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Abstract: Satellite remote sensing of near real-time reservoir storage variations has important
implications for flood monitoring and water resources management. However, satellite altimetry
data, which are essential for estimating storage variations, are only available for a limited number of
reservoirs. This lack of high-density spatial coverage directly hinders the potential use of remotely
sensed reservoir information for improving the skills of hydrological modeling over highly regulated
river basins. To solve this problem, a reservoir storage dataset with high-density spatial coverage
was developed by combining the water surface area estimated from Moderate Resolution Imaging
Spectroradiometer (MODIS) imageries with the Digital Elevation Model (DEM) data collected by
the Shuttle Radar Topography Mission (SRTM). By including more reservoirs, this reservoir dataset
represents 46.6% of the overall storage capacity in South Asia. The results were validated over
five reservoirs where gauge observations are accessible. The storage estimates agree well with
observations, with coefficients of determination ranging from 0.47 to 0.91 and normalized root mean
square errors (NRMSE) ranging from 15.46% to 37.69%. Given the general availability of MODIS
and SRTM data, this algorithm can be potentially applied for monitoring global reservoirs at a
high density.
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1. Introduction

Human-made reservoirs, which are managed by storing and releasing water under predetermined
operation rules, play an important role in mitigating floods and improving the efficiency of the water
supply for municipal, industrial, and agricultural demands [1–4]. Although most (if not all) human
operated reservoirs are monitored in real-time, reservoir storage information is not commonly available
to the public. Indeed, this directly limits the effectiveness of reservoir flow regulation with regard
to flood control, water supply, and other purposes—especially for those reservoirs located within
transboundary river basins. For instance, the lack of reservoir information for the Mekong River delta
has created challenges with regard to flood forecasting in this region [5,6]. In addition, when assessing
and predicting the impacts of droughts, the lack of reservoir storage information reduces the reliability
of drought analysis systems [7,8].

Due to the limited availability of gauge observations—especially with regard to remote locations,
restricted locations, and/or observations over large geographical areas—remote sensing technology
provides a promising alternative by monitoring reservoirs from space [4,9–12]. With remotely sensed
water surface area and elevation data, reservoir storage information can be inferred. Reservoir surface
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area is commonly estimated by classifying optical satellite imageries [13,14] and surface elevation
values are typically obtained from satellite radar altimetry [15,16]. The Geoscience Laser Altimeter
System (GLAS) onboard the Ice, Cloud, and Land Elevation Satellite (ICESat) and the Advanced
Topographic Laser Altimeter System (ATLAS) onboard ICESat-2 were used to measure the elevation
values of relatively small lakes and reservoirs [4,17–20].

Even though a variety of remote sensing approaches were developed to monitor reservoir storage
from space [21–23], they are still insufficient in terms of spatial and temporal coverage—which hinders
their applications when high-density reservoir network information is required. For radar altimetry,
the restrictions are mainly due to the coarse spatial resolution. With about 3–20 km footprints, it is
difficult to capture water surface level values using radar altimetry over reservoirs that are either not
large enough or do not overlap with the satellite tracks [24]. Even for lakes that are detectable by radar
altimeters, the data may not be accurate enough for applications if the surrounding topography is
complex. Consequently, as of 2015 less than 200 large lakes and reservoirs have been observed using
the past and current set of radar altimeters [24]. Compared with radar altimeters, the ICESat/GLAS
instrument has a distinct advantage with its small footprint (70 m)—but this comes at the cost of a
very long return period (91 days). By combining ICESat elevation values and Moderate Resolution
Imaging Spectroradiometer (MODIS) area estimations, Zhang et al. [25] developed an algorithm which
is partially capable of monitoring South Asian reservoirs at 16-day intervals, with 28% of the total
capacity of in the region covered. Despite such progress, the reservoir observation network is still
too sparse due to the large spaces between satellites tracks. Water surface area from Landsat and
the area-elevation relationship provided by the Shuttle Radar Topography Mission (SRTM) were
combined to infer the water level and reservoir storage variations [26–28]. Landsat can be used to
estimate water surface area for smaller reservoirs and lakes due to its high spatial resolution (30 m).
However, its repeat period of 16 days limits its ability to monitor reservoir storage at high temporal
resolution—especially when cloud coverage is too thick. Therefore, the lack of dense spatial and
temporal representation from satellite altimeters remains a major challenge for collecting reservoir
storage information on a large scale.

