of view
(FOV) arranged as a 3× 3 array. As the scanning mirror moves, the FOR rotates slightly and
consequently, FOVs transition from 14 km-diameter circles at nadir, to partially overlapping
43.6 km × 23.2 km (major and minor axes) ellipses on the edge of scan leading to a swath
width of approximately 2200 km with approximately 30% gaps and an average sampling
distance of 16 km [14,15]. For this analysis, we converted the un-gridded FOV-level SO2
data into 16 km-pixel grids by nearest neighbor interpolation.

The data itself is generated by a newly developed probabilistic layer height and VCD
algorithm which retrieves probability distributions for SO2 layer height and VCD from
IR spectra in the ν3 SO2 absorption band [6]. The CrIS SO2 algorithm is a probabilistic
modification of the trace-gas method of [16] to detect SO2 layer altitude and VCD. The novel
aspect of this method is that uncertainty related to spectra with trace amounts of (or
without) SO2 is propagated into uncertainty about the SO2 layer height and VCD, each of
which is given by a probability density function (PDF; [6]). The PDF for the layer height
informs the estimation of total VCD. Because this method exploits spectral residuals in
the ν3 SO2 absorption band, it is largely insensitive to the presence of volcanic ash and
hydrometeors as long as the SO2 is not completely obstructed [17]. Although there is
considerable interference from water vapor in this band, it is exactly this interference
that allows for robust height estimation owing to the significant variation of water vapor
with altitude and the sharp absorption lines imparted to the spectrum by the presence
of SO2 [6,16]. Despite the theoretical limitation posed by the degradation of sensitivity
at very low altitudes where there is significant water vapor (e.g., in the tropical lower
troposphere), this technique has thus far successfully detected and characterized many
low-altitude SO2 clouds. By design, this algorithm can capture the SO2 present in a wide
variety of background atmospheres. Because CrIS does not rely on backscattered sunlight
for measuring SO2 and is sensitive to SO2 in a wide variety of background atmospheres, we
use all available CrIS measurements in this effort without regard to SZA or cloud fraction as
must be considered when using UV-based data. The only data omitted are measurements
from SNPP CrIS FOV 7 which has unfavorable noise characteristics [6]. Because of these
factors, each CrIS instrument provides nearly global coverage twice per day. In this study,
we combine data from both CrIS instruments to increase the frequency of measurements,
increasing the signal to noise ratio of the time-averaged plume reconstructions. At high-
latitudes where there is significant swath overlap between orbits, we use data from multiple
orbits to generate a composite snapshot for a region surrounding the target volcano. Using
all data from both CrIS instruments yields at least twice daily coverage for equatorial
volcanoes and approximately 4-times daily coverage for most other volcanoes.

In this work, we use a statistical measure of SO2 column enhancement (z-score), which
is native to the CrIS retrieval, to define the plume geometry and wind reconstruction.
Throughout this work, except where noted, we abbreviate the z-scores as z. In princi-
ple, if another source of SO2 data were used (e.g., UV spectrometers such as the Ozone
Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), or the TRO-
POspheric Monitoring Instrument (TROPOMI)) the SO2 VCD values themselves could
be used directly along with a critical threshold indicating significant enhancement above
the background. Although we are interested in persistent SO2 sources with a typically
weak signal, the CrIS-based retrieval of SO2 VCD as in [6] is most reliable for individual
measurements with z ≥ 5. However, reasonable, but noisier VCD retrievals have been
accomplished down to a threshold z ≥ 3. Although physically meaningful spatial patterns
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of z-score often emerge even when z < 3, the layer height and VCD are only retrieved here
for z > 3 to ensure that the retrieval algorithm is computationally efficient and less prone to
noisy results. In this application, we use the more reliable measurements to fill in areas of
the swath where the VCD was not retrieved directly. Because of the averaging used in this
type of analysis, the errors that this generates largely cancel out. For each gridded overpass
of the target volcano’s surroundings, we compute a conversion factor, referred to here as the
“gain" (g), which converts between z-scores and VCD obtained from the full probabilistic
retrieval, g = X/z, for all measurements with z > 3. We then estimate the geometric
mean gain value (ĝ) from these more reliable samples (those with z > 3). We have chosen
the geometric mean here since it is a more robust estimator for ratios. If no samples with
z > 3 are available, the overpass is assumed to contain only low-amplitude noise and the
mean gain and VCD are set to zero. We use the mean gain value to construct an estimated
VCD grid as X̂ = ĝ z. By contrast to simply using the original VCD values, the new VCD
estimate has the same distribution shape as the z-scores and when multiple grids are com-
bined, better reduces background noise than using the raw VCD which is only estimated
for samples with z > 3. This approach is well-suited to analysis of long-term SO2 flux
because individual measurements are of little interest and instead, the aggregate behavior
is sought. Additionally, the gain-based VCD estimation incorporates altitude information
without estimating a single mean altitude, instead constructing a representative scaling
between the z-scores, which contain no altitude information, and VCD values, which do
contain altitude information. This approach allows the plume information below z = 3,
which can be significant in a weak plume, to be used in reconstructing the time-averaged
plume without introducing large errors from less reliable VCD retrievals.

2. Materials and Methods
2.1. Object Detection-Based Mean Plume Construction

To generate a time-averaged plume that can be used to compute time-averaged
geophysical quantities, including the source flux, sets of observations of a plume must be
aggregated. First, raw SO2 data must be aggregated to form a representative “snapshot"
of the real plumes on an azimuthal projection grid. This requires stacking up a sufficient
number of overpasses to span the study domain in question. For a small domain around a
given volcano, a sufficient snapshot can be generated in as little as one overpass; however,
for large domains, several precessing orbits might be necessary to span the domain of study.
The number of orbits depends upon the domain size, the satellite’s mean motion, and the
latitude of the volcano. Once a time series of snapshots has been constructed, they must be
further aggregated to construct a time-averaged empirical plume model. This empirical
model represents the time-averaged steady-state plume if the wind were blowing in a
constant direction, thus requiring rotation and regridding of each plume snapshot before
stacking the data. Additionally the longer the time interval over which the average is
constructed, the more plume snapshots are included and consequently the signal-to-noise
ratio increases. In particular, for the probabilistic CrIS SO2 retrieval, SO2 total column
mass loading is a normal random variable and the central limit theorem predicts that the
signal-to-noise ratio (ratio of mean and standard deviation) grows as the square root of the
number of repeat images. Consequently, the use of both SNPP and NOAA-20 CrIS sensors
yields an approximate 40% increase in signal to noise ratio over the use of only one of these
two sensors.

2.1.1. Plume Detection, Source Reconstruction, and Wind Rotation

Recent efforts to characterize volcanic and industrial contaminant sources have uti-
lized NWP or reanalysis wind data sets to rotate plume data into a common wind direction
for improved analysis of persistent source fluxes [2–5,18]. Here we present an approach
that does not use ancillary data sets, instead, using only image analysis of the snapshots
themselves. Our technique is based on identifying near-source “plume-like” SO2 cloud
objects in these snapshots and then rotating and translating them such that they originate
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from the volcano and are elongated in a common wind direction. This effort is consider-
ably simpler than traditional object detection for computer vision since the input data are
gridded SO2 measurements and therefore lack other types of image features that might
interfere in a more general image processing application. In particular this method esti-
mates a dominating wind direction by searching the space of all lines through the SO2
z-score image from all azimuthal projections to find the projection angle giving the largest
total line integral. This corresponds roughly to finding the azimuthal angle which looks
down the elongation axis of a plume. Once this projection angle is found, we generate a
normalized profile of the data along the plume in the projection direction and estimate
the approximate location of the suspected source along this profile. This is generally not
the true source of the SO2, but instead attempts to approximate the location to which the
source region of the plume has been advected. Because this special projection direction is
taken to be the wind direction, the grid is rotated so that the wind is in a specified direction,
and the grid is translated so that the estimated source region is moved to the origin. In this
scheme, all emissions observations undergo the same processing including more equant
“blob-like” emissions that do not conform to simplified plume theories. These emissions
are assumed to be the result either of an instantaneous puff of SO2 advecting downwind or
more continuous emissions which spread nearly equally in all directions, indicative of the
weak role of downwind dispersal compared with turbulent mixing. Because even a short
duration, but continuous emission will tend to stretch out downwind if the mean wind is
strong relative to turbulent mixing, in this work, we implicitly assume that all observed
emissions are of this latter type.

Mathematically this is accomplished by analyzing the Radon transform, used widely
in medical tomography, signal processing of seismic data, and computer vision e.g., [19–22].
In this formulation, although it is SO2 vertical column density (VCD) that will be used to
construct the time-averaged plume, we use the CrIS SO2 z-scores (Figure 1a) to define the
necessary grid transformations owing to the beneficial statistical properties of the z-score
compared with the CrIS-based VCD retrieval for weak SO2 plumes [6,16,23]. If UV-based
SO2 data were used, the VCD estimate itself could be used instead.

For a gridded snapshot of SO2 z-score (z(x, y)), we define the Radon transform on the
set of all lines in the plane as

Rz(α, s) =
∫
L(α,s)

z(x, y)dt (3)

where each projection line L(α, s) has been parameterized as{
x(t; α, s) = t sin α + s cos α

y(t; α, s) = −t cos α + s sin α

(4a)

(4b)

with t, an arc-length parameter, measuring true distance along the line. Here, s is the
perpendicular distance from the origin to the projection line and the angle α is the angle
from the positive x-axis to the projection line normal vector (cos α, sin α) which is also
the angle between the positive x-axis and the line segment of length s perpendicular to
L (Figure 1c). The tangent vector of L(α, s) is (sin α,− cos α). From the transformed map
Rz(α, s) or “sinogram" (Figure 1d), we define the special point

(α̂, ŝ) = arg max
(α,s)

Rz (5)

which corresponds to the line L̂ = L(α̂, ŝ) that most reflects an elongated plume in the
image with the projection vector v̂ = (sin α̂,− cos α̂). We then construct a profile of the
mapped z-scores along this line:

ẑ(t) = z(x(t; α̂, ŝ), y(t; α̂, ŝ)). (6)
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Because this profile is taken along a straight line, it does not accurately capture the
plume axial profile since the plume axis may be curved or distorted by the flow as in the
subtle von Kármán vortex street distorting the plume axis in Figures 1 and 2. To account
for this, we search the space of nearby profile lines that are parallel to L̂ and extract the
maximum value of the z-score for each value of t across all of these lines. This gives
an approximation to the plume axial profile, though it is slightly foreshortened locally
where the real plume axis makes excursions from the line L̂. Once the overall profile is
constructed, negative values are removed and the profile is normalized (Figure 2a). We
then compute the 10th, 50th, and 90th percentiles of this modified profile, respectively.
Based on the asymmetry of the 10th and 90th percentiles about the median, we accept or
reverse the projection direction to determine the plume dispersal direction, reflecting the
assumption that the plume is most concentrated near the source and is more dispersed in
the downwind direction, that is, the profile is skewed downwind (Figure 2b).

