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Abstract: Conventional classification algorithms have shown great success in balanced hyperspectral
data classification. However, the imbalanced class distribution is a fundamental problem of hyper-
spectral data, and it is regarded as one of the great challenges in classification tasks. To solve this
problem, a non-ANN based deep learning, namely SMOTE-Based Weighted Deep Rotation Forest
(SMOTE-WDRoF) is proposed in this paper. First, the neighboring pixels of instances are introduced
as the spatial information and balanced datasets are created by using the SMOTE algorithm. Second,
these datasets are fed into the WDRoF model that consists of the rotation forest and the multi-level
cascaded random forests. Specifically, the rotation forest is used to generate rotation feature vectors,
which are input into the subsequent cascade forest. Furthermore, the output probability of each
level and the original data are stacked as the dataset of the next level. And the sample weights are
automatically adjusted according to the dynamic weight function constructed by the classification
results of each level. Compared with the traditional deep learning approaches, the proposed method
consumes much less training time. The experimental results on four public hyperspectral data
demonstrate that the proposed method can get better performance than support vector machine,
random forest, rotation forest, SMOTE combined rotation forest, convolutional neural network, and
rotation-based deep forest in multiclass imbalance learning.

Keywords: deep forest; multiclass imbalance learning; hyperspectral imagery; classification; SMOTE

1. Introduction

Hyperspectral imagery is simultaneously obtained by remote sensors in dozens or
hundreds of narrow and contiguous wavelength bands [1–5]. Compared with traditional
panchromatic and multispectral remote sensing images, hyperspectral imagery carry a
wealth of spectral information, which enables more accurate discrimination of different
objects. Consequently, in recent years, hyperspectral imagery has gained extensive atten-
tion for a variety of applications in Earth observations [1,6–10], such as urban mapping,
precision agriculture, and environmental monitoring [11–15]. The hyperspectral image
classification is a significant research topic and it centers on assigning class labels to pix-
els. Class distribution, i.e., the proportion of samples belonging to each class, plays an
extremely important part in classification research. Some traditional classification methods,
such as maximum likelihood classification [16], support vector machine (SVM) [17] and
artificial neural network [18], have acquired satisfactory performance on the balanced
hyperspectral data.

However, since the hyperspectral image scene usually contains many objects of various
sizes and sample labeling is difficult in the real world, the class imbalanced is a fundamental
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problem in hyperspectral image classification [19]. Generally, the majority classes are
defined as the classes with a large number of instances while minority classes are the
classes with a small number of samples [9]. Because the cost of misclassifying the minority
class is usually much higher than the cost of majority classes [20]. With the skewed class
distribution, the classifier is inclined to predict that the input instances belong to the
majority class to keep high prediction accuracy [20–24]. Such a strategy is not effective for
distinguishing the minority classes, even if they are usually foreground classes of interest.
Therefore, one of the biggest challenges that machine learning and remote sensing face is
how to classify imbalanced data effectively.

Generally, the aim of imbalance learning is to strive for acquiring a classifier that can
provide high classification accuracy for the minority class without heavily compromising
the accuracy of the majority classes [25–27]. Traditionally, the class-imbalance problem has
been dealt with either in the data level [28–30] or in the algorithm level [31–34]. The data
level focuses on modifying the sample distribution of classes in training sets to reduce the
degree of class imbalance, which makes it fit for the classification prediction of the standard
algorithm model. The most common method to deal with the imbalance problem in data
level is resampling whose major advantages are that no modification to the classifier
is needed and the balanced data can be reused in other applications or classification
tasks [35,36]. Resampling can be further divided into two types: undersampling [37] and
oversampling [38].

• Undersampling methods: Undersampling alters the size of training sets by sam-
pling a smaller majority class, which reduces the level of imbalance [37] and is easy
to perform and have been shown to be useful in imbalanced problems [39–42]. The
major superiority of undersampling is that all training instances are real [35]. Ran-
dom undersampling (RUS) is a popular method that is designed to balance class
distribution by eliminating the majority class instances randomly. However, the main
disadvantage of undersampling is that it may neglect potentially useful information,
which could be significant for the induction process.

• Oversampling methods: Over-sampling algorithms increase the number of samples
either by randomly choosing instances from the minority class and appending them
to the original dataset or by synthesizing new examples [43], which can reduce the
degree of imbalanced distribution. Random oversampling is simply copying the
sample of the minority class, which easily leads to overfitting [44] and has little effect
on improving the classification accuracy of the minority class. The synthetic minority
oversampling technique (SMOTE) is a powerful algorithm that was proposed by
Chawla [29] and has shown a great deal of success in various applications [45–47].
SMOTE will be described in detail in Section 2.1.

The main idea at the algorithm level is to modify the existing classification algorithm
model appropriately in combination with the actual data distribution. The typical methods
include active learning [48], cost-sensitive learning [49,50], and Kernel-based learning [51].

• Active learning methods: Traditional active learning methods are utilized to deal
with problems with the unlabeled training dataset. In recent years, various algorithms
on active learning from imbalanced data problems have been presented [48,52,53].
Active learning is a kind of learning strategy that selects samples from a random set
of training data. It can choose more worthy instances and discard the instances which
have less information, so as to enhance the classification performance. The large com-
putation cost for large datasets is the primary disadvantage of these approaches [48].