South Asia, which contains one of the largest and densest populations, suffers the most from
the dearth of reservoir storage data sharing. The deficient communications with regard to reservoir
storage (and management decisions) further exacerbate the casualties and economic losses from flood
events. According to past statistical records, South Asia experiences one of the highest fatality rates
in the world caused by floods [29]. The available remotely sensed reservoir storage datasets only
sparsely cover the region. For instance, radar altimetry data are only available for six reservoirs in
this region, which accounts for 10.70% of the total capacity in South Asia (according to Hydrology by
altimetry data from Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) [30]
and the Global Reservoir Lake Monitor [31]). Although the use of ICESat elevation data improved the
coverage to around 28% of South Asian reservoirs [25], it still does not meet the strong societal need.
Therefore, acquiring reservoir storage information with large spatial coverage is critical for minimizing
the vulnerabilities and maximizing the benefits to communities in this region through good reservoir
management practices.

To extend the spatial coverage where remote sensing reservoir storage data are available, a
reservoir storage dataset was developed by leveraging the global coverage capability of the Digital
Elevation Model (DEM) collected by SRTM. Although DEMs have been most commonly used for
generating river routing networks [32,33], they have also been adopted in studies to estimate glacier
variations [34,35] and surface water storage change [36]. Due to its high consistency, accuracy, and
global coverage [35,37], the SRTM DEM was used to extract the area-elevation (A-H) relationship for
calculating reservoir storage in this study.

Our overarching goal was to improve the spatial coverage of the remotely sensed reservoir storage
dataset in the South Asia region. To this end, the A-H relationship of a given reservoir was first
derived from MODIS water surface area values and SRTM DEM surface heights, and then combined
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with the area time series to estimate storage variations. The results were validated with gauge
observations. The performance of the generated reservoir dataset was compared with the ICESat based
algorithm reported by Zhang et al. [25]. In addition to the data analysis and the results validation,
storage estimation uncertainties due to reservoir surface area retrieval algorithm parameterization and
elevation measurement errors were also quantified.

2. Data

2.1. Remote Sensing Data

In this study, the two primary remote sensing datasets were the STRM DEM and the MODIS
imageries. The DEM was used for inferring the A-H relationship. The DEM data were collected
by SRTM during an 11-day mission in February 2000, covering a near-global domain from 56◦ S to
60◦ N [38]. The relative vertical accuracy was ~6m, and the absolute accuracy was ~16 m [37]. The
NASA SRTM V3.0 dataset provides land surface elevation values at a 30-m spatial resolution globally.
Here, the global SRTM DEM dataset was obtained from the U.S. Geological Survey’s Long Term
Archive [39].

For each given reservoir, MODIS imageries were used to derive surface area estimations, which
were then applied to the A-H relationship to generate a long-term time series of reservoir storage.
The reservoir surface area was calculated from the MODIS/Terra 16-day, 250-m resolution vegetation
indices product (MOD13Q1). Specifically, an image classification algorithm (Section 3.2.1) was applied
to the Normalized Difference Vegetation Index (NDVI) imageries to extract the reservoir area. From
2000 to 2015, a total of 365 imageries were processed for each reservoir.

2.2. Data for Validations

Gauge observations released by the Indian Central Electricity Authority (CEA, [40]) were used to
validate the remotely sensed reservoir storage dataset. This gauge data contained daily reservoir water
level and storage information for 30 hydropower reservoirs. We downloaded the record from 2008 to
2011 and from 2013 to 2016 in May 2016.

Additionally, the reservoir storage results derived from MODIS and SRTM were compared against
the previous results from MODIS and ICESat [25]. Because the Zhang dataset contains results from 21
South Asian reservoirs, this cross-validation helped us to better understand the overall performance of
this new dataset on a regional scale.