Figure 1. Plume dispersal direction identification procedure for the plume observed from Veniaminof Volcano; 23 October
2018 12:30 UTC–14:12 UTC. (a) Volcano-centered grid of raw CrIS-derived SO2 z-scores. (b) Specialized weighting filter
combining radial Gaussian and detection region buffer. (c) Filtered z-score grid used as input to plume rotation scheme.
(d) Radon Transform of (c) showing the maximizing point (α̂, ŝ) in projection space. This special point corresponds to the
optimal plume axis projection line L(α̂, ŝ) shown in (c).

With the projection direction now matched to the plume dispersal direction, the plume
source must be estimated. As mentioned above, the approximate source region is meant
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to describe the location of the source region relative to the plume’s current configuration,
meaning it may have been advected some distance away from the volcano after emission
by the time of imaging. To estimate this position along the profile, tsource, we exploit the
simple one-dimensional advection-diffusion-reaction model (detailed below) which we use
to estimate tsource based on an estimate of the Peclet number and upstream-downstream
mass partitioning for the profile (Figure 2c,d). This technique is detailed in Appendix A.

Figure 2. Plume source estimation, reconstruction, and rotation for the example grid from Figure 1. (a) Normalized profile
fz (PDF) and its cumulative curve (CDF) taken along plume axis optimizing line L(α̂, ŝ) in Figure 1c showing the 10th (blue)
, 50th (median, red), and 90th (green) percentiles. (b) Same as (a) but reversed direction of projection to coincide with plume
extension in the positive direction. (c) Fitting of the left and right side gradient parameters G− and G+ for Peclet number
calculation. Points used for gradient fitting in blue. (d) Same as (b), but showing the estimated source location along the
profile (magenta). (e) Input filtered z-score grid showing the identified direction of plume dispersal (black arrow) and the
estimated plume source (magenta triangle). (f) Original raw z-score grid translated to recenter the estimated plume source
above the volcano and rotated to place the plume dispersing plume towards the east. (g) rotated and reconstructed plume
z-scores filtered to remove non-connected detection regions away from the main plume. This final grid is incorporated into
the time-averaging process.

From these estimates, the source position is taken as (tsource, α̂, ŝ) in the projection
coordinates and the Cartesian coordinates of the source position can be found from
Equation (4a,b). The Cartesian grid coordinates are then translated so that the source



Remote Sens. 2021, 13, 966 9 of 35

is at the origin and rotated so that the dispersal direction is in the pre-specified direction
(Figure 2e,f).

2.1.2. Filtering and Smoothing in Wind Reconstruction

Within this plume rotation and source reconstruction technique, several additional
steps are taken to improve the quality of the reconstruction. At multiple stages detailed
below, we make use of exponential smoothing kernels (Appendix B) rather than Gaussian
smoothing or other types of smoothing for two reasons: (i) exponential smoothing reduces
noise variance to a greater extent than Gaussian smoothing [24], and (ii) the exponential
dependence in our chosen physics-based model suggests that exponential smoothing will
only minimally distort the edges of the SO2 plume data.

First an attempt is made to remove background SO2 which may come from a bias in
the noise or from anthropogenic SO2 sources. Since the volcanic SO2 plume occupies such
a small fraction of a given grid, we first subtract the grid mean value from all pixels. Next,
we filter the grid with a special filter designed to heavily weight measurements that are
close to the volcano and are also in a neighborhood of the strongest detections (Figure 1b).
This two-part filter is constructed as follows.

First, a radial weighting filter is constructed from a truncated radial Gaussian function
centered on the volcano in question:

G(r) =
{

exp
(
− r2/2σ2

r
)

r < rmax

0 r ≥ rmax.
(7)

This weighting filter has unit weight at the volcano and is zero outside of the radius
rmax = 4σr. This multiplicative filter is designed specifically to heavily weight plumes
within σr (the standard deviation of the Gaussian) from the volcano. This filters out SO2
that has drifted into the edges of the image from other sources as well as plumes from the
target volcano that were emitted previously to limit the possibility of double counting. We
use this radially decaying weighting filter instead of a fixed search radius because it allows
for variations in the wind speed which may advect puffs of SO2 to variable distances away
from the volcano.

The second filter component generates a buffer around all z-score values above a
threshold value (zth). This is accomplished by generating a binary map of all z-scores above
the threshold and then convolving the binary map with an exponential kernel (K) with
20-km e-folding radius. A binary image is then generated to indicate where the numerical
convolution result is nonzero and then this new binary image is again convolved with
the same exponential kernel. The resulting map is of unit weight over a buffer patch very
close to the high-confidence detections and decays to zero over a distance of approximately
50–100 km. This buffering weight (B) can be summarized mathematically as{

B = K ∗ 1Ω

Ω =
{

K ∗ 1{z≥zth} > 0
} (8a)

(8b)

where 1{·} is the indicator function for the specified region and the convolution is under-
stood to be performed numerically with a compactly supported kernel K. In our modular
framework, if UV-based SO2 data were used instead of the IR data used here, the VCD
estimate itself along with a threshold value for significance would be used to construct
this filter.

An overall weight (W) is constructed as the point-wise product of the detection buffer
weight and the radial weighting filter (W(x, y) = G(x, y)B(x, y), Figure 1b). As a last step,
we multiply this overall weighting mapW by the original z-scores and perform a minimal
smoothing by convolution with another exponential kernel of only 4-km e-folding radius
to generate a smoothed and filtered z-score image which can be more readily analyzed by
the above method to find plume-like SO2 clouds near the volcano (Figure 1c).
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This filtered and smoothed z-score image is only used to define the necessary grid
transformations to reconstruct the plume as detailed above. Once this is complete, the raw
z-score image is interpolated onto the new grid (Figure 2g). A final filtering and smoothing
step is performed after rotation and re-gridding. This step involves the binary image
segmentation (specifically, connected-component labeling) of the buffered detection region
Ω computed for the rotated and re-gridded z-scores. Although we use the Python-based
SciPy multidimensional image processing package, similar algorithms are available in
most modern code libraries. From this, we keep only the connected detection region which
contains the re-gridded origin (plume source). All other pixels are set to zero and the result
is smoothed with a 4-km e-folding radius exponential kernel (Figure 2g).

2.1.3. Time-Averaging and Post-Processing

After grid transformation as described above, we construct the estimated VCD for
each plume snapshot and average together all available snapshots in the time-averaging
window. As a final step, the time averaged grid is translated so that the maximum time-
averaged VCD value is at the volcano. This process is meant to reconstruct an empirical
model of the plume from the volcano under conditions of constant emission, wind field,
mixing, oxidation, and dilution.

2.2. Physics-Based SO2 Cloud Fitting

Here we present a very simple physical model for the continuous point release,
dispersion, and evolution of a cloud of SO2 subject to a constant wind field which we will
use to throughout this work to estimate the volcanic SO2 flux. The proposed model and
its solutions are well known in the literature and can be found in or synthesized from the
elements of many texts on environmental fluid mechanics e.g., [25–27].

We model the continuous point release of SO2 and incorporate constant advection,
Fickian turbulent diffusion, and first-order reaction kinetics representing total loss of SO2
from the cloud as an advection-diffusion-reaction Equation (ADRE):

∂C
∂t

+ u
∂C
∂x

= Dx

(
∂2C
∂x2 +

1
αy

∂2C
∂y2 +

1
αz

∂2C
∂z2

)
− kC + S (9)

where u is the (constant) wind speed, k is a first-order reaction-kinetic decay rate, Dx is
the downstream eddy diffusivity, αy = Dx/Dy and αz = Dx/Dz are the aspect ratios
comparing the downstream eddy diffusivities to those in the crosswind horizontal and
vertical directions and S is a source term describing continuous point release of SO2 from
the origin with mass flow rate ṁ. In this section, z refers to a vertical coordinate and not
SO2 z-scores used elsewhere in the text. Note that as in [28] the chemistry (decay) term
−kC represents the SO2 loss due to actual processes (oxidation and conversion to sulfates,
dry and wet deposition) as well as apparent SO2 loss related to dilution of the cloud below
the sensor detection threshold. In this very simplified model, we have assumed that all
eddy (turbulent) diffusivities are Fickian, that is, they are constants for a given analysis,
or alternatively, they change sufficiently slowly that differences are not relevant over the
time period of analysis. Other than the diffusivity aspect ratios which directly control
the cloud’s spread, the shape of the cloud is also governed by the Peclet number of the
flow which is typically defined as the ratio of advective transport to diffusive transport.
Since the problem is set in an unbounded domain (SO2 dispersion from an elevated point
source in free atmosphere), there is no single characteristic length. In this study we choose
as a characteristic length, the “e-folding distance” (u/k)—the distance traversed in one
e-folding timescale (τ = 1/k) under constant advection. This length scale, the distance over
which a puff of SO2 decays by a factor of e in constant wind, is the primary measurement
that previous studies have used to estimate the SO2 lifetime given knowledge of wind
speed e.g., [1,2,4,18]. We therefore define the Peclet number for the problem as
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Pe =
u2

Dxk
. (10)

This Peclet number controls the SO2 plume’s elongation in the wind direction and the
upstream-downstream distribution of mass.