• Cost-sensitive learning methods: Cost-sensitive learning solves class imbalance prob-
lems by using different cost matrices [50]. Currently, there are three commonly used
cost-sensitive strategies. (1) The cost-sensitive sample weighting: converting the cost
of misclassification into the sample weights on the original data set. (2) The cost-
sensitive function is directly incorporated into the existing classification algorithm,
which will ameliorate internal structure of the algorithm. (3) The cost-sensitive ensem-
ble: cost-sensitive factors are integrated into the existing classification methods and
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combine with ensemble learning. Nevertheless, cost-sensitive learning methods re-
quire the knowledge of misclassification costs, which are hard to obtain in the datasets
in the real world [54,55].

• Kernel-based learning methods: Kernel-based learning is focused on the theories
of statistical learning and Vapnik-Chervonenkis (VC) dimensions [56]. The support
vector machines (SVMs), which is a typical kernel-based learning method, can obtain
the relatively robust classification accuracy for imbalanced data sets [51,57]. Many
methods that combine sampling and ensemble techniques with SVM have been pro-
posed [58,59] and effectively improve performance in the case of imbalanced class
distribution. For instance, a novel ensemble method, called Bagging of Extrapo-
lation Borderline-SMOTE SVM (BEBS) was proposed to incorporate the borderline
information [60]. However, as this method is based on SVM, it is difficult to implement
in a large dataset.

The classification approaches only using the spectral information cannot capture the
crucial spatial variability perceived for data, which usually leads to lower performance,
especially for the hyperspectral data [61]. Recently, approaches based on deep learning
have been developed for the spectral-spatial hyperspectral datasets classification and
exhibited their high effectiveness and performance [61,62]. Deep learning is an emerging
method that has achieved excellent performance in hyperspectral image classification
with sufficient well-labeled data sets [63,64]. Generally, a deep graph structure includes
a cascade of layers which is consists of multiple linear and non-linear transformations.
Compared with traditional machine learning approaches, deep learning methods can
automatically extract informative features from the original hyperspectral dataset by a
sequence of hierarchical layers [63]. In addition, deep learning has stronger robustness
and higher accuracy than machine learning methods with shallower structures. However,
most deep learning approaches, such as the convolutional neural network (CNN), have
no algorithmic strategy for dealing with imbalanced data [63,65,66]. As the data set grows
larger, the detrimental impact of class imbalance on deep learning methods augments. As
mentioned before, the imbalance problem has been comprehensively researched in classical
machine learning approaches, nevertheless, it has acquired less attention in the context
of deep learning [66]. Besides, the training process of traditional deep learning methods
generally consumes much time. The rotation-based deep forest [67], a novel deep learning
method, is proposed for the classification of hyperspectral images and achieves satisfactory
results with less training time. Nevertheless, this method does not solve the classification
problem when the data distribution is imbalanced.

To improve the classification ability of non-ANN based deep-learning approaches
for imbalanced hyperspectral datasets, a novel SMOTE-Based Weighted Deep Rotation
Forest(SMOTE-WDRoF) algorithm is proposed in this paper. First, the neighboring pixels
of instances are introduced as spatial information and multiple new synthetic balanced
datasets are created by using the SMOTE algorithm. And then, these datasets are fed into
the WDRoF model that consists of the rotation forest and the multi-level cascaded random
forests. Specifically, the rotation forest is utilized to generate rotation feature vectors, which
are input into the subsequent cascade forest. Moreover, the output probability of each
level and the original data are stacked as the dataset of the next level. And the sample
weights are automatically adjusted according to the dynamic weight function constructed
by the classification results of each level. In summary, the proposed algorithm integrates
the advantages of SMOTE, spatial information, and adaptive sample weights. The main
contributions of this paper are as follows:

(1) The proposed SMOTE-WDRoF based on deep ensemble learning combines deep
rotating forest and SMOTE internally. It can obtain higher accuracy and faster training
speed for the imbalanced hyperspectral data.

(2) Besides, the introduction of the adaptive weight function can alleviate the defect of
SMOTE, which is that SMOTE would generate additional noise when synthesizing
new samples.
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The remaining part of this paper is summarized as follows. Section 2 describes the
related work. Section 3 presents the detail information about the proposed methodology.
Then, Section 4 shows the results and discussion. Finally, the conclusions are given in
Section 5.

2. Related Works
2.1. Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE, presented by Chawla et al. [29], is the most popular oversampling approach
which can solve the overfitting problem. Its main idea is to randomly synthesize new
minority samples in the k nearest neighborhood of the selected one through interpolation.
It should be noted that the artificial samples are created in the feature space instead of in
the data space. The detail process of SMOTE is as follow:

(1) Calculate k nearest neighbors with minority class samples in accordance with Eu-
clidean distance for each minority instance xi.

(2) A neighbor xj is randomly chosen from the k nearest neighbors of xi.
(3) Create a new instances xnew between xj and xi:

xnew = xi + δ|xi − xj| (1)

where δ is the random number between 0 and 1.

2.2. Random Forest (RF)

Inspired by the bagging algorithm [68], Breiman first proposed random forests [69]
in 2001. Its main idea is random sample selection and random feature selection. In RF, all
trees are independent of each other, so that the training and testing process are in parallel.
Let us suppose a dataset Dm with m samples (X, Y), where X ∈ RD. First of all, n instances
are randomly selected from the original data set Dm with replacement. These instances are
utilized to build the current decision tree. Second, f features ( f < D) are first randomly
chosen from the original D features. Based on the criterion of Gini impurity or mean
squared error (MSE), Classification and Regression Trees (CART) are created. Finally, the
classification result is obtained according to the majority voting criterion.

