NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data
Abstract
:1. Introduction
2. Overview of the Global Water Reservoir Product Suite
2.1. Brief Description of the Selected Reservoirs
2.2. Reservoir Product Components
3. Data and Methods
3.1. Input Datasets
3.2. Methodology
3.2.1. Algorithm for the 8-Day Products
3.2.2. Algorithm for the Monthly Products
4. Results
4.1. Comparing Water Surface Areas with Landsat-Based Results
4.2. Validating the MODIS Elevation and Storage Products against In Situ Observations
4.3. Validating the Evaporation Rate Product against In Situ Observations
4.4. Consistencies between VIIRS and MODIS Products
5. Discussion
5.1. Benefits of the MODIS/VIIRS Based Water Elevations as Compared to Radar Altimetry Products
5.2. Limitations and Sources of Uncertainties
5.3. Future Directions and Potential Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lake ID | GRanD ID | Name | Ctry | CONT | A–E Coeff. 1 a, b | Vc2 (km3) | Ac2 (km2) | Ec2 (m) | Lon (°) | Lat (°) |
---|---|---|---|---|---|---|---|---|---|---|
1 * | 5058 | Baikal | Russia | AS | 0.0045, 312.77 | 23,615.39 | 32,265.61 | 456.88 | 104.322 | 52.235 |
2 | 3667 | Volta | Ghana | AF | 0.0037, 55.59 | 148.00 | 8502.00 | 86.65 | 0.059 | 6.304 |
3 | 4478 | Nasser | Egypt | AF | 0.0047, 152.82 | 162.00 | 6500.00 | 183.28 | 32.887 | 23.969 |
4 | 4056 | Kariba | Zambia | AF | 0.011, 424.98 | 180.00 | 5400.00 | 485.41 | 28.760 | −16.521 |
5 | 5055 | Bratsk | Russia | AS | 0.0066, 367.92 | 169.27 | 5470.00 | 403.85 | 101.784 | 56.285 |
6 | 4787 | Zaysan | Kazakhstan | AS | 0.0047, 370.21 | 49.80 | 5490.00 | 395.74 | 83.346 | 49.657 |
7 | 2294 | Guri | Venezuela | SA | 0.014, 217.17 | 135.00 | 4250.00 | 278.38 | −62.996 | 7.766 |
8 | 1995 | Caniapiscau | Canada | NA | 0.012, 489.00 | 53.79 | 4275.00 | 541.08 | −69.783 | 54.850 |
9 | 1394 | Robert Bourassa | Canada | NA | 0.011, 143.99 | 61.70 | 2905.00 | 176.24 | −77.451 | 53.785 |
10 | 2516 | Sobradinho | Brazil | SA | 0.0057, 375.27 | 34.10 | 3017.90 | 392.50 | −40.825 | −9.421 |
11 | 712 | Cedar | Canada | NA | 0.0022, 250.49 | 9.64 | 2668.46 | 256.29 | −99.291 | 53.162 |
12 | 1396 | La Grande−3 | Canada | NA | 0.025, 195.26 | 60.00 | 2451.00 | 257.48 | −75.962 | 53.729 |
13 | 2365 | Tucurui | Brazil | SA | 0.013, 40.96 | 45.50 | 2606.00 | 75.40 | −49.648 | −3.833 |
14 | 4375 | Tsimlyanskoye | Russia | EU | 0.012, 7.64 | 23.86 | 2702.00 | 39.44 | 42.109 | 47.612 |
15 | 5834 | Zeyskoye | Russia | AS | 0.021, 266.44 | 68.40 | 2420.00 | 316.41 | 127.307 | 53.770 |
16 | 5180 | Vilyuy | Russia | AS | 0.029, 182.74 | 35.90 | 2170.00 | 244.62 | 112.480 | 63.035 |
17 | 4783 | Khantayskoye | Russia | AS | 0.0044, 49.76 | 23.50 | 2221.61 | 59.64 | 87.813 | 68.162 |
18 | 4505 | Cahora Bassa | Mozambique | AF | 0.015, 286.96 | 55.80 | 2739.00 | 329.18 | 32.700 | −15.584 |
19 | 6 | Williston | Canada | NA | 0.053, 580.99 | 39.47 | 1773.00 | 674.79 | −122.200 | 56.020 |
20 | 4472 | Buhayrat ath Tharthar | Iraq | AS | 0.040, −19.46 | 85.59 | 2135.54 | 65.00 | 43.459 | 33.691 |
21 | 5056 | Krasnoyarsk | Russia | AS | 0.039, 162.77 | 73.30 | 2000.00 | 240.04 | 92.292 | 55.935 |
22 | 4623 | Kama | Russia | EU | 0.0074, 96.08 | 12.20 | 1915.00 | 110.32 | 56.338 | 58.116 |
23 | 1957 | Okeechobee | United States | NA | 0.0062, −5.57 | 5.20 | 1536.80 | 3.90 | −81.101 | 26.941 |
24 | 5295 | Hungtze | China | AS | 0.0075, 1.46 | 13.50 | 2074.61 | 17.00 | 118.725 | 33.091 |
25 | 4474 | Razazah | Iraq | AS | 0.015, 11.07 | 25.75 | 1621.00 | 34.69 | 43.892 | 32.699 |
26 | 2023 | Gouin | Canada | NA | 0.00068, 402.91 | 8.57 | 1570.00 | 403.98 | −74.104 | 48.358 |
27 | 4789 | Qapshaghay Bogeni | Kazakhstan | AS | 0.0090, 467.11 | 28.10 | 1850.00 | 483.71 | 77.104 | 43.923 |
28 | 753 | Fort Berthold | United States | NA | 0.025, 528.65 | 29.38 | 1477.40 | 565.10 | −101.433 | 47.508 |
29 | 2445 | Aperea | Paraguay | SA | 0.022, 48.84 | 21.00 | 1600.00 | 84.71 | −56.626 | −27.392 |