3. Reservoir Selection and Methodology

3.1. Reservoir Selection

Two criteria were used to identify the reservoirs included in this study: First, the reservoir
maximum area at capacity needed to be larger than 55 km2. The threshold of 55 km2 was based on a
comprehensive consideration of both estimation accuracy and spatial coverage. This would guarantee
that the surface area could be estimated with high accuracy using medium-resolution MODIS imageries.
Reservoirs larger than 55 km2 account for ~46.6% of the total South Asian reservoir capacity. Second,
the surface area according to the SRTM DEM for a reservoir of interest should not reach its maximum
surface area (estimated from MODIS). Otherwise, the respective ranges of area and elevation detected
by SRTM DEM would have been too small to infer the A-H relationship accurately. Following the above
criteria, a total of 28 reservoirs were chosen from the Global Reservoir and Dam (GRanD) database [41].
Figure 1 shows the locations of these reservoirs, and compares the reservoirs from this study with
those in Zhang et al. [25], with details shown in Table 1.
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Figure 1. Locations of 28 reservoirs that can be monitored using a remote sensing approach.
Yellow dots represent reservoirs that can only be monitored by the Moderate Resolution Imaging
Spectroradiometer-Ice, Cloud, and Land Elevation Satellite (MODIS-ICESat). Green dots are reservoirs
that can only be monitored through the MODIS-Shuttle Radar Topography Mission (STRM). Red points
are reservoirs that can be monitored by both approaches. For each reservoir, detailed information is
provided in Table 1.

Table 1. Detailed information for the 28 reservoirs.

I.D. Reservoir Country Location
(◦N, ◦E)

Area at
Capacity

(km2)

Capacity
(km3) Purpose a A-H Relationship b

01 Almatti India 16.33, 75.89 424 2.63 E y = 0.026 x + 507.17
02 Bango India 22.61, 82.60 104 3.41 I,E y = 0.201 x + 332.57
03 Bansagar India 24.19, 81.29 384 5.41 I,E y = 0.713 x + 315.71
04 Bargi India 22.95, 79.93 268 3.92 I,E y = 0.104 x + 400.28
05 Chandil India 22.98, 86.02 139 1.96 I,E y = 0.166 x + 170.15
06 Gandhi Sagar India 24.71, 75.55 578 5.60 E y= 0.034 x + 378.24
07 Hirakud India 21.52, 83.85 603 4.08 I,E y = 0.270 x + 174.48
08 Karnafuli Bangladesh 22.5, 92.23 777 6.48 I,E,F y = 0.024 x + 23.375
09 Krisharaja Sagar India 12.42, 76.57 100 1.37 I,E,W y = 0.134 x + 736.91
10 Linganamakki India 14.18, 74.85 316 4.18 E y = 0.079 x + 542.95
11 Mangla Pakistan 33.13, 73.64 251 7.30 I,E,F y = 0.166 x + 319.61
12 Malaprabha India 15.82, 75.09 130 1.07 I,E y = 0.136 x + 619.53
13 Matatila India 25.10, 78.37 139 1.13 I,E y = 0.095 x + 292.84
14 N. J. Sagar India 16.57, 79.31 240 6.54 I,E y = 0.270 x + 118.8
15 Narayanapura India 16.22, 76.35 102 1.07 I y = 0.105 x + 482.91
16 Pong India 31.97, 75.95 260 6.95 I,E y = 0.212 x + 366.98
17 Rajghat India 24.76, 78.23 224 2.17 I,E y = 0.070 x + 350.35
18 Ranjit Sagar India 32.44, 75.73 56 2.20 E y = 1.284 x + 441.10
19 Rengali India 21.28,85.03 392 3.17 I y = 0.070 x + 100.88
20 Rihand India 24.20, 83.01 485 5.85 I,E y = 0.083 x + 232.99
21 R. P. Sagar India 24.92, 75.58 210 1.57 I,E y = 0.123 x + 325.49
22 Singur India 17.75, 77.93 129 0.85 W y = 0.053 x + 517.21
23 Srisailam India 16.09, 78.90 560 7.11 I,E y = 0.042 x + 254.05
24 Supa India 15.28, 74.53 120 4.18 E y = 0.460 x + 506.89
25 Tawa India 22.56, 77.98 200 2.31 I y = 0.117 x + 338.36
26 Tungabhadra India 15.27, 76.33 390 3.76 I,E y = 0.052 x + 483.92
27 Ukai India 21.25, 73.59 512 6.20 I,E,F y = 0.042 x + 81.364
28 Yeldari India 19.72, 76.73 82 0.93 I,E y = 0.223 x + 443.45

a I, irrigation; E, electricity generation; W, water supply; F, flood control; b y, water surface height; x, area.
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3.2. Methodology for Reservoir Storage Estimation

The MODIS-SRTM-based reservoir storage estimation algorithm—referred to as the
“MODIS-SRTM algorithm” hereafter—is illustrated using the flowchart in Figure 2. It mainly contains
three step: First, the water surface area was estimated from MODIS NDVI imageries via an enhanced
classification procedure; second, the A–H relationship was generated from the DEM information
by regressing the cumulative area values against their corresponding elevation values (within the
delineated reservoir maximum domain; and third, by applying the water surface area estimations to
the A–H relationship, the reservoir storage variations were calculated. Further details of these steps
are provided as below.