2.3. Rotation Forest (RoF)

Drawing upon the idea of RF, Rodriguez proposed RoF in 2006 [70]. Based on the
idea of feature transformation, this algorithm focuses on improving the difference and
accuracy of the base classifier. An RoF model of T size is constructed by implementing the
following steps.

(1) Firstly, the feature space F is split into K feature sets which are disjoint and each subset
includes N = F/K number of features.

(2) Secondly, a new training set is obtained by using bootstrap algorithm to randomly
selected the 75% of the training data.

(3) Then, the coefficients at,g(g ≤ G, t ≤ T) is obtained by employing the principal
component analysis (PCA) on each subspace Ft,g(g ≤ G, t ≤ T) and the coefficients of
all subspaces are organized in a sparse “rotation” matrix Rt(t ≤ T).

Rt =


e1

t,1 · · · eN1
t,1 0 · · · 0

0 e1
t,2 · · · eN2

t,2 · · · 0
...

...
. . .

...
0 0 e1

t,g · · · e
Ng
t,g

 (2)

(4) The columns of Rt is rearranged by matching the order of original features F to build
the rotation matrix R

′
t. Then, construct the new training set S

′
t = [StR

′
t, Yt], which is

used to train an individual classifier.



Remote Sens. 2021, 13, 464 5 of 25

(5) Repeat the aforementioned process on all diverse training sets and generate a series of
individual classifiers. Finally, the results are obtained by the majority vote rule.

2.4. Rotation-Based Deep Forest (RBDF)

As a simple deep learning model, the rotation-based deep forest (RBDF) includes
L level random forests and each level contains w RF models. This approach adopts the
output probability of each level as the supplement feature of the next level [67]. The RBDF
model contains three steps. First, spatial information is acquired by using a sliding window
to extract the neighboring pixels of training samples. Second, the training samples and
its neighboring pixels are fed into the RoF model. And each RoF will generate rotation
matrices and construct the rotation feature vector. Third, feed the rotation feature vector
into an RF model and obtain the classification probability. Then, all the classification
probability vectors of level l are averaged to acquire the averaged probability vector which
is stacked into the original dataset as the input data of the next level. Finally, the result is
generated by finding out the maximum classification probability.

3. Method

In this section, the SMOTE-WDRoF method is proposed to deal with hyperspectral
imbalanced data. Firstly, the local spatial structure of instances is introduced and balance
datasets are generated by SMOTE, which allows more wealthy information to be obtained
from hyperspectral images and alleviates class imbalance in the data level. Then, multiple
levels of the forest are utilized to construct the WDRoF model which is the key ingredient
of the whole algorithm. More specifically, the rotation forest is utilized to generate rotating
feature vectors, which are input into the subsequent cascade forest. Moreover, the output
probability of each level and the original data are stacked as the dataset of the next level.
And the sample weights are automatically adjusted according to the dynamic weight
function constructed by the classification results of each level. The details of the algorithm
are as follows.

3.1. Spatial Information Extraction and Balanced Datasets Generation

The object in the image usually contains consistent spatial structure, i.e., neighbor
pixels are likely to have the same label. Consequently, spatial-contextual information
should be taken into account when classifying. The proposed algorithm combines spatial
neighborhood information extraction strategy with SMOTE approach to select informative
spatial neighbors and balance the dataset distribution to increase classification accuracy.

First, spatial information is extracted by using a sliding window. Let us assume
X ∈ RM×N×D is the hyperspectral image, where M, N, D represent the height, width, and
the number of spectral bands of the image respectively. The am,n,d represents the value of
the pixel that is located in line m, column n and band d. To obtain the spectral and spatial
information of the hyperspectral dataset, the patch is constructed by extracting pixels in a
window of size w1 × w2 × D and step size 1 with the central pixel. Suppose the spectral
vector of a pixel is x ∈ RD, the patch Ai can be defined as

Ai =



a(w1−b)(w2−b) · · · aw1(w2−b) · · · a(w1+b)(w2−b)
...

. . .
...

. . .
...

a(w1−b)w2
· · · aw1w2 · · · a(w1+b)w2

...
. . .

...
. . .

...
a(w1−b)(w2+b) · · · aw1(w2+b) · · · a(w1+b)(w2+b)


(3)

where w1 = w2 = 2b + 1, 1 ≤ b ≤ min(w1, w2)/2, i ∈ (M− w1)(N − w2). After scanning
the whole hyperspectral image, it can be obtained K patches, where K = (M−w1)(N−w2).
Take a 3× 3×D sliding window, for example, each sample and its 8 neighboring pixels are
extracted, which is shown in Figure 1a. Due to spatial similarity, each instance is generally
the same as those of its spatial neighbors and the material fractions are close to each other.
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Therefore, they have the same label. The hyperspectral imbalance datasets {s1, s2, ..., s9}
denoted as S are formed by extracting the pixels of corresponding positions in all patches
and combining the sample labels Y.

(a) Spatial Information Extraction

The Majority 

Class

The Minority 

Class

The Majority 

Class
The Minority 

Class

The New Sample

The Class Imbalanced Data Synthesizing the New Samples

(b) SMOTE

Figure 1. The Flow Chart of Spatial Information Extraction and Balanced Datasets Generation.