30 | 870 | Oahe | United States | NA | 0.022, 462.73 | 28.35 | 1429.57 | 493.78 | −100.400 | 44.458 |
31 | 2390 | Ilha Solteira | Brazil | SA | 0.032, 290.95 | 21.17 | 1200.00 | 329.78 | −51.379 | −20.371 |
32 | 4629 | Saratov | Russia | EU | 0.026, −0.28 | 12.90 | 1117.70 | 28.36 | 47.758 | 52.054 |
33 | 4350 | Imandra | Russia | EU | 0.19, −62.87 | 10.80 | 1062.37 | 136.07 | 32.550 | 67.408 |
34 | 3640 | Kainji | Nigeria | AF | 0.040, 94.00 | 15.00 | 1071.23 | 136.81 | 4.613 | 9.866 |
35 | 4785 | Novosibirskoye | Russia | AS | 0.014, 98.78 | 8.80 | 1070.00 | 113.97 | 83.000 | 54.844 |
36 | 4625 | Cheboksary | Russia | EU | 0.024, 39.30 | 13.85 | 1080.38 | 65.73 | 47.463 | 56.141 |
37 | 4359 | Ilmen | Russia | EU | 0.0083, 9.98 | 12.00 | 1120.00 | 19.28 | 31.280 | 58.457 |
38 | 4480 | Jebel Aulia | Sudan | AF | 0.0062, 375.01 | 3.50 | 861.19 | 380.39 | 32.484 | 15.240 |
39 | 1397 | Opinaca | Canada | NA | 0.021, 194.08 | 8.50 | 1040.00 | 216.10 | −76.584 | 52.212 |
40 | 2392 | Furnas | Brazil | SA | 0.044, 720.07 | 22.59 | 1127.07 | 769.32 | −46.314 | −20.667 |
41 | 2368 | Serra da Mesa | Brazil | SA | 0.034, 410.20 | 54.40 | 1784.00 | 470.07 | −48.304 | −13.836 |
42 | 4624 | Votkinsk | Russia | EU | 0.039, 53.14 | 9.40 | 850.82 | 86.25 | 54.084 | 56.795 |
43 | 6201 | Argyle | Australia | OC | 0.028, 66.44 | 10.76 | 981.21 | 93.97 | 128.741 | −16.118 |
44 | 731 | Rainy | Canada | NA | 0.00078, 336.09 | 0.69 | 829.45 | 336.73 | −93.358 | 48.620 |
45 | 307 | Fort Peck | United States | NA | 0.044, 643.32 | 22.77 | 969.86 | 685.76 | −106.415 | 48.002 |
46 | 2375 | Tres Marias | Brazil | SA | 0.036, 539.11 | 21.00 | 1040.00 | 576.06 | −45.270 | −18.214 |
47 | 2012 | Pipmuacan | Canada | NA | 0.050, 360.46 | 13.90 | 978.00 | 409.16 | −69.770 | 49.355 |
48 | 4679 | Chardarinskoye | Kazakhstan | AS | 0.018, 238.24 | 5.70 | 800.66 | 252.54 | 67.962 | 41.245 |
49 | 4626 | Nizhnekamsk | Russia | EU | 0.014, 50.37 | 13.80 | 1084.00 | 65.34 | 52.280 | 55.704 |
50 | 2456 | Negro | Uruguay | SA | 0.019, 62.01 | 8.80 | 1070.00 | 82.77 | −56.420 | −32.830 |
51 | 2343 | Chocon | Argentina | SA | 0.015, 365.75 | 22.00 | 820.00 | 378.20 | −68.758 | −39.270 |
52 | 4442 | Ataturk | Turkey | AS | 0.11, 454.25 | 48.70 | 817.00 | 541.20 | 38.321 | 37.487 |
53 | 2513 | Itaparica | Brazil | SA | 0.033, 279.33 | 10.70 | 781.21 | 305.40 | −38.312 | −9.138 |
54 | 4464 | Assad | Syria | AS | 0.059, 266.63 | 11.70 | 610.00 | 302.87 | 38.555 | 35.862 |
55 | 3650 | Lagdo | Cameroon | AF | 0.037, 190.16 | 7.70 | 691.12 | 216.00 | 13.690 | 9.060 |
56 | 1269 | Toledo Bend | United States | NA | 0.020, 39.46 | 5.52 | 636.18 | 52.43 | −93.570 | 31.179 |
57 | 6922 | Eastmain | Canada | NA | 0.068, 245.92 | 6.94 | 602.90 | 286.82 | −75.886 | 52.188 |
58 | 2009 | Outardes 4 | Canada | NA | 0.19, 239.61 | 24.50 | 640.00 | 361.53 | −68.908 | 49.708 |
59 | 4349 | Kovdozero | Russia | EU | 0.0019, 78.18 | 3.70 | 745.00 | 79.62 | 31.759 | 68.604 |
60 | 2380 | Sao Simao | Brazil | SA | 0.052, 369.17 | 12.50 | 703.00 | 405.94 | −50.500 | −19.017 |
61 | 610 | Mead | United States | NA | 0.14, 288.76 | 34.07 | 659.30 | 374.60 | −114.734 | 36.020 |
62 | 5087 | Yamdrok | China | AS | 0.013, 4435.36 | 14.60 | 638.00 | 4443.49 | 90.377 | 29.095 |
63 | 1391 | Angostura | Mexico | NA | 0.081, 478.96 | 18.20 | 640.00 | 530.67 | −92.779 | 16.401 |
64 | 4991 | Srisailam | India | AS | 0.031, 253.30 | 8.29 | 534.05 | 269.75 | 78.896 | 16.088 |
65 | 2455 | Grande | Argentina | SA | 0.031, 16.89 | 5.00 | 592.83 | 35.08 | −57.944 | −31.271 |
66 | 4843 | Gandhi Sagar | India | AS | 0.034, 379.03 | 6.83 | 619.89 | 399.90 | 75.555 | 24.700 |
67 | 2397 | Promissao | Brazil | SA | 0.080, 342.73 | 7.41 | 513.39 | 384.00 | −49.782 | −21.296 |
68 | 282 | Arrow | Canada | NA | 0.17, 351.07 | 10.30 | 504.82 | 439.30 | −117.779 | 49.341 |
69 | 2382 | Agua Vermelha | Brazil | SA | 0.056, 351.62 | 11.03 | 563.15 | 383.30 | −50.345 | −19.867 |