Figure 2. Flowchart of the MODIS-SRTM based reservoir storage estimation algorithm.

3.2.1. Surface Area Estimation

For each given reservoir, the water surface area was estimated using the enhanced K-means
classification approach developed by Zhang et al. [25]. First, a threshold of 0.1 was applied to each
16-day MODIS NDVI image from 2000 to 2015, where pixels with NDVI values less than 0.1 were
considered water. Based on these simplified classifications, a mask image was created to represent the
water coverage percentile and to delineate the domain of the reservoir. Then, the K-means clustering
algorithm [42] was used to identify all water pixels within the masked area of the MODIS NDVI images.
Finally, a classification enhancement procedure was applied to finetune the results from the K-means
clustering. The main purpose of the enhancement was to use the water occurrence map as a reference
to correct misclassified pixels and/or to assign an appropriate class to the unclassified pixels [25].

3.2.2. Area-Elevation (A-H) Relationship Development

The SRTM DEM data were used to develop the A-H relationship for each reservoir. As a valid
approximation, the relationships for all reservoirs were assumed to be linear (H = kA + b, where k
is the slope of the A-H relationship, and b is the intercept) [43]. To capture the relationship, we first
delineated the water surface area from the DEM for each reservoir of interest. For a given reservoir, the
water surface area during the SRTM acquisition time was expanded to include its surrounding pixels
by gradually increasing the surface elevation threshold, with the water surface elevation corresponding
to the DEM area as the initial value. During this process, all pixels that were not directly connected
to the increasing water area were discarded as noise. This expansion continued until the new area
on this DEM reached the maximum reservoir area estimated from the MODIS images (from 2000 to
2015). This maximum reservoir area was then delineated from the SRTM DEM. A simplified example
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of a delineated reservoir is shown in Figure 3a. After delineating the maximum coverage of the
reservoir from the DEM, the cumulative area (e.g., A3) at any given elevation value (e g., H3) could be
estimated by counting the number of pixels with elevations equal to or smaller than that value (i.e.,
H3). By regressing the cumulative area values against the elevation values, the A-H relationship for the
reservoir of interest was established (Figure 3b). A real example of the A-H relationship development
for the Pong reservoir is provided in Figure 3c,d.

Figure 3. (a) A simplified example of a delineated reservoir from the SRTM Digital Elevation Model
(DEM), where H1 > H2 > H3 > H4; (b) the corresponding A-H relationship inferred from a simplified
example; (c) real example of a delineated reservoir from the SRTM DEM over the Pong reservoir; (d) the
corresponding A-H relationship inferred from the Pong reservoir.

An example of the A-H relationship over the Hirakud reservoir is shown in Figure 4a. This A-H
relationship was also compared with that derived from MODIS area values and ICESat elevations for
cross-validation purposes. The MODIS-ICESat-based A-H relationship was adopted from Zhang et al.
[2014]. The A-H relationship from the MODIS-ICESat algorithm is capable of capturing a larger
range of water surface elevation values due to its longer temporal coverage period (seven years). The
range of elevation values associated with the SRTM based A-H relationship depends on how full the
reservoir was during the SRTM flight time—the fuller the reservoir at the overpass time, the smaller
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the elevation range above the water. The slopes for the two relationships are fairly similar with only
with a small bias.

Figure 4. (a) The A-H relationship developed from SRTM compared with the relationship derived from
ICESat, (b) time series of the storage estimation values for the Hirakud reservoir from both the SRTM-
and the ICESat-based approaches.