Second, according to the proportion of majority class instances to minority class in-
stances, SMOTE oversamples each imbalance data sw(w ∈ 9). As is shown in Figure 1b, the
circle and star stand for the majority class samples and minority class instances, respectively.
Suppose that the new sample is created from sample xi with T = 5. SMOTE will randomly
choose a sample from the minority class and its nearest five neighbors. Assuming sample
xj is selected. The newly synthesized instance highlighted by the square shape is generated
between xi and xj by Equation (1). And then the balanced datasets {s′1, s

′
2, ..., s

′
9} denoted

S
′

can be obtained.

3.2. Weighted Deep Rotation Forest (WDRoF)

In this part, we propose the WDRoF algorithm, which is shown in detail in Figure 2.
This algorithm adopts a multi-level random forest cascade to classify the hyperspectral
dataset. Each level of the random forest produces the classification probabilities and
misclassification information of the data which are used as guidance information for the
next level. More specifically, the classification probabilities form a class vector that is
concatenated with original data to constitute input of the next level. And the classifica-
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tion probability of each layer will be applied to all subsequent layers. Furthermore, the
misclassification probability is employed to update the sample weight adaptively. When
growing a new level, the performance of this level will be evaluated on the test set. If
there is no obvious performance gain, the training procedure will finish. Consequently, the
number of levels for RF is automatically identified. The implementation steps of WDRoF
are as follows.

(1) The datasets {s′1, s
′
2, ..., s

′
W} that have been generated by SMOTE are fed into the RoF

models where W = w1 × w2. The s
′
w(w ∈ W) can be written as s

′
w = {X, Y} =

{(x1, y1), (x2, y2), ..., (xK, yK)}, where K stands for the number of instances. In RoF,
we apply PCA for features transformation which is a mathematical transformation
method that transforms a set of variables into a set of unrelated ones. Its goal is to
obtain the projection matrix Q = [q1, q2, .., qK]:

min
Q

tr(QTXXTQ)

s.t. QTQ = I
(4)

First of all, the self-correlation matrix for X is computed:

cov(X) = E[(X− E[X])(X− E[X])T ] (5)

where E[X] is the expected number of X and [·]T represents transposition. Second,
eigen decomposition is applied on cov(X) to calculate its eigenvalues: λ1, λ2, · · · , λK
and corresponding eigenvectors: α1, α2, · · · , αK. Finally, the principal component
coefficient can be calculated by the following:

E = [e1, e2, · · · , eK] = [α1, α2, · · · , αK]
TX (6)

Construct the rotation matrix with Equation (2) and then generate the rotation feature
vectors { f1, f2, . . . , fW} by the RoF.

(2) The rotation feature vectors { f1, f2, . . . , fW} are fed into the first level of the random
forest and the weight of the sample Weightw,l−1(xk) is set to 1. In level 1, each RF
will generate the classification probability and classification error information of each
instance for the dataset. All the classification probabilities vector P = {p1, p2, . . . , pW}
of level 1 are averaged to obtain a robust estimation P:

P =
1

W

W

∑
w=1

pw

=
1

W

W

∑
w=1

[
1

Ntree

Ntree

∑
i=1

I(hi(X) = Y)]

(7)

where hi represents the ith decision tree output and Ntree stands for number of decision
tree in RF. In addition, according to the classification error, the weights of the sample
(xk, yk) can be computed

Weightw,l(xk) = Weightw,l−1(xk)exp[
1
C

C

∑
c=1,c 6=yk

(vw(xk, c)] (8)

where vw(xk, c) is the number of votes of any other class with the wth RF model. The
weight of a sample will be increased if it is misclassified by the previous level, which
makes the sample play a more significant role in the next level and forces the classifier
to focus attention on the misclassified samples.
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(3) In the last level, after the average probability vector is calculated, the prediction label
is acquired by finding the maximum probability.

y∗ = argmax
W

∑
w=1

I(vw(xk) = c, c ∈ 1, 2, .., C) (9)

The process of the novel SMOTE-WDRoF method is summarized in Algorithm 1.

...

...

RF RF RF ...

Average

...

...

RF RF RF ...

concatenate

Level 1

Level 2

Sample 
weights

Sample 
weights

Sample 
weights

...

RF RF RF ...

Average

Max

The Predicted 

Result

Level L

RoF RoF RoF 

Accuracy

Classification 

probability
Classification 

error

Classification 

probability

Classification 

probability
Cclassification 

error

Classification 

error

Classification 

probability
Classification 

error

Classification 

probability
Classification 

error

Classification 

probability
Classification 

error

Figure 2. The Flow Chart of WDRoF.
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Algorithm 1: SMOTE-Based Weighted Deep Rotation Forest (SMOTE-WDRoF)
1 Input: X ∈ RM×N×D: the hyperspectral image; M: the height of the image; N:

the width of the image; D: the spectral bands of the image; w1× w2 × D: the
size of sliding window; W = w1× w2;

2 Process:
3 for m = 1:M do
4 for n = 1:N do
5 Obtain K patches {A1, ..., AK} by scanning the image using the sliding

window with (3)
6 end for
7 end for
8 for w = 1:W do
9 Acquire the imbalanced data sw by extracting the pixels of corresponding

positions in K patches
10 Input sw into the SMOTE algorithm
11 Construct the balanced data s