70 | 4898 | Hirakud | India | AS | 0.022, 177.26 | 5.38 | 669.62 | 192.02 | 83.855 | 21.520 |
71 | 3041 | Kossour | Ivory Coast | AF | 0.034, 169.78 | 27.68 | 1058.20 | 206.00 | −5.474 | 7.033 |
72 | 4784 | Kureiskaya | Russia | AS | 0.050, 67.89 | 9.96 | 558.00 | 95.63 | 88.287 | 66.950 |
73 | 3071 | Storsjon | Sweden | EU | 0.0042, 291.09 | 8.02 | 484.60 | 293.13 | 14.475 | 63.301 |
74 | 316 | Flathead Lake | United States | NA | 0.13, 816.09 | 23.20 | 510.00 | 883.61 | −114.233 | 47.677 |
75 | 2004 | Kempt | Canada | NA | 0.033, 478.60 | 2.22 | 470.44 | 494.18 | −70.529 | 50.657 |
76 | 6700 | Kolyma dam | Russia | AS | 0.14, 390.91 | 15.08 | 454.60 | 453.00 | 150.230 | 62.055 |
77 | 4501 | Mtera | Tanzania | AF | 0.022, 688.05 | 3.20 | 478.83 | 698.50 | 35.984 | −7.136 |
78 | 4686 | Kayrakkumskoye | Tajikistan | AS | 0.021, 335.24 | 4.20 | 513.00 | 346.23 | 69.817 | 40.279 |
79 | 250 | Kinbasket | Canada | NA | 0.32, 622.77 | 24.76 | 430.00 | 759.15 | −118.570 | 52.079 |
80 | 4634 | Mingechaurskoye | Azerbaijan | AS | 0.072, 42.02 | 15.73 | 567.97 | 83.00 | 47.025 | 40.795 |
81 | 2431 | Lago del Río Yguazú | Paraguay | SA | 0.045, 203.13 | 8.47 | 620.00 | 231.14 | −54.970 | −25.374 |
82 | 4858 | Rihand | India | AS | 0.062, 241.75 | 5.65 | 426.36 | 268.22 | 83.005 | 24.202 |
83 | 4422 | Keban Baraji | Turkey | AS | 0.11, 772.51 | 30.60 | 675.00 | 848.79 | 38.759 | 38.808 |
84 | 2340 | Los Barreales | Argentina | SA | 0.31, 290.07 | 27.70 | 413.00 | 417.11 | −68.691 | −38.577 |
85 | 4859 | Ban Sagar | India | AS | 0.051, 317.64 | 5.17 | 471.60 | 341.64 | 81.288 | 24.191 |
86 | 1275 | Sam Rayburn | United States | NA | 0.036, 35.66 | 3.55 | 455.64 | 50.11 | −94.108 | 31.066 |
87 | 2414 | Barra Bonita | Brazil | SA | 0.0023, 565.25 | 7.01 | 542.00 | 566.48 | −49.229 | −23.213 |
88 | 4739 | Ukai | India | AS | 0.042, 83.60 | 6.62 | 509.85 | 105.16 | 73.597 | 21.258 |
89 | 479 | Utah | United States | NA | 0.023, 1359.51 | 1.07 | 380.00 | 1368.28 | −111.892 | 40.359 |
90 | 305 | Pend Oreille | United States | NA | 0.23, 541.66 | 54.20 | 381.47 | 628.80 | −116.998 | 48.179 |
91 | 4994 | Tungabhadra | India | AS | 0.041, 483.34 | 3.28 | 349.42 | 497.74 | 76.330 | 15.266 |
92 | 4461 | Mosul | Iraq | AS | 0.16, 273.38 | 11.10 | 353.16 | 330.00 | 42.825 | 36.633 |
93 | 4470 | Habbaniyah | Iraq | AS | 0.071, 114.62 | 8.20 | 418.40 | 144.43 | 42.350 | 34.212 |
94 | 4946 | Sriram Sagar | India | AS | 0.040, 319.95 | 2.30 | 314.38 | 332.54 | 78.342 | 18.967 |
95 | 2376 | Lago das Brisas | Brazil | SA | 0.088, 471.03 | 17.00 | 559.60 | 520.38 | −49.097 | −18.408 |
96 | 2356 | Meelpaeg | Canada | NA | 0.0041, 269.36 | 2.16 | 314.90 | 270.65 | −56.780 | 48.166 |
97 | 4260 | Hendrik Verwoerd | South Africa | AF | 0.069, 1236.10 | 5.34 | 374.00 | 1261.93 | 25.505 | −30.621 |
98 | 1387 | Malpaso | Mexico | NA | 0.30, 89.06 | 9.17 | 309.45 | 182.00 | −93.600 | 17.179 |
99 | 1379 | Inhernillo | Mexico | NA | 0.14, 116.66 | 12.00 | 400.00 | 173.13 | −101.892 | 18.272 |
100 | 4184 | Vaaldam | South Africa | AF | 0.036, 1472.82 | 2.61 | 320.00 | 1484.27 | 28.115 | −26.883 |
101 | 5062 | Longyangxia | China | AS | 0.18, 2518.98 | 24.70 | 383.00 | 2589.15 | 100.917 | 36.121 |
102 | 3727 | Hoytiainen | Finland | EU | 0.0064, 86.17 | 2.39 | 293.00 | 88.05 | 29.475 | 62.825 |
103 | 1423 | Baskatong | Canada | NA | 0.057, 207.29 | 2.63 | 280.00 | 223.14 | −75.983 | 46.725 |
104 | 5803 | Tri An Lake | Vietnam | AS | 0.072, 39.48 | 2.76 | 323.00 | 62.79 | 107.035 | 11.108 |
105 | 2007 | Peribonka | Canada | NA | 0.11, 411.54 | 5.18 | 270.72 | 440.26 | −71.255 | 49.904 |
106 | 4942 | Jayakwadi | India | AS | 0.032, 451.67 | 2.17 | 382.39 | 463.91 | 75.367 | 19.487 |
107 | 3638 | Shiroro | Nigeria | AF | 0.086, 350.90 | 7.00 | 312.00 | 377.73 | 6.837 | 9.972 |
108 | 4379 | Tshchikskoye | Russia | EU | 0.062, 16.04 | 3.05 | 286.28 | 33.68 | 39.116 | 44.987 |