2.2.1. Application of Simplified Theory to Satellite Measurements of Volcanic SO2 Plumes

Although the governing ADRE can be used to describe a wide variety of elementary
flows, we focus on analysis of the cloud produced by a continuous point release of SO2 in a
time-averaged sense. As long as the time-averaging interval is much larger than characteris-
tic changes in the SO2 cloud between the time interval endpoints, the time-averaged ADRE
is asymptotically equivalent to the steady state ADRE with a constant source flux. We focus
on this steady state solution in the present work since we will be analyzing time-averaged
SO2 plume data integrated over time intervals much longer that the timescales of meaning-
ful cloud dynamics predicted by the transient model (Appendix C). Additionally, from the
perspective of a satellite, the above three-dimensional model is not very helpful for a trace
gas like SO2 for which there is little or no vertical profile information. Consequently, most
space-based SO2 measurements are of VCD, denoted here as X(x, y). This measurement
destroys any dependence on the vertical diffusivity (and consequently the parameter αz)
since the VCD is a quantity integrated over the entire vertical coordinate space after [27]:

X(x, y) =
∫

C(x, y, z)dz =
ṁ√αy

2πDx
exp

(
ux

2Dx

)
K0

(
vρ

2Dx

)
(11)

where the following shorthand has been used:v =
√

u2 + 4Dxk

ρ =
√

x2 + αyy2

(12a)

(12b)

and K0 is the zero-th order modified Bessel function of the second kind. Here v is the aver-
age velocity of transient perturbations (Appendix C) and describes the excess dissipation
caused by reaction and turbulent diffusion processes and ρ is an elliptical radius measuring
contours of constant dispersion in the absence of wind. Of significant importance for model
fitting, the parameters in this equation do not form an independent basis. In particular,
there is not unique dependence on the downstream eddy diffusivity (Dx). To clarify this
point, we rewrite this solution in terms of independent parameters only:

X(x, y) =
µ
√

αy

2π
exp

(
ωx
2

)
K0

(
λρ

2

)
(13)

where µ = ṁ/Dx, ω = u/Dx, and λ = v/Dx =
√

ω2 + 4κ with κ = k/Dx.
This VCD model, equivalent to the solution for an infinite column source at the

origin, depends only on the parameters αy, µ, ω, and κ. If space is re-scaled by the
characteristic length (i.e., x∗ = x k/u), it is easily demonstrated that shape of this cloud is
governed only by the crosswind aspect ratio and the Peclet number since ωx = Pe x∗ and
λρ =

√
Pe2 + 4 Pe ρ∗.

2.2.2. Relationship to Previous Fitting Model

By contrast to the ADRE solution used here, the fitting function of [2] can be written
as X(x, y) ∝ X̃(x, y) · EMG(x) where the Gaussian plume solution (X̃) approximately
solves the steady ADRE in the high Peclet limit in which stream-wise diffusion and decay
are neglected:

u
∂X̃
∂x

= Dy
∂2X̃
∂y2 + ṁ δ2(x, y) (14)
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As described earlier, this approach from [2] enables the fitting function to accom-
modate some mass upstream of the source and to spread out downstream although it is
heuristic, lacking a direct solution from the physics of the ADRE. The 2D EMG model has
the property that its peak is downwind of the source. This could be a useful property if
the average lag time between emitted pulses and satellite overpass could be estimated.
Since this is not known, our plume source-reconstruction approach is more flexible since it
more closely approximates upstream turbulent mixing and is better suited to examining
persistent point source emissions. Additionally, this fitting model has exactly the same
issues related to fitting non-uniqueness as the ADRE used here, requiring independent
estimation of one of the geophysical parameters, that is, the flux, wind speed, decay rate,
and measures of spread are sought, but one of these must be estimated independently.
In previous studies using wind data, the wind speed is estimated and the other parameters
are fit.

2.2.3. Fitting the ADRE Parameters

Although the VCD model X(x, y ; αy, µ, ω, κ) could itself be fit to time-averaged satel-
lite SO2 VCD observations in a similar manner as in [2,4,5,12], the signal to noise ratio
can be improved by another integration, specifically integrating through the crosswind (y)
direction as in [1,11,12,18] to generate a line density. Although this will destroy information
related to the crosswind aspect ratio αy, this has no effect on measuring the distribution of
SO2 mass upstream and downstream which is of greater consequence than measuring the
aspect ratio. Additionally, once the line density parameters are fit, the aspect ratio can be
estimated by other means (Appendix D). Because the main parameters of interest to the
present work are estimates of the flux ṁ, the SO2 lifetime 1/k, and to a lesser extent the
Peclet number of the flow, integrating out the crosswind dependence will not significantly
impact the estimation of these metrics. In practice, we integrate over the ±2 standard
deviation width of the time-averaged plume which we determine by first integrating in
the downwind direction and then treating as a probability distribution. Performing this
integration gives the profile of SO2 mass per distance downwind contained in the plane
perpendicular to the plume axial line or wind vector:

L (x) :=
∫

X(x, y)dy =
µ

λ
exp

(
ωx− λ|x|

2

)
. (15)

As VCD refers to the density of the species contained in a vertical column, we refer to
this quantity (a line density of SO2 in planes perpendicular to the plume axis) as the axial
planar density (APD).

The one-dimensional APD solution is equivalent to the solution to the three-dimensional
governing equation for an infinite planar source at x = 0. This integration provides four
significant benefits: (i) APD data have a stronger signal to noise ratio than VCD data yet
preserves the same parametric dependence on µ, ω, and κ as X(x, y), (ii) The use of APD
instead of VCD eliminates the possibility of model error due to SO2 data asymmetries
in the crosswind direction, (iii) Regardless of the crosswind eddy diffusivity aspect ratio,
the upstream-downstream SO2 mass partitioning will not be affected so an accurate Peclet
number can still be computed from APD fitting and (iv) the high signal-to-noise ratio
and simpler functional form make nonlinear fitting of L (x) to APD data more likely to
converge owing to the ease of generating high-fidelity initial parameter estimates compared
with what is required for fitting X(x, y) to VCD data.

Because of these benefits, we construct an APD profile from the time-integrated plume
VCD and then fit to it the model L (x ; µ, ω, κ). With these fitting parameters, we can
immediately calculate the plume Peclet number as Pe = ω2/κ. An important benefit of
this model is that functionally, it is an exponential decay upstream and downstream with
a matched point at the source. Exploiting this simplicity, we fit a log-transformed APD
profile rather than the APD profile itself since this is closely related to linear regression
up- and downstream with approximately Gaussian error, enabling the use of traditional
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fitting metrics such as the coefficient of determination (R2) without incurring the significant
difficulties in interpreting nonlinear regressions this way e.g., [29].

To estimate the degassing flux (ṁ), we must independently estimate one of u, k, Dx,
or Dy. If, as in similar studies e.g., [1–5,11,12,18], wind data is already used to construct
the time-averaged plume, then the mean wind speed could be used compute (ṁ, Dx, k)
from (µ, ω, κ). Here, we focus on the decay rate k since to first order, it can be estimated
directly (with uncertainty) from the record of individual plume snapshots that make up
the time-averaged composite. Once this is estimated, the quantities of interest (q) are
determined from the parameter estimates (p) by

q =
k
κ

p (16)

where the quantities of interest are q = (ṁ, u, Dx, Dy)ᵀ and p = (µ, ω, 1, α−1
y )ᵀ.

2.2.4. Decay Rate Estimation

From [6], the CrIS SO2 total mass (M) is a normal random variable as is the time
derivative dM/ dt. Consequently, if we restrict analysis to periods with dM/ dt < 0,
the decay rate (k) and the SO2 lifetime (τ = 1/k) are both ratios of normal random variables
with an almost certainly non-zero variable as the denominator. Ratio distributions of this
type can be approximated as being lognormally distributed [30]. The distributions of
estimated SO2 lifetimes from major sources globally in [3] exhibits an approximately
lognormal shape, lending evidence for the implementation of a lognormal model. We
use this fact to compute a lognormal PDF for likely values of the decay rate for each
time-averaged plume and propagate that uncertainty to construct a similar PDF for the
mass flux and other variables as well.

Since a lognormal distribution is parameterized by the Gaussian parameters of the
log-transformed variable, we estimate the parameters of the lognormal distribution using
the valid log-transformed decay rate samples. We generate our decay rate samples from
the time series of plume observations in the time-integration interval using the simplifying
assumption that whenever the cloud mass in the domain is decreasing, the flux of SO2
from the volcano at that time is much less than the magnitude of the mass loss rate.
Such an assumption is related to treating the time-averaged plume as the average of a
series of discrete puffs. This is a reasonable assumption for lower-middle tropospheric
SO2 injection where the SO2 lifetime is generally regarded as being significantly shorter
than for major eruptions injecting SO2 into the upper troposphere or stratosphere. Since
smaller, less-powerful SO2 emission is the target activity, the conditions of this assumption
appear reasonable.

This approach yields samples of the decay rate as

ki =
1

Mi

Mi −Mi+1

ti+1 − ti
(17)

for all i where Mi+1 < Mi and Mi is the i-th total SO2 cloud mass in the sequence of plume
images. Note that in this scheme, the maximum value of the samples is limited by the time
interval as kmax

i = 1/∆ti which always occurs when the cloud mass decays to zero (i.e.,
Mi+1 = 0, or apparent 100% loss in one time interval). We then correct the samples by a
specialized procedure detailed in Appendix E which accounts for this hard upper limit
(right-censoring). The corrected samples are then used to estimate the parameters of the
lognormal distribution for the decay rate.

2.3. Uncertainty Quantification

From [6], CrIS VCD data generally agrees very well with high-resolution data from
TROPOMI for small to moderate columns (<50 DU) and tends to underestimate very large
TROPOMI columns by about 25% consistently across a variety of scales. Because the
vast majority of the SO2 data analyzed here are below this threshold and TROPOMI data



Remote Sens. 2021, 13, 966 14 of 35

uncertainties are approximately 30–50% of those of OMI [13], we estimate that the errors
originating from the use of CrIS to compute total cloud mass are somewhat less than
those from OMI. We estimate the uncertainty on the CrIS VCDs in each plume image as
approximately 14% for these relatively dilute plumes and as much as 20% for plumes with
a large fraction of columns > 50 DU, though these are uncommon outside of significant
eruptive events. The estimation of VCD from z-scores is expected to have a very small
impact on total error.