′
w

12 end for
13 Get the balanced datasets {s′1, ..., s

′
w, ..., s

′
W}

Classification:
14 for l = 1:L do
15 for w = 1:W do
16 Construct the rotation feature vector fw by utilizing RoF algorithm
17 Train the RF model with fw
18 Update each sample weight: Weightw,l(xk)←Weightw,l−1(xk) with (8)
19 Calculate the the classification probability pw
20 end for
21 Obtain the average probability vector P with (7)
22 Concatenate P with the input feature vector to constitute input of the next

level
23 end for
24 Output: The prediction label y∗ = argmax ∑W

w=1 I(vw(xk) = c, c ∈ 1, 2, .., C)

4. Experimental Results
4.1. Datasets

Four hyperspectral imagery (http://www.ehu.eus/ccwintco/index.php?title=Hyper
spectral_Remote_Sensing_Scenes) with a high imbalance ratio (IR), including Indian Pines
AVRIS, Kennedy Space Center (KSC), Salinas and University of Pavia scenes, are adopted to
assess the effectiveness of the proposed WDRoF. For the sake of assessing the performance
of the classification algorithms objectively, the training data and the test data should be
independent. For Indian Pines AVRIS and KSC, 30% of samples of each class are randomly
selected to construct the training set, and the remaining 70% of samples from each class
constitute the test set. For Salinas and University of Pavia scenes, 5% of samples of each class
are chosen to construct the training set, and the remaining samples constituted the test set.
Furthermore, if the number of samples in a certain class is less than 100, half of the samples
in that class are selected for training and the remaining half for testing. More detailed
information related to the number of training and testing instances is listed in Table 1.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes


Remote Sens. 2021, 13, 464 10 of 25

• Indian Pines AVRIS were obtained employing the National Aeronautics and Space
Administration’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
and gathered over northwest Indiana’s Indian Pine test site in June 1992. As the high
imbalance dataset, Indian Pines AVRIS consists of 145× 145 pixels and 220 bands
covering the range from 0.4 to 2.5 µm with a spatial resolution of 20 m. There are
16 different land-cover classes and 10,249 samples in the original ground truth. 30% of
original reference data are chosen randomly to constitute training dataset and the
remaining part constructs test dataset. For Indian Pines AVRIS, if the number of
samples is less than 100, such as Oats, half of the samples are randomly chosen to
construct training sets. The IR on the training set is 73.6.

• KSC was acquired by the Airborne Visible/Infrared Imaging Spectrometer instrument
over the Kennedy Space Center (KSC), Florida, on 23 March 1996. The image consists
of 512× 614 pixels with a spatial resolution of 18 m. After removing noisy bands,
176 spectral bands were used for the analysis. Approximately 5208 instances with
13 classes from the ground-truth map. Similar to the setup in the Indian Pines AVRIS
image, 30% of pixels per class are randomly selected to constitute the training set, and
the others are utilized to construct the test set. The IR on the training set is 8.71.

• Salinas was gathered by the AVIRIS sensor over Salinas Valley, California with
224 spectral bands. This image consists of 512× 217 pixels with a spatial resolution
of 20 m. The original ground truth also has 16 classes mainly including vegetables,
vineyard fields, and bare soils. Training sets are constructed by 8% of its samples
chosen randomly from original reference data. The IR on the training set is 12.51.

• University of Pavia scenes covering the city of Pavia, Italy, was gathered by the reflective
optics system imaging spectrometer sensor. The data sets consist of 610× 340 pixels
covering the range from 0.43 to 0.86 µm with a spatial resolution of 1.3 m. There are
16 classes and 42,776 instances in the original ground truth. The training dataset is
constituted by 8% of samples that are chosen randomly from original data without
replacement. The IR on the training set is 19.83.

4.2. Experiment Settings

In order to demonstrate the advantages of the proposed SMOTE-WDRoF, six popular
methods, SVM, RF, RoF, SMOTE combined rotation forest (SMOTE-RoF), Convolutional
neural network(CNN) [71], and RBDF is utilized in the comparative analysis. The settings
of the six methods are introduced as follows. (1) In the SVM algorithm, the Gaussian
function is employed. (2) For RF, the number of trees is twenty. (3) The RoF adopts the
PCA transformation and includes 5 trees. The feature dimension of each sample subset
is set to 10 and the number of trees. (4) For SMOTE-RoF, the parameter setting is the
same as RoF. (5) The settings of CNN are based on reference [71]. (6) For RBDF, there are
20 features in each sample subset of RoF and each RF contains 20 trees. (7) In the proposed
SMOTE-WDRoF, each RF also contains 20 trees and 20 features are included in each sample
subset for RoF. In addition, for Indian Pines AVRIS and Kennedy Space Center (KSC), the
7× 7 neighborhood pixels are utilized to classify in RBDF and SMOTE-WDRoF. For Salinas
and University of Pavia scenes, these two algorithms use 5× 5 neighborhood pixels for
classification. All the programs are implemented using Python language. The results are
generated on a PC equipped with an Intel(R) Core(TM) i5-10200H CPU with 2.4 GHz.
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Table 1. Data information of Indian Pines AVRIS, Salinas, KSC and University of Pavia ROSIS.