3.2.3. Storage Estimation

Reservoir storage can be estimated based on the remotely sensed water surface area and elevation
using Equation (1):

VRS = VC− (AC + ARS)(HC− HRS)/2 (1)

where VC, AC, and HC represent the storage, area, and water elevation at capacity, respectively. VRS,
ARS, and HRS are the remotely sensed storage, area, and water height at the monitoring time.

In this MODIS-SRTM algorithm, since HRS can be calculated by applying the A-H relationship to
the MODIS area estimation (i.e., ARS), the reservoir storage is calculated through Equation (2) (which
was transformed from Equation (1)).

VRS = VC − (AC + ARS)(AC − ARS)k/2 (2)

Using the methods explained in this section, the reservoir storage was calculated for the 28 selected
reservoirs in South Asia from 2000 to 2015. Using the Hirakud reservoir as an example, Figure 4b
compares the time series of reservoir storage from this MODIS-SRTM algorithm with that from the
MODIS-ICESat algorithm by Zhang et al. [25]. Results suggest that these two sets of storage estimations
are in good agreement. However, compared with the MODIS-ICESat-based algorithm, the storage
values from this study tend to be underestimated (due to the different A-H relationships). To better
understand the error statistics of these two approaches, validations using gauge data were conducted
and are reported on in Section 4.1.

4. Results

The MODIS-SRTM-based reservoir storage dataset was examined comprehensively from three
perspectives: First, the reliability of the dataset was tested by validating the MODIS-SRTM based
reservoir storage results with both in situ gauge data and the MODIS-ICESat based results. Second,
the enhanced spatial coverage from this new dataset was compared with the existing reservoir storage
dataset in South Asia. Third, the uncertainties associated with the algorithm and dataset were analyzed.
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4.1. Validation Results

The MODIS-SRTM-based reservoir storage was validated over 11 reservoirs (Table 2) where gauge
observation data were available. The performance of the results was evaluated using Equations (3)–(5),
which represent three statistical criteria: the coefficient of determination (R2), the relative bias (B), and
the normalized root mean square error (NRMSE):

R2 =

∑n
i=1

(
RSi −RSi

)(
OBSi −Obs

)
√∑n

i=1

(
RSi −RSi

)2
√∑n

i=1

(
Obsi −Obs

)2
(3)

B =
RS−Obs

Obs
× 100% (4)

NRMSE =

√∑n
i=1

(RSi−Obsi)
2

n

Obs
× 100% (5)

where RS represents the remotely sensed results, Obs is the gauge data, i denotes the ith record, n is the
total number of data points, and RS and Obs are the average values of the remote sensing results and
the gauge data, respectively.

Table 2. Statistical validation results for the remotely sensed reservoir storage data obtained from the
MODIS-SRTM approach.

ID Reservoir Name R2 Bias (%) NRMSE (%)

01 Almatti 0.84 12.40 35.87
05 Gabdhi Sagar 0.69 6.25 15.46
06 Hirakud 0.88 −11.07 18.44
14 N. J. Sagar 0.82 2.80 27.95
15 Pong 0.88 19.25 24.52
17 Ranjit Sagar 0.47 17.77 37.69
18 Rengali 0.79 −13.43 23.81
19 Rihand 0.84 −16.22 28.69
20 R. P. Sagar 0.91 −1.79 15.00
22 Srisailam 0.90 −31.7 32.75
26 Ukai 0.81 −14.76 15.93

As shown in Table 2, most of these results were highly correlated with CEA gauge observations.
The R2 values ranged from 0.47 to 0.91, with a mean of 0.8. The lowest R2 was found over the Ranjit
Sagar reservoir. This reservoir has a relatively small area (56 km2 at capacity) and is very meandering
with a high shoreline to area ratio, complicating the accurate estimation of the surface area from the
medium spatial resolution MODIS data [9]. This multicriteria evaluation provided a comprehensive
understanding of the results. Using the Srisailam reservoir as an example, its R2 value was the second
highest among all of the validated reservoirs, but its NRMSE was relatively large. Because the slope of
the A-H relationship (k, in Equation (2)) is constant, a high R2 value suggests that the area estimations
are accurate. Thus, the large NRMSE was mainly caused by errors associated with the slope of the A-H
relationship. Because the area error was proven to be small as indicated by the large R2, the SRTM
DEM was thus the primary error source for the storage results for this reservoir. Another example is
the Ranjit Sagar reservoir. Although it had an extremely low R2 value due to the large amount of error
in the surface area estimations, the storage bias was close to those of the Pong and Rihand reservoirs,
which indicates a relatively more accurate A-H relationship over this reservoir.