109 | 710 | Tobin | Canada | NA | 0.0090, 311.23 | 2.20 | 263.86 | 313.59 | −103.404 | 53.660 |
110 | 5796 | Noi | Thailand | AS | 0.057, 129.50 | 1.97 | 288.00 | 145.94 | 105.430 | 15.206 |
111 | 4483 | Roseires | Sudan | AF | 0.025, 475.84 | 7.40 | 450.00 | 487.12 | 34.390 | 11.800 |
112 | 4675 | Toktogul’skoye | Kyrgyzstan | AS | 0.55, 743.53 | 19.50 | 284.30 | 901.24 | 72.653 | 41.683 |
113 | 6698 | Gordon | Australia | OC | 0.37, 208.54 | 12.40 | 278.00 | 311.42 | 145.979 | −42.728 |
114 | 4964 | Ujani | India | AS | 0.055, 482.17 | 1.52 | 268.91 | 496.83 | 75.120 | 18.071 |
115 | 2312 | Hondo | Argentina | SA | 0.029, 266.72 | 1.74 | 330.00 | 276.36 | −64.887 | −27.524 |
116 | 4362 | Ivankovo Reservoir | Russia | EU | 0.018, 119.51 | 1.17 | 220.57 | 123.47 | 37.121 | 56.735 |
117 | 4702 | Tarbela | Pakistan | AS | 0.53, 351.46 | 13.69 | 250.00 | 483.55 | 72.691 | 34.091 |
118 | 4985 | Nagarjuna | India | AS | 0.29, 100.78 | 6.84 | 272.18 | 179.83 | 79.309 | 16.575 |
119 | 3070 | Kallsjon | Sweden | EU | 0.028, 387.52 | 6.14 | 189.74 | 392.80 | 13.342 | 63.433 |
120 | 4431 | Karakaya | Turkey | AS | 0.22, 631.76 | 9.50 | 298.00 | 697.54 | 39.135 | 38.229 |
121 | 4792 | Beas | India | AS | 0.20, 371.49 | 6.16 | 254.85 | 423.67 | 75.949 | 31.975 |
122 | 4047 | Tshangalele | Congo | AF | 0.031, 1119.03 | 1.06 | 225.65 | 1126.03 | 27.244 | −10.753 |
123 | 4485 | Finchaa | Ethiopia | AF | 0.019, 2216.55 | 0.65 | 196.13 | 2220.26 | 37.363 | 9.558 |
124 | 4989 | Almatti | India | AS | 0.053, 504.12 | 3.11 | 293.42 | 519.60 | 75.888 | 16.333 |
125 | 4707 | Mangla | Pakistan | AS | 0.20, 320.13 | 9.12 | 251.00 | 370.60 | 73.643 | 33.145 |
126 | 4836 | Ranapratap Sagar | India | AS | 0.14, 324.74 | 1.44 | 197.66 | 352.81 | 75.580 | 24.916 |
127 | 3014 | Bagre | Burkina Faso | AF | 0.057, 223.54 | 1.70 | 255.00 | 238.12 | −0.554 | 11.475 |
128 | 1991 | Junin | Peru | SA | 0.023, 4079.84 | 1.08 | 206.71 | 4084.62 | −76.191 | −10.980 |
129 | 4881 | Bargi | India | AS | 0.085, 401.51 | 3.18 | 236.24 | 422.76 | 79.928 | 22.945 |
130 | 6686 | Great Lake | Australia | OC | 0.40, 969.53 | 3.36 | 176.00 | 1040.54 | 146.730 | −41.980 |
131 | 6800 | Hawea | New Zealand | OC | 0.15, 323.54 | 2.18 | 150.00 | 345.49 | 169.250 | −44.609 |
132 | 3676 | Albufeira da Quiminha | Angola | AF | 0.13, 34.99 | 1.56 | 129.05 | 51.93 | 13.790 | −8.963 |
133 | 6629 | Eucumbene | Australia | OC | 0.46, 1097.65 | 4.80 | 145.42 | 1165.24 | 148.617 | −36.125 |
134 | 1320 | Falcon | United States | NA | 0.070, 71.74 | 3.88 | 311.84 | 93.48 | −99.170 | 26.562 |
135 | 597 | Powell | United States | NA | 0.14, 1047.20 | 30.00 | 609.38 | 1127.76 | −111.486 | 36.941 |
136 | 4463 | Dukan | Iraq | AS | 0.19, 462.68 | 6.97 | 270.00 | 513.69 | 44.955 | 35.958 |
137 | 1230 | Cedar Creek | United States | NA | 0.094, 85.92 | 0.80 | 133.03 | 98.15 | −96.075 | 32.183 |
138 | 4041 | Maga | Cameroon | AF | 0.019, 309.63 | 0.68 | 148.72 | 312.50 | 15.050 | 10.829 |
139 | 5157 | Pasak Chonlasit | Thailand | AS | 0.053, 33.59 | 0.79 | 158.87 | 42.00 | 101.084 | 14.854 |
140 | 6594 | Fairbairn | Australia | OC | 0.13, 186.48 | 2.29 | 179.43 | 209.81 | 148.063 | −23.650 |
141 | 6628 | Hume | Australia | OC | 0.15, 161.82 | 3.04 | 201.90 | 192.00 | 147.033 | −36.108 |
142 | 4500 | Kikuletwa | Tanzania | AF | 0.10, 677.01 | 0.60 | 126.33 | 689.65 | 37.468 | −3.821 |
143 | 4958 | Nizam Sagar | India | AS | 0.089, 419.96 | 0.50 | 92.75 | 428.24 | 77.929 | 18.203 |
144 | 6606 | Victoria | Australia | OC | 0.17, 7.53 | 0.68 | 122.00 | 27.73 | 141.275 | −34.042 |
145 | 1869 | Grenada | United States | NA | 0.13, 49.35 | 1.54 | 128.29 | 65.53 | −89.770 | 33.816 |
146 | 138 | Canyon | United States | NA | 0.69, 1300.94 | 1.61 | 108.39 | 1373.12 | −121.091 | 40.179 |
147 | 4638 | Aras | Azerbaijan | AS | 0.12, 762.77 | 1.35 | 145.00 | 779.94 | 45.400 | 39.091 |
148 | 4481 | Khashm el-Girba | Sudan | AF | 0.093, 463.08 | 1.30 | 125.00 | 474.76 | 35.905 | 14.925 |