In the absence of errors due to the rotation, the uncertainty from stacking multiple
images should decay as the number of stacked images increases, specifically decaying as
1/
√

n. Ref. [3] estimated errors from the NWP wind rotation technique as approximately
6% for wind speed and direction and approximately 20% for wind height. Similar to [3],
varying the detected wind direction with 1σ uncertainty of 15◦ yields approximately 4–7%
variation in our time-integrated plume. Additionally, our source reconstruction technique
yields between 17–35% variation compared with the traditional approach without source
reconstruction-based wind rotation.

Additional error is incurred due to the highly unsteady nature of volcanic emissions.
Compared with anthropogenic sources, volcanic outgassing is highly variable, varying by
orders of magnitude on a variety of timescales e.g., [31–36]. In our simple SO2 dispersion
model, the fitting solution is the result of time integration of a dense sequence of discrete
puffs, which is at least somewhat accurate to nature; however, error is incurred whenever
the time delay between a new discrete puff and the next satellite overpass is maximized,
that is when a discrete puff occurs just after an overpass. This error is due mainly to
the chemistry and turbulent diffusion effects which both dissipate the concentration and
total mass of the puff by some amount when the next overpass occurs. Because at low
altitudes the SO2 lifetimes are on the order of hours, significantly less SO2 could possibly
be measured in the next overpass for that puff than if the puff happened just before an
overpass. In general, for a re-imaging time of T and an SO2 lifetime τ, the fraction (ϕ) of
puff mass that can be observed at imaging time for a puff emitted at te in the re-imaging
interval is ϕ(te) = exp(−(T − te)/τ). Assuming that puffs are uniformly distributed
in each imaging window, the expected value loss for a given puff is E(1 − ϕ(te)) =
{1− (τ/T)[1− exp(−T/τ)]} by the time it is imaged for the first time. For an SO2 lifetime
of 6 hrs e.g., [3,13] and a re-imaging window of 12 h, each puff will have decayed by
an average of approximately 57%. Fortunately, this theoretical error propagates only
minimally to the decay rate estimation since that is already based on relative loss, so such
a consistent bias factor will play little role. If there were just a single puff released in an
interval this error would be inherited in the accumulation of the time-averaged plume;
however, the more puffs released, the more total mass is accumulated. In the limit of an
infinite number of puffs in a re-imaging interval, the steady state fitting function would
be an accurate representation of the measured distribution of SO2 and this error would be
zero theoretically. Although we do not derive a theoretical correction factor to describe
this effect, based on the formula above, we estimate that this loss factor is approximately
(57± 18)% where the 1σ variation is derived from considering τ = 6± 3 h. This yields a
uncertainty contribution from this factor of approximately 32%.

Combining these sources, we estimate that the total uncertainty on the time-averaged
plume is between 37–48% over a wide range of averaging periods and only 18–36% if the
effect of emission-measurement asynchrony is determined to be negligible. As described
above, we fit an APD model rather than a VCD model which greatly improves the signal
to noise ratio of the data. Fitting uncertainty is reduced with respect to VCD fitting and
as with the time-averaging procedure, decays as inverse of the square root of the number
of crosswind measurements, yielding a fitting uncertainty which is much less than these
other sources.

Uncertainty in the decay rate estimation is derived mainly from uncertainty in the
CrIS VCD data which is amplified somewhat by a fairly noisy decay rate estimation
process (Appendix E). Even if all CrIS VCD data have the larger uncertainty of 20% and
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the total mass integration domain only includes about 900 measurements (30× 30 pixels),
the maximum uncertainty on the corrected decay rate samples is only about 10%. All
remaining uncertainty on the decay rate is accounted for by representing the decay rate
as a lognormal distribution. Owing to the maximum base uncertainty on the samples, we
impose a minimum 10% uncertainty on the decay rate lognormal distribution.

Lastly, because the method used to estimate the decay rate is noisy, the uncertainty
propagated to the quantities of interest from the decay rate (representation as a lognormal
distribution with 10% minimum uncertainty) is much larger than the uncertainty from the
fitting procedure and in most cases, the uncertainty from all other sources, though it is
typically less than about 45% overall. Although this assumes that all errors discussed here
are uncorrelated, which may be violated in some cases, the probability dispersion present
in the decay rate distribution alone still likely accounts for most of the total uncertainty.
For comparison, uncertainty on previous state-of-the-art annual emissions have been
estimated as 55% for stronger sources (>100 kt/yr) and 67% for weaker sources (<50 kt/yr)
e.g., [3,5].

Because each parameter of interest is proportional to k (Equation (16)), the retrieved
PDFs of these parameters will inherit the decay rate’s lognormal distribution. Specifically,
the decay rate is distributed as

k ∼ Lognormal
(
µk, σ2

k
)

(18)

where the lognormal distribution is parameterized by µk and σk, respectively, the mean and
standard deviation of ln k. As described above, we impose a minimum uncertainty (here, co-
efficient of variation) for the decay rate, constraining the value of σk as σk ≥

√
ln(1 + 0.12),

derived from the parameterization of the coefficient of variation for a lognormal variable.
Each parameter of interest qi is therefore distributed as

qi =
k
κ

pi ∼ Lognormal
(

µk + ln
pi
κ

, σ2
k

)
(19)

and the SO2 lifetime is distributed as

τ =
1
k
∼ Lognormal

(
− µk, σ2

k
)
. (20)

3. Results

As described above, one of the significant benefits of developing these techniques
for IR sensors is the ability to fill gaps in the UV-based record at high-latitude volcanoes
in the winter when there is insufficient UV backscatter to make reliable measurements.
Additionally, at high-latitude volcanoes, CrIS swaths from each JPSS satellite overlap
significantly, providing at least 4 complete scans over a target volcano per day from NOAA-
20 and SNPP combined. This high combined return rate and orbital coverage is ideal for
increasing the signal-to-noise ratio of the time-averaged results. Below, we demonstrate
these techniques for a 4-month period of unrest at Veniaminof Volcano between September-
December 2018 (Figure 3).
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Figure 3. September-December 2018 time-averaged SO2 plume for Veniaminof volcano (VCD mea-
sured in Dobson Units, DU). Inset: APD profile (red dots) and APD model fit (green), R2 = 0.95.

3.1. 4-Month Summary of Eruptive Sequence

Between September and December 2018, Veniaminof volcano in the Aleutian islands
underwent a period of unrest characterized by a sequence of small-moderate explosive
episodes, lava flows, and a mix of passive and active SO2 emissions (Taryn Lopez pers.
comm); [37]. Between September 3–4 the Alaska Volcano Observatory (AVO) raised its
aviation color code (ACC) and volcano alert level (VAL) from Green/Normal to YEL-
LOW/Advisory and then to Orange/Watch based on an increase in seismic activity and
reports and webcam footage of low-level pulsatory ash emissions. On 21 November 2018,
significant explosive activity sent an ash plume to a height of 15,000 ft (4.6 km), sending ash
150 km downwind which prompted AVO to raise the ACC/VAL to RED/Warning. Other
than this event, AVO maintained the Orange/Watch color code and alert level through the
beginning of January 2019 when the activity stopped [37]. Throughout this period, SO2
height estimates retrieved from the probabilistic CrIS algorithm were dominantly below
4 km with several plumes exceeding 5–6 km over small areas (Figure 4b). This is an ideal
eruption on which to demonstrate this new flux algorithm using CrIS data since the high
SZA at this latitude significantly degrades the signal-to-noise ratio of UV-based SO2 data,
preventing reliable analyses of this type. Using IR data, like that from CrIS, is the only way
to measure the flux consistently throughout this interval particularly between the early
and late stages of this eruptive sequence.

As described above, this algorithm uses a radial Gaussian search weight parameterized
by a soft search radius (σr) with a hard cutoff at 4σr rather than a single hard search radius
cutoff as in [3,13] and others. For the case study of Veniaminof, we used a soft search radius
of 150 km, meaning that there is a hard cutoff at 600 km and that theoretically 95% of the
dispersing SO2 plumes should be located within 300 km. Although this search is used to
determine the wind-reconstruction, the stacked data spans over a box 1000 km × 1000 km.
Over this 4-month eruptive period, SNPP and NOAA-20 together collected 493 plume
snapshots comprising about 7.8× 106 VCD estimates, generating the time-averaged plume
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in Figure 3 with fitting results summarized in Table 1. Although the VCD values used
here are estimated from the gridded CrIS SO2 z-scores (Figure 4a) and a conversion factor
generated only from the most robust retrievals, there are enough samples to make a credible
time-average. Despite this, there is still a subtle bend in the plume axis, which is the result
of accumulating many plumes which themselves have been dispersed in complex wind
fields (e.g., the individual plumes in Figure 4a). This crosswind asymmetry justifies the
theoretical benefits of performing the fitting on an APD profile (Figure 3 inset) rather than
a VCD grid.

Figure 4. Time series of 10-day averaged quantities for the 1 September–31 December 2018 eruptive sequence of Veniaminof
volcano. Top: 600 km × 600 km gridded NOAA-20 CrIS SO2 retrievals for some notable plume overpasses: (a) z-score and
(b) layer height (z > 5 only). Bottom: Median (and 90% confidence intervals) of fit geophysical parameters: (c) SO2 flux
(blue) and fitting R2 value (red). The 4-month flux estimate (blue dashed line, Table 1) and the time-average of the median
flux time series (blue dotted line) are also shown. (d) fit wind speed (blue) and Peclet number (red). (e) SO2 lifetime (red)
and traditional estimate (i.e., without stacking) of cloud mass (blue).
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Table 1. Time-averaged quantities with uncertainty from fitting: 1 September–31 December 2018,
Veniaminof volcano.