The Dataset Indian Pines AVRIS Salinas

Class No. Train Test Class No. Train Test

1 Alfalfa 23 23 Brocoli_green_weeds_1 100 1909
2 Corn-notill 428 1000 Brocoli_green_weeds_2 186 3540
3 Corn-mintill 249 581 cFallow 98 1878
4 Corn 71 166 cFallow_rough_plow 68 1325
5 Grass-pasture 144 339 Fallow_smooth 133 2545
6 Corn-trees 219 511 Stubble 197 3762
7 Corn-pasture-mowed 14 14 Celery 178 3401
8 Hay-windrowed 143 335 Grapes_untrained 563 10,708
9 Oats 10 10 Soil_vinyard_develop 310 5893
10 Soybeans-notill 291 681 Corn_senesced_green_weeds 163 3115
11 Soybeans-mintill 736 1719 Lettuce_romaine_4wk 53 1015
12 Soybeans-clean 177 416 Lettuce_romaine_5wk 96 1831
13 Wheat 61 144 Lettuce_romaine_6wk 45 871
14 Woods 379 886 Lettuce_romaine_7wk 53 1017

15 Buildings-Grass-Trees-
Drivers 115 271 Vinyard_untrained 363 6905

16 Stone-steel-Towers 46 47 Vinyard_vertical_trellis 90 1717

Total 3106 7143 2697 51,432

The Dataset KSC University of Pavia ROSIS

Class No. Train Test Class No. Train Test

1 Scrub 229 532 Asphalt 331 6300
2 Willow swamp 73 170 Meadows 932 17,717
3 Cabbage palm ham 80 179 Gravel 104 1995
4 Cabbage palm/oak ham 76 176 Trees 153 2911
5 Slash pine 49 112 Painted metal sheets 67 1278
6 Oak/broadleaf ham 69 160 Bare Soil 251 4778
7 Hardwood swamp 32 73 Bitumen 66 1264
8 Graminoid marsh 130 301 Self-Blocking Bricks 184 3498
9 Spartina marsh 157 363 Shadows 47 900
10 Cattail marsh 122 282
11 Salt marsh 126 293
12 Mud flats 151 352
13 Water 279 648

Total 1573 3635 2135 40,641

4.3. Assessment Metric

Because the Overall Accuracy (OA) can reflect the overall classification performance
of the classifier, it is often adopted to evaluate traditional machine learning classification
algorithms. However, when there is a serious imbalance between the data classes, the
classification model may be strongly biased towards the majority classes, which results in
poor recognition of the minority classes. Therefore, OA is not the most appropriate index to
evaluate the model since it might result in inaccurate conclusions [72]. Consequently, this
paper adopts five main metrics as performance measures, including the precision, average
accuracy, Recall, F-measure, and Kappa.

• Precision: Precision is employed to measure the classification accuracy of each class
in the imbalanced data. The precisioni measures the prediction rate when testing only
samples of class i

precisioni =
mii

∑C
i=1 mji

(10)

where mii and mji stand for the true prediction of the ith class and the false prediction
of the ith class into ith class, respectively.
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• Average Accuracy (AA): As a performance metric, AA provides the same weight to
each of the classes in the data, independently of the number of instances it has. It can
be defined as

AA =
∑C

i=1 precisioni

C
(11)

• Recall: True Positive Rate is defined as recall denoting the percentage of instances
that are correctly classified. Recall is particularly suitable for evaluating classification
algorithms that deal with multiple classes of imbalanced data [73]. It can be computed
as the following equation:

Recall =
1
C

C

∑
i=1

mii

∑C
i=1 mij

(12)

where mij stand for the false prediction of the ith class into jth class.
• F-measure: F-measure, an evaluation index obtained by integrating precision and

Recall, has been widely used in the imbalance data classification [55,74,75]. In the
process of classification, precision is expected to be as high as possible, and it is also
expected to Recall as large as possible. In fact, however, the two metrics are negatively
correlated in some cases. The introduction of F-measure synthesizes the two, and the
higher F-measure is, the better the performance of the classifier is. F-measure can be
calculated as the following equation:

F-measure =
2
C

∑C
i=1 Recalli ∑C

i=1 precisioni

∑C
i=1 Recalli + ∑C

i=1 precisioni
(13)

where Recalli can be calculated by nii
∑C

i=1 nij
.

• Kappa: The metric that assesses the consistency of the predicted results is Kappa,
which checks if the consistency is caused by chance. And the higher Kappa is, the
better the performance of the classifier is Kappa can be defined as

Kappa =
OA−∑C

i=1 pi p̂i

1−∑C
i=1 pi p̂i

(14)

where pi and p̂i stand for the actual sample size of class i and the predicted sample
size of class i, respectively.

4.4. Performance Comparative Analysis

In the experiments, the results acquired according to precision, AA, Recall, F-measure,
and Kappa are exhibited in Tables 2–5 for SVM, RF, RoF, SMOTE-RoF, CNN, RBDF and the
proposed SMOTE-WDRoF on the four imbalanced hyperspectral datasets. The best results
in each hyperspectral dataset are highlighted in bold.