149 | 370 | Lake Cascade | United States | NA | 0.16, 1455.02 | 0.86 | 101.98 | 1471.57 | −116.054 | 44.525 |
150 | 3695 | Seitevare | Sweden | EU | 0.63, 419.19 | 1.68 | 81.00 | 470.15 | 18.571 | 66.975 |
151 | 4484 | Yardi | Ethiopia | AF | 0.33, 533.59 | 2.32 | 104.87 | 568.25 | 40.538 | 10.233 |
152 | 119 | Clear Lake | United States | NA | 0.20, 1345.80 | 0.65 | 100.36 | 1365.84 | −121.079 | 41.926 |
153 | 5196 | Guanting Shuiku | China | AS | 0.11, 465.09 | 4.16 | 130.00 | 479.09 | 115.600 | 40.233 |
154 | 2953 | Barrage Al Massira | Morocco | AF | 0.34, 241.41 | 2.76 | 80.00 | 268.54 | −7.637 | 32.475 |
155 | 1319 | Venustiano Carranza | Mexico | NA | 0.095, 252.29 | 1.31 | 150.56 | 266.53 | −100.616 | 27.512 |
156 | 4471 | Hamrin | Iraq | AS | 0.12, 80.23 | 4.61 | 228.00 | 107.50 | 44.967 | 34.116 |
157 | 4826 | Matatila | India | AS | 0.10, 297.22 | 0.71 | 112.07 | 308.46 | 78.371 | 25.099 |
158 | 1263 | Twin Buttes | United States | NA | 0.50, 576.78 | 0.23 | 29.47 | 591.37 | −100.525 | 31.370 |
159 | 4997 | Somasila | India | AS | 0.17, 74.32 | 1.99 | 153.17 | 100.58 | 79.305 | 14.489 |
160 | 5183 | Hongshan | China | AS | 0.23, 422.08 | 2.56 | 66.90 | 437.64 | 119.696 | 42.751 |
161 | 6583 | Ross | Australia | OC | 0.11, 32.61 | 0.80 | 82.00 | 41.77 | 146.738 | −19.411 |
162 | 4978 | Yeleru | India | AS | 0.59, 57.51 | 0.51 | 49.36 | 86.56 | 82.084 | 17.304 |
163 | 4696 | South Surkhan | Uzbekistan | AS | 0.34, 397.80 | 0.80 | 40.26 | 411.41 | 67.632 | 37.829 |
164 | 5287 | Zhaopingtai | China | AS | 0.0045, 312.77 | 0.71 | 46.50 | 174.27 | 112.771 | 33.733 |
Appendix B
Appendix C
Appendix D
References
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.; Heinke, J.; Von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Plate, E.J. Flood risk and flood management. J. Hydrol. 2002, 267, 2–11. [Google Scholar] [CrossRef]
- Cooke, G.D.; Welch, E.B.; Peterson, S.; Nichols, S.A. Restoration and Management of Lakes and Reservoirs; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Veldkamp, T.; Wada, Y.; Aerts, J.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 15697. [Google Scholar] [CrossRef] [PubMed]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [Green Version]
- Murdock, H.E.; Gibb, D.; André, T.; Appavou, F.; Brown, A.; Epp, B.; Kondev, B.; McCrone, A.; Musolino, E.; Ranalder, L. Renewables 2019 Global Status Report; REN21 Secretariat: Paris, France, 2019; Available online: https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf (accessed on 11 November 2020).
- Mehran, A.; Mazdiyasni, O.; AghaKouchak, A. A hybrid framework for assessing socioeconomic drought: Linking climate variability, local resilience, and demand. J. Geophys. Res. Atmos. 2015, 120, 7520–7533. [Google Scholar] [CrossRef]
- Zhou, Y. Exploring multidecadal changes in climate and reservoir storage for assessing nonstationarity in flood peaks and risks worldwide by an integrated frequency analysis approach. Water Res. 2020, 185, 116265. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Nijssen, B.; Gao, H.; Lettenmaier, D.P. The contribution of reservoirs to global land surface water storage variations. J. Hydrometeorol. 2016, 17, 309–325. [Google Scholar] [CrossRef]
- Yigzaw, W.; Li, H.Y.; Demissie, Y.; Hejazi, M.I.; Leung, L.R.; Voisin, N.; Payn, R. A New Global Storage-Area-Depth Dataset for Modeling Reservoirs in Land Surface and Earth System Models. Water Resour. Res. 2018, 54, 10–372. [Google Scholar] [CrossRef]
- Friedrich, K.; Grossman, R.L.; Huntington, J.; Blanken, P.D.; Lenters, J.; Holman, K.D.; Gochis, D.; Livneh, B.; Prairie, J.; Skeie, E. Reservoir evaporation in the Western United States: Current science, challenges, and future needs. Bull. Am. Meteorol. Soc. 2018, 99, 167–187. [Google Scholar] [CrossRef]