Parameter Units Median [5th, 95th] Percentiles

SO2 Flux kt day−1 1.5 [0.8, 2.9]
wind speed m s−1 12.0 [6.1, 23.4]

Eddy Diffusivity (downwind) m2 s−1 8.2 × 105 [4.2,16.0] × 105

Eddy Diffusivity (crosswind) m2 s−1 5.5 × 105 [2.8, 10.8] × 105

SO2 lifetime h 5.3 [2.7, 10.4]
Plume Peclet Number - 3.4 [3.2, 3.5]

3.2. Time Series of 10-Day Running Averages

Although this capability is useful for long-term SO2 flux estimation, using a shorter
time-averaging window could make this estimation relevant to operational users such as
volcano observatories. However, a shorter time-averaging window necessarily induces a
lower signal-to-noise ratio. Because of the large volume of data used to make each average,
even much shorter time-averages contain enough data to make usable estimates. Here we
demonstrate the construction of a time series of 10-day averages for the same eruption
from Veniaminof (Figure 4). The benefits of fitting an APD rather than VCD model are
even more apparent in this context since each 10-day average VCD at a given location
only contains about 40 CrIS VCD estimates, compared with the approximately 1500 CrIS
estimates within 300 km of the plume axis.

During this eruptive period, there were principally four episodes of heightened SO2
emission. In some cases, these were characterized by a single short-duration, but sustained
emission (late September), whereas other periods such as the increased SO2 flux in mid–late
November were characterized by a sequence of pulses. In some cases, the peak fluxes
do not coincide exactly with known periods explosions and ash emission, most notably,
the significant explosive activity during 21–22 Nov. during which the AVO ACC/VAL
were RED/Warning yet the SO2 flux peaked 3 days later. This example is most likely an
artifact of the centered time-averaging (±5 days), which captured not only this significant
SO2 release which itself lasted approximately 2 days, but also the fact that there were
greater SO2 emissions following this event than preceding it. The largest SO2 emission
occurred in mid-December with significant plumes dispersing north and northeast. This
period of emission is discussed in greater detail below. Overall, the 4-month averaged
flux (blue dashed line, Figure 4c) is substantially similar to the average of the time series
of fluxes (blue dotted line, Figure 4c), although they are not exactly comparable owing
to the statistics of lognormal variables. Although this capability yields intriguing details
of SO2 emissions during this poorly understood eruption, a full analysis and geological
interpretation of this eruptive sequence are beyond the scope of this work.

As described in Section 2.2.4, the SO2 decay rate and lifetime are approximately
lognormal variables as predicted by theory and as evidenced by the distribution of SO2
lifetime estimates from a global catalogue of large SO2 sources [3]. At several points in
the time series, particularly until mid-October, there are not enough substantial plumes
in the time-averaging interval to make a credible estimate of the decay rate and lifetime
(Figure 4e). For such intervals in the middle of the time series, the previous interval’s
statistics (omitting flux) are used as defaults. For the earliest interval, we have used the
global distribution of SO2 lifetimes from [3] to estimate the default lognormal parameters.
As is evident later in the time series, the range of estimates for SO2 lifetime are very similar
to the statistics of the lifetimes fitted by [3].

4. Discussion
4.1. Estimated Cloud Mass

Although geophysical parameters such as the flux, lifetime, and diffusivities are
presented here as lognormal variables with uncertainty propagated directly from the decay
rate estimation, the plume mass and Peclet number are direct result of the fitting and have
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uncertainty dominated by the fitting error. Owing to the statistics of lognormal variables,
the median fitted plume mass can be calculated as the product of the median flux and
median lifetime. Figure 4e shows the 10-day average cloud mass (blue) that would be
estimated using only the detection steps introduced above, but not the stacking, that is, it is
the 10-day average of the individual plume detections. This is a very conservative estimate
since it does not include any SO2 below the z-score-based robust detection limit. For the
plumes in this time series, this is about 40% of the fitted cloud mass (Figure 5).

Figure 5. Linear-(left) and log-scale (right) comparisons of fitted cloud mass and traditionally
detected cloud mass.

Crucially, if the individually detected cloud masses could accurately incorporate
regions of low-concentration SO2 surrounding the robust detections, then a plausible flux
estimate could be made from a sequence of measurements simply by estimating the decay
rate as in this work. However, clearly a significant amount of the total SO2 in these small
clouds is too dilute for the robust detection and the rotation and stacking is required to
amplify the signal in these regions.

4.2. Wind Speed, Goodness of Fit, and Anomalous Flux

For the 4 month-averaged plume, the fitted wind speed agrees very well with ra-
diosonde wind data from Cold Bay, Alaska, located only 235 km to the southwest (Figure 6,
data provided by Larry Oolman at the University of Wyoming Weather Lab, http://
weather.uwyo.edu/upperair/sounding.html (accessed on 30 December 2020). Here we
have analyzed all available soundings for the 4 month period, using only the data between
2 and 5 km altitude, which is the typical range of SO2 altitudes measured by CrIS dur-
ing this period. The 4 month-averaged radiosonde wind speed was 13.0 m s−1 and the
median (and 90% confidence interval) radiosonde wind was 11.8 (3.6, 26.8) m s−1 which
compares very well with that from out fitted SO2 plume of 12.0 (6.1, 23.4) m s−1. At this
large temporal scale, agreement is very good; however, this technique is not a robust tracer
of time-averaged winds at finer scales.

As demonstrated by comparing Figures 4 and 6b, the fitted wind speeds over 10-day
intervals are generally significantly less than those from radiosonde winds. Principally,
this discrepancy is the result of the fitting process based on SO2 plume shape, requiring a
substantial enough plume to be present. Furthermore, the fitting is not a direct measure of
the wind speed since any upwind SO2 dispersal (real or apparent and caused by smoothing)
will greatly reduce the fitted wind speed. If more plume observations are incorporated,
the time-averaged dispersal behavior emerges, yielding a much more accurate fitted wind
speed. Fortunately, this discrepancy has little impact on the fitted SO2 flux and lifetime
since lifetime is estimated independently and the flux is proportional to the fitted cloud

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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mass, itself very accurate when the fit is good. When the fit is degraded, the fitted cloud
mass (and thus flux) can be affected by the fitted wind speed.

Figure 6. Analysis of Cold Bay, AK radiosonde wind speeds between2 and 5 km altitude, University of Wyoming station.
(a) Distribution of wind speed values (grey), median (blue solid), 90% confidence interval (blue dotted), and time-averaged
(red dashed). (b) Time series of wind speed measurements (black dots), averages for each sounding (blue), 10-day averages
(green), and the 4-month average (red dotted).
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Over the sequence of plumes from Veniaminof described here, the APD model fit
is generally good with an R2 ≈ 0.9 or better (Figure 4c). Critically, there is no apparent
correlation between R2 and flux; however, there is an apparent negative correlation between
the wind speed estimate and R2 for the most wind-affected plumes (Figure 4d). This
typically results when the APD profile does not decrease smoothly in the downwind
direction despite a very good fit (qualitatively) in the upwind direction. Owing to the
simplified physics used, it could be possible to make a more robust estimate of the Peclet
number and flux using only the physics of upwind dispersal; however, such a specialized
fit is beyond the scope of this work.

As described, the largest SO2 emission occurred in mid-December, reaching peak
emission rates of 8.6 kt day−1. Through this period, the fit worsened somewhat to
0.8 < R2 < 0.9. Although many significant plumes can be seen in individual CrIS
overpasses during this time (Figure 4a), it is possible that the fluxes during this period are
overestimated as a result of an overestimated wind speed. If the wind has carried SO2 at
an irregular speed or if the interval is characterized by a few large, discrete SO2 releases,
it is very common to observe highly irregular (non-smooth) decay in the downwind di-
rection. As the APD model attempts to fit the far-downwind SO2 that has not dispersed
or diluted, the resulting fit is an apparently more wind-affected plume containing greater
total mass and thus greater apparent flux with a poorer fit (Figure 7). Regardless of these
considerations, the fitted model is still plausible throughout this period suggesting that the
true fluxes were likely similar to those fitted here.

Figure 7. Detail of mid-December 2018 period of large emissions from Veniaminof. (a) Normalized APD profiles (data: red,
fit: green) illustrating goodness of fit, (b) time-averaged VCD maps, (c) Median (and 90% confidence interval) SO2 flux
(blue) and fitting R2 value (red).
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4.3. Comparison of Single-Sensor Results

Throughout, we have combined retrievals from NOAA-20 CrIS and SNPP CrIS. Here
we demonstrate that these two sensors make consistent measurements by generating a
4-month averaged plume and fit for each sensor separately (Figure 8). The time-averaged
VCD maps are largely similar with the NOAA-20 CrIS version extending over a slightly
larger area downstream and the SNPP CrIS plume narrowing downstream and containing
smaller peak VCD values than the NOAA-20 version. The fitted parameter values (Table 2)
reflect these observations. The eddy diffusivities estimate for the combined analysis
was significantly larger than for the individual sensors, in particular in the crosswind
direction. This is due to the fact that combining the two sensors worth of observations
can only increase the spread of the time-averaged VCD, mimicking the effect of mixing
by large eddies. All other parameters were constrained between the NOAA-20 and SNPP
fits; however, the combined fitted parameters are more similar to those of NOAA-20
than SNPP despite the fact that there were roughly the same number of NOAA-20 and
SNPP observations.

Figure 8. Comparison of September-Decemeber 2018 time-averaged SO2 plume for Veniaminof volcano as measured by
NOAA-20 CrIS (left, fit: R2 = 0.94) and SNPP CrIS (right, fit: R2 = 0.95).

Table 2. Fitting results for NOAA-20 and SNPP-only time-averaging: 1 September–31 December
2018, Veniaminof volcano.