The performance of this algorithm was also compared with the MODIS-ICESat algorithm by
Zhang et al. [25] (Table 3). The remotely sensed reservoir storage data from these two algorithms
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were validated over five reservoirs (Hirakud, N. J. Sagar, Pong, Rengali, and R. P. Sagar) where gauge
observations and A-H values were available (from both MODIS-ICESat and SRTM).

Table 3. Comparison of the validation results between the MODIS-SRTM and MODIS-ICESat approaches.

Hirakud N.J. Sagar Pong Rengali R.P. Sagar

NRSME (%) ICESat 14.58 26.50 15.21 19.69 18.18

SRTM 18.44 27.95 24.52 23.81 15.00

Relative Bias (%) ICESat −1.88 4.13 0.41 −2.63 −8.97

SRTM −11.07 2.80 19.25 −13.43 −1.79

R2 ICESat 0.94 0.85 0.98 0.85 0.92

SRTM 0.88 0.82 0.88 0.79 0.91

As shown in Figure 5a, both the MODIS-SRTM and MODIS-ICESat-based approaches performed
well overall. The time series from these two algorithms closely matched the gauge values for reservoir
storage. To highlight the differences between the DEM and ICESat based algorithms, Figure 5b
compares the storage errors against the gauge observations from these two datasets. The error statistics
are provided in Table 3. Among each of the five reservoirs, the NRMSE of the MODIS-SRTM algorithm
ranged from 18.14% to 27.95%, with a mean value of 21.94%. The relative bias values ranged from
−11.07% to 19.25%. The NRMSE of the MODIS-ICESat algorithm ranged from 14.58% to 26.50%, with
a mean value of 18.83%. The bias values ranged from −8.97% to 4.41%. In terms of accuracy, the two
approaches performed relatively similarly, with the MODIS-ICESat algorithm slightly better than the
DEM based algorithm. For the N. J. Sagar reservoir, the NRMSE was 27.95% for the MODIS-SRTM
algorithm and 26.50% for the ICESat-based algorithm. For this reservoir, the DEM results were more
accurate than the ICESat results. The NRMSE was 15.00%, which was 3.18% better than the ICESat
based algorithm. For the Hirakud, Pong, and R. P. Sagar reservoirs, the MODIS-ICESat algorithm
showed a superior accuracy when validated against the gauge data. The higher accuracy of the
MODIS-ICESat algorithm at these three reservoirs may be attributed to the higher vertical accuracy of
the ICESat elevation values, and/or the longer observation period of ICESat (than the DEM, which
results in a more representative A-H relationship). Because the ICESat and SRTM approaches both
use the same MODIS water area values, the larger bias of storage from the SRTM DEM implies that
the lower accuracy of SRTM could reduce the quality of the reservoir storage product. As stated
by the authors of [44], the components of the SRTM error include baseline roll error, phase error,
beam differential errors, and timing and position errors. However, the SRTM DEM errors related to
terrain, timing, and position—along with the low vertical resolution (1-m intervals)—still influenced
the accuracy of the A-H relationship, which led to a higher bias of the storage calculation. Overall, the
MODIS-SRTM algorithm performed reasonably well.

4.2. Spatial Coverage of the Reservoir Storage Dataset

With full-coverage of two-dimensional elevation data at a fine spatial resolution (30 m), the
MODIS-DEM algorithm generated storage time series for the 28 reservoirs in South Asia from 2000 to
2015 (Figure 6). These reservoirs had an integrated capacity of 124.17 km3 (46.6% of the region’s total
capacity). Compared with the MODIS-ICESat algorithm, the MODIS-SRTM algorithm enabled the
monitoring of eight additional reservoirs (Figure 1), which represented a 18.6% increase of the overall
storage capacity. Sriram Sagar, which was almost at its maximum level during the SRTM flight time,
was the only reservoir for which the A-H relationship could be generated by MODIS-ICESat but not by
the DEM.
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Figure 5. Validation results by comparing the remotely sensed storage values with gauge observations:
(a) Comparison among absolute storage values; (b) comparison of storage difference (remotely sensed
storage minus gauge data).