- Moreo, M. Evaporation data from Lake Mead and Lake Mohave, Nevada and Arizona, March 2010 through April 2015. US Geol. Surv. 2015. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Zhang, H.; Gorelick, S.M.; Zimba, P.V.; Zhang, X. A remote sensing method for estimating regional reservoir area and evaporative loss. J. Hydrol. 2017, 555, 213–227. [Google Scholar] [CrossRef]
- Birkett, C. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Ocean. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Birkett, C.; Reynolds, C.; Beckley, B.; Doorn, B. From research to operations: The USDA global reservoir and lake monitor. In Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–50. [Google Scholar]
- Crétaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.-C.; Nino, F.; Del Rio, R.A.; Cazenave, A. SOLS: A lake database to monitor in the Neac r Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 1497–1507. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI–an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Gao, H. Automatic correction of contaminated images for assessment of reservoir surface area dynamics. Geophys. Res. Lett. 2018, 45, 6092–6099. [Google Scholar] [CrossRef]
- Khandelwal, A.; Karpatne, A.; Marlier, M.E.; Kim, J.; Lettenmaier, D.P.; Kumar, V. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data. Remote Sens. Environ. 2017, 202, 113–128. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; Van De Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810. [Google Scholar] [CrossRef]
- Yao, F.; Wang, J.; Wang, C.; Crétaux, J.-F. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote. Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Ling, F.; Li, X.; Foody, G.M.; Boyd, D.; Ge, Y.; Li, X.; Du, Y. Monitoring surface water area variations of reservoirs using daily MODIS images by exploring sub-pixel information. ISPRS-J. Photogramm. Remote Sens. 2020, 168, 141–152. [Google Scholar] [CrossRef]
- Gao, H.; Birkett, C.; Lettenmaier, D.P. Global monitoring of large reservoir storage from satellite remote sensing. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gao, H.; Naz, B.S. Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resour. Res. 2014, 50, 8927–8943. [Google Scholar] [CrossRef]
- Busker, T.; de Roo, A.; Gelati, E.; Schwatke, C.; Adamovic, M.; Bisselink, B.; Pekel, J.F.; Cottam, A. A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrol. Earth Syst. Sci. 2019, 23, 669–690. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Gao, H. Estimating reservoir evaporation losses for the United States: Fusing remote sensing and modeling approaches. Remote Sens. Environ. 2019, 226, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Gao, H.; Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 2020, 251, 112104. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N.; da Silva, D.D. Evaluating evaporation methods for estimating small reservoir water surface evaporation in the Brazilian savannah. Water 2019, 11, 1942. [Google Scholar] [CrossRef] [Green Version]
- Mhawej, M.; Fadel, A.; Faour, G. Evaporation rates in a vital lake: A 34-year assessment for the Karaoun Lake. Int. J. Remote Sens. 2020, 41, 5321–5337. [Google Scholar] [CrossRef]
- Meng, X.; Liu, H.; Du, Q.; Xu, L.; Liu, Y. Evaluation of the Performance of Different Methods for Estimating Evaporation over a Highland Open Freshwater Lake in Mountainous Area. Water 2020, 12, 3491. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Zhao, G.; Tseng, K.-H. A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry. Remote Sens. Environ. 2020, 244, 111831. [Google Scholar] [CrossRef]
- Lehner, B.; Reidy Liermann, C.; Revenga, C.; Vorosmarty, C.; Fekete, B.; Crouzet, P.; Doll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. Global Reservoir and Dam Database, Version 1 (GRanDv1): Dams, Revision 01; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2011. [Google Scholar]
- Vermote, E. MOD09Q1 MODIS/Terra Surface Reflectance 8-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. Available online: https://lpdaac.usgs.gov/products/mod09q1v006/ (accessed on 1 February 2021).