Parameter Units Percentiles: Median [5th, 95th]

NOAA-20 Only SNPP Only

SO2 Flux kt day−1 1.6 [0.8, 3.2] 1.0 [0.5, 2.0]
wind speed m s−1 12.5 [6.4, 24.4] 8.1 [4.1, 15.8]

Eddy Diffusivity (downwind) m2 s−1 7.2 [3.7, 14.0] × 105 7.7 [4.0, 15.2] ×105

Eddy Diffusivity (crosswind) m2 s−1 2.6 [1.4, 5.2] × 105 2.2 [1.1, 4.3] ×105

SO2 lifetime h 5.1 [2.6, 10.0] 6.6 [3.4, 12.9]
Plume Peclet Number - 4.0 [3.8, 4.2] 2.0 [1.9, 2.1]

4.4. Comparison with Other Estimates of Degassing and Lifetime

Although there are not any direct comparisons possible for this case study due to
the limited coverage by UV instruments which typically make these measurments, we
note here two promising comparisons that are available. In analyzing SO2 flux estimates
from TROPOMI data, [13] compared annual emissions from a variety of large SO2 sources
in the interval April 2018 to March 2019, including Veniaminof. They measured the
annually averaged flux from Veniaminof in this period as 189± 14.7 kt yr−1 (TROPOMI),
107± 27.5 kt yr−1 (OMI), and 95± 31.6 kt yr−1 (OMPS) which are in decreasing order of
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resolution and average sensitivity per area. Based on the 4-month CrIS-based estimate
of 1.5 kt day−1, CrIS measured a total of 183 kt SO2 over the course of the 2018 eruption.
If very little or no emissions occurred in the other 8 months of the year, this would compare
well with the estimate from TROPOMI in [13]. However, over the previous decade (2008–
2017), annual average emissions from Veniaminof were approximately 62.1± 6.3 kt yr−1 as
measured by OMI for NASA’s public archive https://so2.gsfc.nasa.gov/measures.html
(accessed on 29 December 2020) [38]. If this low level of emissions had occurred through
the rest of the year, the annualized emissions from Veniaminof would be approximately
224± 83 kt yr−1. Depending on which of the above UV measurements is most similar in
sensitivity to CrIS, this annualized flux is between 19% and 236% greater that what was
recorded with UV instruments although this comparison is probably most appropriate for
CrIS-OMI (209%) and CrIS-OMPS (236%). Because about 100 kt of the SO2 was emitted
in December when SZA was too high to make reliable UV measurements for all but the
strongest plumes, it should be expected that CrIS would measure about double the annual
SO2 flux as OMI and OMPS including a period of unrest occurring in the winter.

Lastly, as described throughout, the SO2 lifetime or decay time scale plays a central
role in determining the SO2 flux. Consequently, our estimation technique for the decay rate
outlined in Appendix E must be compared to other estimates. The most comprehensive
data on SO2 plume parameters is compiled in the global catalog of large SO2 sources
which includes a mix of volcanoes, coal-fired power plants, and smelting facilities [3].
The values of SO2 decay time scale in this catalog are the result of a similar wind-rotating
and time-averaged fitting process, except that in [3], the wind speed is estimated inde-
pendently of the fit using ancillary wind datasets and the decay time is fitted from the
mean plume. Here, we adopt a completely different approach, estimating the SO2 lifetime
from the record of individual plume mass observations, producing a lognormal probability
distribution for the lifetime representing the uncertainty propagated from the noisy decay
rate estimation process. Our distribution of SO2 lifetimes is in very good agreement with
the distribution from the global catalog which contains data from 215 large SO2 sources
(Figure 9). In particular, our distribution strays no more that 1% outside the 90% confidence
interval for the distribution of the global catalog. We have generated this estimate using
10,000 empirical distribution functions (EDF) of simulated lifetime sample sets (each with
215 members) drawn from the global catalog histogram.

Figure 9. Comparison of published global SO2 lifetime distribution and lognormal uncertainty distribution for September–
December 2018 Veniaminof eruptive sequence. (a) Global SO2 lifetime distribution from [3] (blue, N = 215) and lognormal
distribution for Veniaminof 4-month average SO2 lifetime. (b) black lines: 100 EDFs from among 10,000 simulations of
215 samples drawn from the SO2 lifetime histogram in [3]; (blue) median (solid) and 90% confidence interval (dashed)
of the 10,000 EDFs; (red) lognormal cumulative distribution function for September–December 2018 Veniaminof eruptive
sequence.

https://so2.gsfc.nasa.gov/measures.html
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The strength of this decay time scale technique is that it can be estimated solely from a
sequence of plume observations; however, the uncertainty in the technique is significant
and propagates to the other fitted quantities unless additional data is used to constrain the
problem. Overall, the good agreement between the distributions of SO2 lifetime estimates
from Veniaminof and those from large sources globally is an indication that this technique
can produce similar lifetimes as are measured by other means and thus that our flux
estimates are at least as accurate as in similar techniques.

5. Conclusions

(i) Time-averaged volcanic SO2 flux and lifetime estimation techniques can be suc-
cessfully modified to accept newly-available hyperspectral IR SO2 data, enabling
robust gas monitoring at high-latitude volcanoes in all illumination conditions,
including low- or no sunlight conditions. This has the potential to fill a key
observational gap in traditionally UV-based monitoring.

(ii) Our technique detects weak signals of plumes in gridded SO2 data using com-
puter vision and object-detection techniques used widely in medical and seismic
tomography. It then amplifies these weak plume signals by attempting to re-
construct the wind fields dispersing them and time-averaging the results. This
amplification enables the recovery of approximately twice as much SO2 mass as
would be estimated by considering the cloud mass in individual plume snapshots
alone. A new line-density fitting function derived directly from the time-averaged
point-source dispersion physics is used to generate a well-fitting model of the
time-averaged plumes.

(iii) The SO2 decay rate and lifetime (reciprocal decay rate) are estimated independently
of the fitting and are shown to have lognormal statistics which agree remarkably
well with previous published estimates of the distribution of SO2 lifetimes from
large sources globally.

(iv) This technique can be subdivided, allowing for short-timescale averages and
the generation of SO2 flux monitoring time series, which could prove useful to
observatories. The technique in general and the time series capability in particular
have been demonstrated for the September–December 2018 period of unrest and
eruption at Veniaminof volcano, Alaska, highlighting the importance of new
algorithms designed for detection and characterization of SO2 in the infrared.
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Appendix A. Plume Source Estimation for Rotation and
Source-Reconstruction Scheme

As in the main text Section 2.1.1, once the plume dispersal direction is found using the
best fitting projection line (L(α̂, ŝ)) derived from the Radon transform of the input z-score
image, a profile of the z-scores (ẑ(t)) along this line is constructed from nearby parallel
profiles which approximates the plume’s axial z-score profile. Here, t refers to distance
along the profile line. We then censor negative z-scores as noise and normalize the profile:

fz(t; α̂, ŝ) =
max(ẑ(t), 0)∫ ∞

−∞ max(ẑ(t), 0)dt
(A1)

which has the properties of a probability density function (Figure 2a). As in the main text,
from fz(t) we compute t10, t50, and t90, the 10th, 50th, and 90th percentiles, respectively.
If t90 − t50 > t50 − t10, then the imaged plume is extended downwind in the direction of v̂.
If the opposite is true, then the plume is dispersed towards −v̂ so the projection direction
and z-score profile are reversed (Figure 2b).

As described in the text, estimation of the plume’s source location requires an estimate
of the Peclet number for the single plume observation generated from this profile fz(t).
Although the APD model (L (x)) is not an axial slice of a VCD cloud, we compare it to the
computed profile ( fz(t)) and make a rough estimate of the Peclet number as:

Pe = −G−
G+

(
1 +

G+

G−

)2

(A2)

where G+ ≈ d
dt ln fz(t)|t>tmax is an estimate of the mean gradient of the natural logarithm of

the profile to the right of the profile maximum and G− ≈ d
dt ln fz(t)|t<tmax is an estimate of

the mean gradient of the natural logarithm of the profile to the left of the profile maximum
(Figure 2c).

To see this, consider that from the APD theory,
G+ :=

d
dx

ln L (x)|x>0 =
ω− λ

2

G− :=
d

dx
ln L (x)|x<0 =

ω + λ

2

(A3a)

(A3b)

and consequently,

G+

G−
=

ω− λ

ω + λ
= −1− 1

2
Pe +

1
2

√
Pe2 + 4 Pe. (A4)

Solving for Pe yields this formula for the Peclet number in terms of the left and
right-side gradients.

In the context of the normalized plume axial profile fz(t), the peak of the profile is
not necessarily located at the profile line origin and so we use left and right partitions
about the location of the maximum (tmax). Additionally, because each plume observation
is noisy, we do not compute G+ and G− directly as the derivatives d

dt ln fz(t)|t>tmax and
d
dt ln fz(t)|t<tmax , respectively. Instead, we use the slopes of independent linear fits to the
right and left sides of ln fz to estimate G+ and G−. We restrict the data used for the fits to



Remote Sens. 2021, 13, 966 26 of 35

the nearest continuous non-zero intervals on either side of tmax. In concert with the other
techniques detailed in the text, this ensures that only data from the continuous plume is
used for the fit and does not incorporate any SO2 from unrelated sources or from previous
emissions that may have been caught incidentally in the profile.

We now explain the rationale behind using the one-dimensional representation (APD,
L (x)), rather than an axial slice of the two-dimensional VCD solution (X(x, 0)). We note
here that the VCD solution can only approximate the cloud VCD away from the source since
there is a singularity there and this is clearly unphysical. Additionally, the measurement
FOV or pixel represents a fundamental limitation on resolving the trend toward a possible
singularity even if one could exist. Consequently we may look to estimate the Peclet
number by using the data away from the source region.

Using a common first-order approximation to K0 (modified Bessel function of the
second kind of order zero) from the formula for the VCD solution in the text, the VCD
cloud can be approximated away from the origin with elementary functions:

X ≈
µ
√

αy√
4πλρ0

exp
(

ωx− λρ0

2

)
. (A5)

Away from the source region, the quantity 1/
√

ρ0 changes very little in the x-direction
compared to the exponential quantity in the approximation. Furthermore, the x-derivative
of the logarithm of this quantity is negligible compared with that for the exponential quan-
tity. As a result, the quantity G+/G− for an axial profile of the VCD is well-approximated
away from the source using the profile of APD instead which includes only an exponential
term and is therefore well-suited to linear regression in a log-transformed space.