Figure 6. Combined remotely sensed storage time series of the South Asian reservoirs analyzed in
this study.

The new dataset contains the storage variation information over multiple reservoirs at the basin
scale, which is essential for regional water management purposes. For instance, with two additional
reservoirs included in the dataset, the total storage of the monitored reservoirs in the Krishna river
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basin (KRB) increased from 33.4% to 67.0% (i.e., from 9.70 to 19.44 km3) of the basin’s capacity
(29 km3). The Krishna River is the fourth largest river in India, with its basin extending over an area of
259,948 km2 (about 8% of India). Most of the KRB is relatively flat, with about 76% of the basin covered
by agricultural land. Many hydroelectric power stations are distributed along the Krishna River,
providing clean energy to a large area of India. Therefore, the improved spatial representativeness of
reservoirs in this river basin is essential for hydrologic modeling and water management. The Ukai
Dam across the Tapti River was constructed for the purposes of irrigation, hydropower generation,
and flood control. The Tapti River basin accounts for nearly two percent of the total area of India.
However, before this study, no reservoir in this basin had remotely sensed elevation or storage data
from space. In 2000, a severe drought occurred in the Tapti basin, causing drinking water scarcity in
some villages [45]. In 2009, many districts in this basin were declared to be under drought conditions
due to the deficiency of rainfall from June to September [46]. The low storage values around 2000 and
2009 (Figure 6) reflect this water scarcity. Figure 6 also shows an increase of maximum storage in the
Mangla Reservoir after 2012. This is attributed to the enhanced storage capacity, that was used to
increase the reservoir’s irrigation capability [47]. Another example is the Yeldari reservoir. According
to media reports, two severe drought events occurred in the region in 2004 and from 2012 to 2015—and,
in both cases, the Yeldari reservoir almost dried up [48,49].

4.3. Uncertainty Analysis

The storage uncertainty associated with the A-H relationship is primarily attributed to the use of
partial bathymetry information to represent the A-H relationship for the entire reservoir. Because the
DEM dataset only represents the part of the bathymetry that was above the water surface when the
SRTM measurements were collected, it assumes that the unmeasured part below the water surface
shares the same A-H relationship. To quantify the uncertainty associated with this assumption, we
compared the storage estimations from three different scenarios (Figure 7). In each case, a simplified
cross-sectional view of the reservoir was used—with the water surface area collected by the SRTM (in
2000) indicated as A1, and the area of the reservoir bottom indicated as A2. Under all scenarios, the
storage volume below the DEM water surface was preserved. The first scenario (Figure 7a) follows
the algorithm used in this study, which assumes that the A-H relationship remains the same across
the entire profile. The second scenario (Figure 7b) assumes that the area of the reservoir bottom is
zero, and thus the A-H relationship of the unknown part below the water surface has the smallest
possible slope of kmin. The third scenario (Figure 7c) assumes that the minimum area from the MODIS
estimations is the area of the reservoir bottom, and thus the A-H relationship of the unknown part
below the water surface has the largest possible slope of kmax.

Figure 7. Illustration of the process for quantifying the uncertainty associated with the extrapolation of
the A-H relationship: (a) an example of a simplified reservoir cross section, with a bottom area of A2

identified by assuming the unmeasured portion shares the same A-H relationship, (b) the reservoir
cross section by assuming the bottom area A2 is 0, (c) the reservoir cross section by assuming the
reservoir bottom area A2 equals ARS_min.



Remote Sens. 2020, 12, 745 12 of 16

Using the slope of the upper portion (i.e., k) as estimated from the DEM, the reservoir storage
value when the DEM was constructed (i.e., V2) can be calculated using Equation (6):

V2 = Vc −V1 = Vc − (Ac + A1)(Ac −A1)k/2 (6)

As shown in Figure 7b, the minimum value of A2—which is 0—can be used to estimate kmin via
Equation (7):

kmin =
2V2

(A1 + A2)(A1 −A2)
=

2V2

A2
1

(7)

Similarly, the maximum value of A2—which is equal to the minimum water surface area from
MODIS during the research period (Figure 7c)—can be used to estimate kmax after Equation (8):

kmax =
2V2

(A1 + A2)(A1 −A2)
=

2V2(
A1 + Amin

RS

)(
A1 −Amin

RS

) (8)