- Vermote, E.; Franch, B.; Claverie, M. VIIRS/NPP Surface Reflectance 8-Day L3 Global 500m SIN Grid V001. NASA EOSDIS Land Process. DAAC 2016. Available online: https://lpdaac.usgs.gov/products/vnp09h1v001/ (accessed on 1 February 2021).
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Hulley, G.; Hook, S. MOD21 MODIS/Terra Land Surface Temperature/3-Band Emissivity 5-Min L2 1km V006. NASA EOSDIS Land Process. DAAC 2017. Available online: https://lpdaac.usgs.gov/products/mod21v006/ (accessed on 1 February 2021).
- Hulley, G.; Hook, S. VIIRS/NPP Land Surface Temperature and Emissivity 6-Min L2 Swath 750m V001. NASA EOSDIS Land Process. DAAC 2018. Available online: https://lpdaac.usgs.gov/products/vnp21v001/ (accessed on 1 February 2021).
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Li, Y.; Zhang, S.; Shah, D.; Gao, H. Collection 6.1 MODIS Reservoir Product Algorithm Theoretical Basis Document (ATBD) Version 1.0. NASA GSFC 2021. Available online: https://modis-land.gsfc.nasa.gov/modgwr.html (accessed on 1 February 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Elsawwaf, M.; Willems, P.; Pagano, A.; Berlamont, J. Evaporation estimates from Nasser Lake, Egypt, based on three floating station data and Bowen ratio energy budget. Theor. Appl. Climatol. 2010, 100, 439–465. [Google Scholar] [CrossRef] [Green Version]
- Lenters, J.D.; Kratz, T.K.; Bowser, C.J. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol. 2005, 308, 168–195. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Yu, P.; Göttsche, F.M.; Trigo, I.F. Quality assessment of S-NPP VIIRS land surface temperature product. Remote Sens. 2015, 7, 12215–12241. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, H.; Jasinski, M.F.; Zhang, S.; Stoll, J.D. Deriving High-Resolution Reservoir Bathymetry from ICESat-2 Prototype Photon-Counting Lidar and Landsat Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7883–7893. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, S.; Durand, M.; Lee, H. Satellite remote sensing of lakes and wetlands. In Hydrologic Remote Sensing; CRC Press: Boca Raton, FL, USA, 2016; pp. 57–72. [Google Scholar]
- McJannet, D.L.; Webster, I.T.; Cook, F.J. An area-dependent wind function for estimating open water evaporation using land-based meteorological data. Environ. Model. Softw. 2012, 31, 76–83. [Google Scholar] [CrossRef]
- Schwab, D.J.; Morton, J.A. Estimation of overlake wind speed from overland wind speed: A comparison of three methods. J. Great Lakes Res. 1984, 10, 68–72. [Google Scholar] [CrossRef]
- Lee, Z.P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Pinhassi, J.; DeLong, E.F.; Béjà, O.; González, J.M.; Pedrós-Alió, C. Marine bacterial and archaeal ion-pumping rhodopsins: Genetic diversity, physiology, and ecology. Microbiol. Mol. Biol. Rev. 2016, 80, 929–954. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gao, H. Using the Digital Elevation Model (DEM) to improve the spatial coverage of the MODIS based reservoir monitoring network in South Asia. Remote Sens. 2020, 12, 745. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gao, H.; Allen, G.H.; Zhang, Z. Constructing Reservoir Area-Volume-Elevation Curve from TanDEM-X DEM Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Biancamaria, S.; Lettenmaier, D.P.; Pavelsky, T.M. The SWOT mission and its capabilities for land hydrology. Surv. Geophys. 2016, 37, 117–147. [Google Scholar] [CrossRef] [Green Version]
- Getirana, A.; Jung, H.C.; Van Den Hoek, J.; Ndehedehe, C.E. Hydropower dam operation strongly controls Lake Victoria’s freshwater storage variability. Sci. Total Environ. 2020, 726, 138343. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.L.; Zhou, T.; Sun, N.; Huang, M.; Mishra, V. Roles of Irrigation and Reservoir Operations in Modulating Terrestrial Water and Energy Budgets in the Indian Subcontinental River Basins. J. Geophys. Res. Atmos. 2019, 124, 12915–12936. [Google Scholar] [CrossRef]