There are two alternative (but flawed) methods that we could employ to attempt to
rectify this inconsistency. The first method would entail multiplying the term

√
|t− tmax|

onto fz(t) before taking the logarithm when constructing the right and left side gradients
(G±). This would theoretically eliminate the 1/

√
|x| singularity present in the axial profile

of the approximate VCD solution above (X(x, 0)). However, as described above, there
cannot be any singularities in the VCD data, so this approach would introduce a singularity
in the source reconstruction analysis at tmax. The influence of this singularity on nearby
data would make fitting of these gradients very unlikely to be accurate even if the fitting
process did converge. We could do the fitting away from tmax, but this would exclude the
most reliable data since larger values in the CrIS SO2 retrieval have a lower coefficient
of variation.

A second method would be to directly fit an APD profile to the data before source
reconstruction once the plume dispersal direction is found. We do not use this approach
for two reasons: (i) using just a single axial slice of the cloud allows us to filter out nearby
puffs of SO2 from other sources and prevents double-counting of previous puffs from the
studied volcano which may be lingering within the image and (ii) because there is sufficient
noise in a single plume image to significantly disrupt the construction of a smooth APD
profile. If this were possible, the time-averaging process would not be necessary and the
temporal resolution of the degassing flux calculations would simply be the repeat time
of the sensor. Even cursory investigation of plume images demonstrated that the level of
noise for a single SO2 plume image is too great for this method to be employed.

Once a rough estimate of the Peclet number is generated, we compute the source
location using upstream-downstream mass partitioning. The APD model predicts the
fraction p of the plume mass that will be found upwind of the source location as

p =
1
2

(
1−

√
Pe

Pe + 4

)
. (A6)

The source location tsource is then found from∫ tsource

−∞
fz(t; α̂, ŝ)dt = p (A7)
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as in Figure 2d. This can be computed by inverting the cumulative distribution of fz(t) to
find the (100× p)th percentile (pth quantile) value of t along the profile. This procedure
is preferable to setting the source location as the location of the maximum point since the
maximum can be significantly dislocated with respect to the spatial decay of the plume
strength owing to a variety of factors including complex distortion by local winds and
simply retrieval error and noise.

Appendix B. Exponential Smoothing Filter

As demonstrated by [24], the use of an exponential kernel for smoothing reduces noise
variance to a greater extent than a Gaussian kernel. The exponential kernel used in this
study corresponds to the exponent-1 member of the family of exponential filters from [24]:

K(r) ∝ exp
(
− r

re

)
(A8)

where re is the e-folding radius, that is the radius at which the kernel has decreased by a
factor of e. In the context of and exponential probability distribution, re is also the mean
and standard deviation radius.

For practicality in pixel smoothing, the kernel is implemented as a square N× N array
where N is determined as follows. For a specified re, a tolerance ε is set which corresponds
to the fraction of kernel mass outside a maximum radius R which can be computed from:

re(re + R) exp(−R/re) = εr2
e . (A9)

Inverting this to solve for R in terms of ε requires use of the non-principal branch of
the product-log or Lambert W function W−1; [41]:

R
re

= −1−W−1(−ε/e). (A10)

Because we are interested in small values of ε << 1, we use the following three term
approximation for the specified branch of W−1 as in [41]:

W−1(ζ) ≈ ln(−ζ)− ln(− ln(−ζ)) +
ln(− ln(−ζ))

ln(−ζ)
, (A11)

for some real variable ζ < 0, yielding the following approximation for R:

R
re
≈ − ln ε + ln(1− ln ε) +

ln(1− ln ε)

1− ln ε
. (A12)

From this value of R, we compute the discrete kernel width in pixels as the nearest
odd integer (≥3) to the value of 2R/∆x, where ∆x is the smaller of the x- and y- grid
spacings. We then compute K(r) as above on the kernel domain: [−R, R]× [−R, R]. Lastly,
the kernel array is normalized so that it has unit sum.

Although this process leads to fairly large kernels (in number of pixels), the kernels
are still highly concentrated. For example, using gridded CrIS data with 16 km pixels,
specifying an e-folding radius of 20 km, and choosing a tolerance of ε = 0.01 yields a kernel
which is 17 pixels wide; however, 80% of the kernel mass is within 60 km of the center.
At the edges, the kernel is only approximately 1/700-th of its value at the center and in the
corners, the kernel is only 1/10,000-th of its value at the center. The 4 km e-folding radius
kernel (with ε = 0.01) used to smooth the rotated plume data is only of size 3× 3.

Appendix C. Appropriateness of Implementing a Steady State Solution

The time required for the solution of a transient diffusion process to approach a steady
state solution is referred to as the Local Accumulation Time LAT; [42–44] or Mean Action
Time MAT; [44,45]. This timescale represents the time required for a bounded system to
transition from one steady state to another due to a change in boundary conditions or for a



Remote Sens. 2021, 13, 966 28 of 35

disturbance to propagate past a point in an unbounded system tending locally towards
steady state.

Here we estimate the MAT for the advection-diffusion-reaction problem used in
the present work and demonstrate that the SO2 image repeat times and time-averaging
intervals are sufficient to resolve the state of the plume over multiple imaging overpasses.
Equivalently, we demonstrate that the MAT is typically less than the plume image repeat
time for most small SO2 plumes and consequently each integration period (accumulating
many plume images) can be treated as representing a steady state SO2 cloud.

From the text, the governing advection-diffusion-reaction equation is:

∂C
∂t

+ u
∂C
∂x

= Dx

(
∂2C
∂x2 +

1
αy

∂2C
∂y2 +

1
αz

∂2C
∂z2

)
− kC + S (A13)

where the source (S = ṁδ(x)δ(y)δ(z)) is a continuous point source of SO2 and the initial
condition is uniformly zero. In this section, z refers to a vertical coordinate and not SO2
z-scores used elsewhere. Similar to the text with slightly different notation, the steady state
(infinite-time) solution is

C∞(x, y, z) =
ṁ√αyαz

4πDxρ
exp

(
ux− vρ

2Dx

)
(A14)

with the shorthand v =
√

u2 + 4Dxk

ρ =
√

x2 + αyy2 + αzz2

(A15a)

(A15b)

To compute the MAT, we need the full, transient solution which transitions from the
uniformly zero initial condition to the steady state solution:

C(x, y, z, t) =
1
2

C∞(x, y, z)

×
[

exp
(

vρ

Dx

)
erfc

(
ρ√

4Dxt
+

v
√

t√
4Dx

)
+ erfc

(
ρ√

4Dxt
− v

√
t√

4Dx

)]
. (A16)

As described by [44], the MAT is the local expected value waiting time for the distri-
bution of temporal perturbations in the field, which is a good proxy for the waiting time to
steady state, even though formally, diffusive problems require infinite time to reach steady
state. In problems involving shock-like solutions, the MAT is equivalent to this waiting
time. following [44], we define the MAT as

T(x, y, z) =

∫ ∞
0 t ∂C/ ∂t dt∫ ∞
0 ∂C/ ∂t dt

=
∫ ∞

0
1− C(x, y, z, t)

C∞(x, y, z)
dt (A17)

where the second equality is derived by integrating the numerator by parts, and using the
zero-concentration initial condition. Because the steady state and transient solutions are
known, we can compute the MAT directly:

T(x, y, z) =
∫ ∞

0
1− C(x, y, z, t)

C∞(x, y, z)
dt

=
1
2

∫ ∞

0
erfc

(
v
√

t√
4Dx

− ρ√
4Dxt

)
dt

− 1
2

exp
(

vρ

Dx

) ∫ ∞

0
erfc

(
ρ√

4Dxt
+

v
√

t√
4Dx

)
dt. (A18)

The first integral can be found by substitution and then integration by parts:



Remote Sens. 2021, 13, 966 29 of 35

1
2

∫ ∞

0
erfc

(
v
√

t√
4Dx

− ρ√
4Dxt

)
dt

=
1
2

∫ ∞

−∞
erfc(σ)

dt(σ)
dσ

dσ =
∫ ∞

−∞

t(σ)√
π

exp(−σ2)dσ

=
∫ ∞

−∞

2Dxσ2 + vρ +
√

2Dxσ
√

2Dxσ2 + 2vρ

v2
√

π
exp(−σ2)dσ

=
Dx + vρ

v2 (A19)

where the substitution in the first equality comes from setting σ(t) = v
√

t√
4Dx
− ρ√

4Dxt
,

and inverting to obtain t(σ).
The second integral is calculable from [46] (Equation 4.3.34):

∫ ∞

0
erfc

(
ρ√

4Dxt
+

v
√

t√
4Dx

)
dt = 2

∫ ∞

0
erfc

(
ρ√

4Dxσ
+

vσ√
4Dx

)
σ dσ

=
2Dx

v2 exp
(
− vρ

Dx

)
(A20)

Combining these results yields the MAT:

T(x, y, z) =
Dx + vρ

v2 − 1
2

exp
(

vρ

Dx

)
2Dx

v2 exp
(
− vρ

Dx

)

=
ρ(x, y, z)

v
=

√
x2 + αyy2 + αxz2√

u2 + 4Dxk
. (A21)

Because the shorthand parameter ρ represents the distance from the source to a point
on the ellipsoid scaled by the diffusion aspect ratios, or rather the true downwind distance
for all points in the plume axial line, the mean velocity of source disturbances in the plane
of the cloud is

dρ

dT
= vs. =

√
u2 + 4Dxk = u

√
1 +

4
Pe

. (A22)

The consequence of this is that for the considered flow, the mean propagation velocity
of changes in the SO2 flux from the volcano source is greater than the mean wind speed
by a factor greater than unity and that the wind speed may be used to construct an upper
bound on the MAT for the disturbance to affect a given point.