Thus, for any MODIS remotely sensed area (ARS) that is less than A1, the storage can range between
a minimum possible value of VRS

min (Equation (9)) and a maximum value of VRS
max (Equation (10)):

Vmin
RS = V2 − (A1 + ARS)(A1 −ARS)kmin/2 (9)

Vmax
RS = V2 − (A1 + ARS)(A1 −ARS)kmax/2 (10)

Therefore, the uncertainties associated with the constant slope assumption can be represented by
the difference between the two storage estimates described below using Equation (11):

∆V = (A1 + ARS)(A1 −ARS)(kmax − kmin)/2 (11)

The uncertainties associated with this source are illustrated in Figure 8. For all 28 reservoirs, the
absolute uncertainty due to the unmeasured A-H relationship ranged from 0 km3 to 0.54 km3, with an
average of 0.23 km3. Among these reservoirs, the Rihand reservoir had the largest absolute uncertainty
(0.54 km3), primarily because this large reservoir was at a relatively high level when the DEM data
were collected. The surface area of the Rihand reservoir—as measured by DEM—was 388.96 km2,
whereas its surface area at full capacity is 485 km2. Considering all of the reservoirs, we found a
significant increasing trend of the absolute uncertainty as the reservoir capacity increased. For every
1 km3 increase in reservoir capacity, the uncertainty increased by 0.034 km3 (p < 0.01). The averaged
relative uncertainty caused by the unmeasured A-H relationship was 4.68%. However, we observed no
significant relationship between the relative uncertainty and the capacity.

The uncertainties from the area estimation algorithm were quantified thoroughly by Zhang et al.
[2014]. From this source, the absolute uncertainties were also found to be highly correlated with the
storage at capacity, where the absolute uncertainties had an average value of 3.90%. This is a similar
uncertainty range but lightly larger than the unmeasured A-H relationship.

The vertical error of SRTM DEM could be another source of uncertainty. This was not analyzed
in this study because the storage calculation (in this study) was based on the slope of the A-H
relationship and area estimations, rather than using the absolute elevation value from the SRTM DEM
directly. Since the slope of the A-H relationship is determined by the elevation difference of reservoir
pixels, the absolute vertical DEM error can be offset during the process, reducing its influence on the
storage estimation.
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Figure 8. Uncertainty analysis results: (a) Absolute uncertainty; (b) relative uncertainty due to the
unmeasured A-H relationship of SRTM DEM.

5. Conclusions

In this study, an algorithm that leverages the SRTM DEM data was developed to improve the
spatial coverage of the reservoir monitoring network in South Asia. By combining water surface area
from MODIS for reservoir storage estimations, we were able to take the advantage of high temporal
resolution of MODIS and large spatial coverage of SRTM. Furthermore, validation results against
gauge observations over 11 reservoirs in South Asia suggested that the storage estimations had a good
level of accuracy (with R2 values ranging from 0.47 to 0.91). The integrated storage capacity of these
reservoirs was 118.76 km3, which represents 46.6% of the overall storage in the region.

This algorithm still has some limitations that need to be noted. First, the accuracy of the proposed
algorithm depends on the water level at the time the DEM data were collected. For certain reservoirs
that were almost full during the SRTM acquisition time, this approach did not work. Due to the
assumption that the A-H relationship derived from the DEM above the water surface represented
the full bathymetry, uncertainties in storage estimations were introduced in addition to those from
the area retrieval algorithm. Second, the low vertical resolution of SRTM DEM and the errors from
different sources may reduce the accuracy of the storage estimation [44]. Therefore, examining the
DEM errors with respect to the terrain of the reservoirs could help us to better understand the error
characteristics of the storage estimation bias. Third, due to the medium resolution of MODIS, the
accuracy of reservoir storage estimation decreased for the reservoir with the smallest surface area
(56 km2). Nonetheless, the benefits of the extended number of reservoirs outweigh the constraints.

The algorithm proposed in this study can provide reservoir storage products that support water
management on a large scale. For instance, given the long-term availability of high spatial resolution
sensors, this approach could be used to monitor much smaller sized reservoirs than possible using
existing techniques. This algorithm may also contribute to future satellite missions such as the Surface
Water Ocean Topography (SWOT) mission, which will provide a direct water surface measurement
for about two-thirds of global lakes and reservoirs, including those with an individual water area >

0.06 km2.
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