4.4.1. Experimental Results on Indian Pines AVRIS

The results of seven algorithms for Indian Pines AVRIS are listed in Table 2. The
first 16 rows are the results of precision, AA, Recall, F-measure, and Kappa coefficients
are shown in the last four rows. Among the seven methods, SMOTE-WDRoF achieves
the best classification performance in most cases. Because it not only introduces spatial
neighborhood pixels and synthesizes samples to increase the sample size and balance the
dataset but also adjusts the sample weights adaptively. The proposed method obtains
AA of 91.55%, Recall of 91.67%, F-measure of 91.51%, and Kappa of 88.64%, which are
the best classification results among the seven methods. Compared with other methods,
SMOTE-WDRoF enhances at least 2.61% in AA, 1.90% in Recall, 3.30% in F-measure, and
2.29% in Kappa. Moreover, the SMOTE-WDRoF algorithm obtains 10 of the highest class
accuracies among 16 classes in all. Besides, for the class with the least number of training
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samples, namely Class 9, the accuracy of the proposed algorithm achieves 96.39%, which
is at least 14.50% higher than other methods and 53.30% higher at most. The proposed
algorithm is superior to other methods in both precisions of the minority classes and overall
performance. Figure 3 shows the classification maps obtained by different classification
methods for Indian Pines AVRIS. It shows that the proposed SMOTE-WDRoF acquires the
best performance on Indian Pines AVRIS dataset.

Table 2. Classification results (%) of the Indian pines AVRIS image, respectively obtained by SVM, RF, RoF, SMOTE-RoF,
CNN, RBDF and the proposed SMOTE-WDRoF in the case of the imbalance ratio of 73.6.

IR: 73.6 SVM RF RoF SMOTE-RoF CNN RBDF SMOTE-
WDRoF

1 67.70± 6.36 85.88± 8.14 67.97± 9.16 66.86± 8.69 70.37± 16.15 83.46± 2.46 96.88 ± 2.28
2 75.48± 1.55 73.78± 0.94 72.49± 0.82 71.84± 0.98 83.60± 11.93 83.39± 0.46 86.46 ± 0.61
3 70.27± 1.06 77.12± 2.10 70.32± 0.97 72.07± 1.41 80.45± 6.33 85.69 ± 0.42 82.97± 0.64
4 67.79± 3.93 60.64± 3.12 61.11± 2.20 62.58± 2.96 64.50± 11.29 78.65± 1.52 81.18 ± 0.49
5 91.15± 1.58 92.97± 0.57 91.61± 1.20 87.89± 0.84 88.33± 6.12 95.72 ± 0.28 94.30± 0.46
6 92.88± 0.97 88.05± 0.75 92.09± 0.63 91.52± 1.42 96.35± 3.53 95.16± 0.36 96.77 ± 0.08
7 85.36± 5.16 93.00± 10.95 74.91± 10.83 93.71 ± 10.05 81.25± 8.37 93.12± 1.77 93.29± 4.19
8 98.56± 0.90 95.71± 0.82 98.78± 0.36 98.25± 0.39 99.39 ± 0.66 97.95± 0.27 98.67± 0.06
9 43.09± 6.20 73.57± 10.28 79.64± 16.58 57.75± 12.67 47.06± 6.56 81.89± 5.93 96.39 ± 1.33
10 76.41± 0.90 75.85± 1.70 79.13± 0.54 78.09± 1.51 78.17± 7.79 84.89 ± 0.46 84.20± 0.34
11 78.89± 0.43 76.07± 0.63 81.42± 0.69 83.03± 3.23 78.17± 4.26 84.28± 0.32 90.54 ± 0.22
12 81.32± 1.94 73.21± 1.01 77.49± 2.78 77.39± 3.80 80.25± 7.90 84.54± 0.30 84.84 ± 0.40
13 94.53± 3.06 91.93± 1.78 94.34± 2.84 87.68± 12.42 95.30± 2.29 95.26± 0.40 98.95 ± 0.15
14 93.96± 1.37 91.16± 0.75 92.16± 0.70 92.55± 0.90 97.15± 2.69 95.99± 0.11 97.51 ± 0.13
15 72.87± 2.73 76.75± 1.40 76.28± 2.93 75.57± 2.16 72.52± 12.45 86.23 ± 0.51 82.35± 0.32
16 95.71± 3.26 99.00± 2.23 98.64± 1.23 97.36± 0.95 93.75± 1.81 96.84± 0.48 99.48 ± 0.56

AA (%) 80.37± 0.54 82.80± 0.40 81.77± 1.26 80.88± 1.24 81.66± 0.91 88.94± 0.44 91.55 ± 0.44
Recall (%) 81.71± 1.77 75.78± 1.62 81.42± 0.82 81.35± 2.20 89.77± 0.71 87.72± 0.20 91.67 ± 0.40

F-measure (%) 80.58± 0.90 78.45± 1.31 81.26± 1.04 81.05± 1.40 85.46± 0.64 88.21± 0.29 91.51 ± 0.34
Kappa (%) 79.26± 0.20 77.62± 0.16 79.33± 0.22 79.57± 0.30 84.88± 2.47 86.35± 0.18 88.64 ± 0.18
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Figure 3. Ground truth (GT) and classification maps of SVM, RF, RoF, CNN, SMOTE-RoF, RBDF as well as the proposed
SMOTE-WDRoF method on the hyperspectral data Indian Pines AVRIS. (a) GT. (b) SVM. (c) RF. (d) RoF. (e) SMOTE-RoF.
(f) CNN. (g) RBDF. (h) SMOTE-WDRoF.