For a fairly typical mean wind speed of 10 m s−1, the disturbance caused by a sudden
change in the degassing flux will arrive at a point 500 km downwind (fairly far for typical
SO2 degassing plumes) within at most 13.9 h. This is exact in the limit as Pe→ ∞; however
for more typical plume Peclet numbers (0.1 < Pe < 10), the MAT is between 2.2–11.7 h.
As described in the text, a single CrIS sensor aboard S-NPP or NOAA-20, cannot reliably
fully cover a plume’s extent in one overpass, typically requiring instead two or more
precessing orbits to construct an image covering the plume’s full extent. For these satellites,
the mean motion is ≈14.2 orbits per day, giving an orbital period of ≈101.4 min. For a
plume image requiring two orbits, the imaging period is ≈3.4 h and the image repeat time
is the time required for 7 orbits (≈11.8 h). Since the image repeat time is fairly close to
the maximum possible MAT for the considered case and is longer than a typical MAT,
the time-integration intervals encompassing several observations are certainly far longer
than the steady state waiting time and consequently the steady state solution to the problem
is an appropriate model from which to invert the source and cloud parameters.
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Appendix D. Aspect Ratio Estimation

Once the one-dimensional fitting is complete, the diffusivity aspect ratio (αy) can be
estimated using the resulting fit parameters, specifically the fit value of ω. Specifically, We
can construct two new profiles of the VCD data in the absence of wind. We define:

Lω,‖(x) =
∫

X(x, y) exp
(
− ωx

2

)
dy =

µ

λ
exp

(
− λ|x|

2

)
(A23)

and

Lω,⊥(y) =
∫

X(x, y) exp
(
− ωx

2

)
dx =

µ
√

αy

λ
exp

(
−

λ
√

αy|y|
2

)
. (A24)

These two profiles can be computed from the VCD data using the fit ω value. Next
we normalize these profiles so that they are non-negative and integrate to one:

fX(x) =
max{Lω,‖(x), 0}∫
max{Lω,‖(x), 0}dx

=
λ

4
exp

(
− λ|x|

2

)
(A25)

and

fY(y) =
max{Lω,⊥(y), 0}∫
max{Lω,⊥(y), 0}dy

=
λ
√

αy

4
exp

(
−

λ
√

αy|y|
2

)
. (A26)

In theory the aspect ratio can be computed from these normalized densities (both Laplace
distributions theoretically) as the ratio of their variances:

αy =
σ2

x
σ2

y
=

∫
x2 fX(x)dx− [

∫
x fX(x)dx]2∫

y2 fY(y)dy− [
∫

y fY(y)dy]2
. (A27)

Although we could have attempted to fit the VCD solution including the aspect ratio
to the VCD data to obtain an estimate of the aspect ratio, this method is more robust since it
allows that the mean wind may not have been perfectly straight or uniform, resulting in a
mean VCD cloud that has an asymmetric crosswind mass distribution or is symmetric but
displaced from the theoretical wind axis. This would result if there were non-uniform or
non-straight-line winds dispersing the SO2 puffs near the volcano which is very common.

Appendix E. Estimation of Decay Rate Statistics

Decay Rate Correction

To estimate the decay rate (k), we consider the problem in the context of first order
reaction (loss) kinetics, that is, as a reactor model for the total cloud mass (M) which was
termed the “Delta-M" method by [28]. Whenever the magnitude of the flux of SO2 is much
less than the magnitude of the change in SO2 mass, the governing equation for the total
mass becomes a simple decay model:

dM
dt

= −kM (A28)

where k is not necessarily fixed. To estimate k at some instant we can choose to use one of
two formulae:

k(t) = − 1
M(t)

dM(t)
dt

≈ M(t)−M(t + ∆t)
M(t)∆t

(A29)

referred to here as the percent method or using

k(t) = − d
dt

ln M(t) ≈ ln M(t)− ln M(t + ∆t)
∆t

(A30)



Remote Sens. 2021, 13, 966 31 of 35

referred to here as the log-difference method. For time series data, as the time interval (∆t)
between measurements grows, discretizations of these formulae will diverge significantly.
Additionally, in the presence of a detection threshold, which is certainly the case here, both
formulae encounter significant problems. If the cloud mass drops below the detection
threshold, the first formula will yield right-censored estimates of the decay rate as k = 1/∆t,
whereas the second formula will yield an infinite estimate as the mass decays apparently
to zero in an finite time interval. For this reason, we work with the first formula to estimate
k and apply a type of continuity correction to correct for the right-censoring.

First, we generate valid samples of the decay rate:

ki =
1

Mi

Mi −Mi+1

∆ti
(A31)

for all i where Mi+1 < Mi and Mi is the i-th total SO2 cloud mass in the sequence of
plume images. As described above, the maximum calculable value of these samples by this
method is kmax

i = 1/∆ti which occurs whenever the total cloud mass decays apparently
to zero (Mi+1 = 0). According to the approximation of first-order linear reaction kinetics
(upon which this estimate is based), the mass should never decay to exactly zero. If the
decay constant were actually 1/∆ti, then the mass would only decay by a factor of e in
one time interval. However, due to the lower limit on detection sensitivity, it is common
for small clouds to decay to apparently zero mass as little as one observation after first
detection. In order to decay this much in one time interval, the decay constant must be
sufficiently large for the concentration to drop below the detection limit. To derive a
continuity correction, we consider the following. If the true decay rate (k) was known and
was constant over the interval ∆ti, then according to the solution of Equation (A28), we
would have:

ki =
1

Mi

Mi −Mi exp(−k∆ti)

∆ti
=

1
∆ti

[
1− exp(−k∆ti)

]
(A32)

which can be inverted to find an estimate (k̂) of the true decay rate which corrects for the
discretization as a function of the interval size:

k̂ = f (∆ti) = −
1

∆ti
ln
(
1− ki∆ti

)
. (A33)

This formula confirms that for an infinitesimal time interval (∆ti → 0), there is no
correction and the original sample is accurate. For decay rate samples which approach
the censoring value kmax

i = 1/∆ti, the correction blows up, yielding an apparently infinite
decay rate in cases where the cloud mass decays apparently to zero. To mitigate this effect
(related to the existence of a detection threshold), we adopt a Taylor expansion of function
f (∆ti) about the point ∆ti = 0:

k̂ = f (∆ti) ≈
N

∑
n=0

(ki)
n+1

n + 1
(∆ti)

n. (A34)

In general, fewer terms are needed for smaller values of the decay constant, or similarly,
the closer the true SO2 lifetime (τ = 1/k) is to the satellite repeat time interval (∆ti),
the fewer terms are needed and the correction need not be as severe. Of course, the number
of required terms cannot be known precisely since the true lifetime is the unknown to be
determined. Because the polynomial expansion is attempting to fit a singularity, this is only
an issue as ki → kmax

i . Near this limit, we may estimate the appropriate number of terms
from knowledge of the detection threshold as follows. In the limit ki → kmax

i = 1/∆ti,
Equation (A34) becomes

lim
ki→1/∆ti

k̂ ≈ 1
∆ti

N

∑
n=0

1
n + 1

=
HN+1

∆ti
(A35)
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where HN+1 is the (N + 1)-st harmonic number. From this relation, the number of terms
which minimizes the error between the true decay rate and the estimate is:

N = arg min
N
{k∆ti − HN+1} (A36)

Using a continuous approximation of the harmonic numbers gives

N = dexp(k∆ti − γ)e − 1 (A37)

where γ is the Euler–Mascheroni constant. Although the elapsed number of SO2 e-folding
times in one repeat time interval (k∆ti) is not known, we may substitute in a rough estimate.
Among the instances where the mass decays to zero, we may consider that the larger
preceding values of mass (Mi) require shorter lifetimes to decay below the detection limit
one time interval later. From this reasoning, we may increase the number of terms for
larger preceding cloud mass. Accordingly we derive the following estimate for the optimal
number of terms:

N = dexp(−γ)Mi/εe − 1 (A38)

where ε is the mass detection limit. This expression is derived by estimating the repeat
time interval as the time required for the maximum column to decay to the detection limit.
Clearly this is a very coarse estimate, but it is used only to inform the number of terms in
the decay rate correction, which yields a much better estimate. The cloud mass detection
limit is defined here as ε = 〈Xz=zth〉Apix where Apix is the pixel area and 〈Xz=zth〉 is the
mean VCD from among all measurements with SO2 z-score near (within 0.5 of) an SO2
z-score detection threshold (zth = 5) with the angle brackets referring to a sample mean
withing the scene. When no measurments from the interval fall near zth, the detection limit
is taken from a previous interval, and when there is no previous interval, 〈Xz=zth〉 is set to
the value 0.5 DU.

With a definite estimate of the appropriate number of terms, we can apply this formula
to all valid samples ki. Notably, in the limit ki → 1/∆ti, the correction this number of terms
gives can be given with a better approximation of the harmonic numbers as

lim
ki→1/∆ti

k̂ ≈ 1
∆ti

(
γ + ln(N + 1) +

1
2(N + 1)

)
≈ 1

∆ti

(
ln Mi − ln ε +

eγε

2Mi

)
, (A39)

which can be seen as a correction to the log-difference method defined above.
Overall the decay rate estimation process can be summarized by four steps:

Step 1: Valid decay samples are computed as

ki =
1

Mi

Mi −Mi+1

∆ti
(A40)

for all Mi > Mi+1.
Step 2: The mass detection limit is estimated for a sequence of plume observations as

ε =
〈{

X(x, y) : |z(x, y)− zth| ≤ 0.5
}〉

Apix (A41)

with the angle brackets referring to a sample mean over all pixels meeting
the criteria.

Step 3: The number of terms needed for each correction is estimated as

Ni = dexp(−γ)Mi/εe − 1. (A42)
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Step 4: Each correction is performed:

k̂i =
Ni

∑
n=0

(ki)
n+1

n + 1
(∆ti)

n (A43)

Once a set of corrected samples ({k̂}i) is obtained, we can estimate the lognormal
parameters (µk, σk) representing, respectively, the mean and standard deviation of ln k.
We estimate these by inverting the sample quantiles (25-th percentile, median, and 75-th
percentile) to obtain an estimate of µk as the inverted median, and σk as the average of the
σk estimates inverted from the 25-th and 75-th percentiles. This is a more robust estimation
method than directly using the method of moments (computing the sample average and
standard deviation).
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