- Udall, B.; Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 2017, 53, 2404–2418. [Google Scholar] [CrossRef] [Green Version]
- Van Loon, A.F. Hydrological drought explained. Wiley Interdiscip. Rev. Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Drought onset and termination in India. J. Geophys. Res. Atmos. 2020, 125, e2020JD032871. [Google Scholar] [CrossRef]
- Shah, D.; Mishra, V. Integrated Drought Index (IDI) for drought monitoring and assessment in India. Water Resour. Res. 2020, 56, e2019WR026284. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A. Quantifying climate and catchment control on hydrological drought in the continental United States. Water Resour. Res. 2020, 56, e2018WR024620. [Google Scholar] [CrossRef]
- Wanders, N.; Wada, Y. Human and climate impacts on the 21st century hydrological drought. J. Hydrol. 2015, 526, 208–220. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Van Lanen, H.A. Hydrological Drought: Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004; Volume 48. [Google Scholar]
- Yang, X.; Zhang, M.; He, X.; Ren, L.; Pan, M.; Yu, X.; Wei, Z.; Sheffield, J. Contrasting Influences of Human Activities on Hydrological Drought Regimes Over ChinaBased on High-Resolution Simulations. Water Resour. Res. 2020, 56, e2019WR025843. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.; De Roo, A.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Schmied, H.M.; Oki, T. Human-water interface in hydrological modelling: Current status and future directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef] [Green Version]
Number of Reservoirs | Area 1 (km2) | Storage 1 (km3) | Storage pct. (%) | |
---|---|---|---|---|
Global | 151 | 134,137 | 2672 | 45.82 |
Africa (AF) | 21 | 30,043 | 636 | 76.61 |
Asia (AS) | 53 | 36,036 | 782 | 35.87 |
Europe (EU) | 10 | 10,191 | 102 | 20.59 |
North America (NA) | 38 | 31,360 | 619 | 47.37 |
Oceania (OC) | 8 | 2166 | 38 | 45.77 |
South America (SA) | 21 | 24,340 | 495 | 52.92 |
Sensor | Product | Measured Parameters | Temporal Resolution | Time Span |
---|---|---|---|---|
MODIS | MxD28C2 | Area, elevation, storage | 8-day | 2000 to present |
MODIS | MxD28C3 | Area, elevation, storage, evaporation rate and volume | Monthly | 2000 to present |
VIIRS | VNP28C2 | Area, elevation, storage | 8-day | 2012 to present |
VIIRS | VNP28C3 | Area, elevation, storage, evaporation rate and volume | Monthly | 2012 to present |
Input Data Name | Source | Purpose |
---|---|---|
8-day MODIS (Terra/Aqua) surface reflectance | MxD09Q1 | Area |
8-day VIIRS (NPP) surface reflectance | VNP09H1 | Area |
Area–Elevation (A–E) relationship | GRBD | Elevation and storage |
8-day MODIS (Terra/Aqua) land surface temperature 1 | MxD21A2 | Evaporation rate |
8-day VIIRS (NPP) land surface temperature 1 | VNP21A2 | Evaporation rate |
Meteorological data | GLDAS | Evaporation rate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, G.; Shah, D.; Zhao, M.; Sarkar, S.; Devadiga, S.; Zhao, B.; Zhang, S.; Gao, H. NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data. Remote Sens. 2021, 13, 565. https://doi.org/10.3390/rs13040565
Li Y, Zhao G, Shah D, Zhao M, Sarkar S, Devadiga S, Zhao B, Zhang S, Gao H. NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data. Remote Sensing. 2021; 13(4):565. https://doi.org/10.3390/rs13040565
Chicago/Turabian StyleLi, Yao, Gang Zhao, Deep Shah, Maosheng Zhao, Sudipta Sarkar, Sadashiva Devadiga, Bingjie Zhao, Shuai Zhang, and Huilin Gao. 2021. "NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data" Remote Sensing 13, no. 4: 565. https://doi.org/10.3390/rs13040565
APA StyleLi, Y., Zhao, G., Shah, D., Zhao, M., Sarkar, S., Devadiga, S., Zhao, B., Zhang, S., & Gao, H. (2021). NASA’s MODIS/VIIRS Global Water Reservoir Product Suite from Moderate Resolution Remote Sensing Data. Remote Sensing, 13(4), 565. https://doi.org/10.3390/rs13040565