4.4.2. Experimental Results on KSC

For KSC dataset, the statistical classification results are summarized in Table 3, and
the classification results of different methods are shown in Figure 4. As can be observed
in Table 3, SMOTE-WDRoF is superior to the other six comparison methods by generat-
ing balanced data sets and multi-level forests feature learning. For KSC data containing
13 classes, SMOTE-WDRoF obtained the highest classification accuracy of 10 classes, in-
cluding multiple minority classes, such as Class 2, Class 4, and Class 7. Furthermore,
among all the methods, SMOTE-WDRoF acquires the best statistical results in terms of
the AA, Recall, F-measure, and Kappa, and the accuracy of the four metrics is improved
by at least 3.63%, 5.20%, 4.54%, and 3.36% respectively. Although RF and RoF algorithms
achieve 100.00% accuracy for Class 16, they are far less effective than SMOTE-WDRoF in
terms of other performance, especially for the minority classes. In addition, although algo-
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rithm SMOTE-RoF has balanced the dataset by synthesizing new samples, its classification
performance is worse than SMOTE-WDRoF. In addition, worth noting that SVM algorithm
is the worst performer as it pays no attention to the recognition of the minority classes, and
its classification accuracy for Class 7 is 0. Therefore, it is demonstrated that the proposed
SMOTE-WDRoF has the best classification performance when processing the KSC dataset.

Table 3. Classification results (%) of the KSC image, respectively obtained by SVM, RF, RoF, SMOTE-RoF, CNN, RBDF and
the proposed SMOTE-WDRoF in the case of the imbalance ratio of 8.71.

IR: 8.71 SVM RF RoF SMOTE-RoF CNN RBDF SMOTE-
WDRoF

1 74.23± 1.20 91.96± 0.62 89.89± 0.99 93.12± 1.26 85.57± 15.13 90.37± 1.25 97.25 ± 0.26
2 70.96± 1.91 80.20± 1.99 90.17± 1.75 88.03± 1.59 80.46± 6.76 86.35± 3.42 93.20 ± 1.12
3 60.86± 10.39 88.66± 0.73 89.21± 1.00 86.29± 2.24 73.30± 19.32 87.76± 4.19 91.63 ± 1.29
4 35.80± 4.34 60.49± 0.50 62.58± 2.14 66.53± 1.98 61.40± 19.21 72.92± 2.42 80.45 ± 2.06
5 64.98± 37.91 79.39± 3.99 71.26± 6.81 72.58± 4.36 79.45± 11.57 75.20± 4.16 82.36 ± 3.31
6 55.29± 9.64 70.10± 4.24 66.44± 4.32 66.17± 2.92 65.22± 37.52 78.91± 3.19 79.50 ± 0.71
7 0.00± 0.00 73.79± 1.87 80.70± 2.10 85.09± 3.89 75.00± 10.62 86.76± 3.04 90.19 ± 2.48
8 65.71± 4.01 85.72± 1.43 86.74± 1.84 85.07± 1.42 79.73± 4.96 86.64± 3.24 90.70 ± 1.37
9 71.79± 1.84 89.97± 0.61 91.75± 0.95 94.86± 0.50 82.08± 1.79 91.40± 0.36 94.88 ± 0.69

10 99.12 ± 1.09 96.41± 1.20 98.77± 0.31 98.28± 0.67 98.13± 5.91 97.27± 1.52 98.43± 0.35
11 95.15± 1.61 99.04± 0.28 99.12± 0.83 97.52± 0.78 98.25± 0.33 98.64± 0.57 99.84 ± 0.09
12 76.74± 1.07 93.67± 1.01 96.91 ± 1.59 96.19± 1.69 93.53± 7.68 95.00± 0.83 95.97± 0.73
13 98.86± 0.29 100.00 ± 0.00 100.00 ± 0.00 99.93± 0.13 99.08± 0.72 99.82± 0.09 99.97± 0.01

AA (%) 66.89± 3.55 85.34± 0.76 86.42± 0.85 86.90± 0.51 82.40± 3.27 88.24± 1.86 91.87 ± 0.17
Recall (%) 63.69± 1.73 85.43± 2.66 85.31± 0.55 86.20± 0.38 80.43± 4.60 87.20± 1.84 92.40 ± 0.18
F-measure

(%) 62.58± 2.42 84.47± 0.46 85.68± 0.64 86.41± 0.33 80.47± 4.26 87.59± 1.87 92.13 ± 0.00

Kappa (%) 74.71± 1.09 88.63± 0.31 89.50± 0.49 90.17± 0.55 85.37± 3.12 90.42± 1.39 93.78 ± 0.13
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Figure 4. Ground truth (GT) and classification maps of SVM, RF, RoF, CNN, SMOTE-RoF, RBDF as well as the proposed
SMOTE-WDRoF method on the hyperspectral data KSC. (a) GT. (b) SVM. (c) RF. (d) RoF. (e) SMOTE-RoF. (f) CNN. (g) RBDF.
(h) SMOTE-WDRoF.

4.4.3. Experimental Results on Salinas

The classification results of seven different methods on the Salinas dataset are shown in
Table 4. SMOTE-WDRoF is superior to the other six comparison methods and acquires AA of
95.92%, Recall of 96.05%, F-measure of 95.73%, and Kappa of 91.01%. In addition, SMOTE-
WDRoF obtained the highest accuracy for half of the classes on Salinas dataset. For the two
classes with the least number of training samples, namely Class 13 and Class 14, the precision
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of SMOTE-WDRoF reaches 97.92% and 98.81% respectively, which proves its ability to handle
the minority classes better than the other comparison methods. Although SMOTE-RF has the
highest accuracy in the two classes, the other classes performance of it is not superior. The
corresponding classification maps on the data set are illustrated in Figure 5. The experimental
results on this dataset testify that the SMOTE-WDRoF shows better classification performance
than traditional methods when dealing with class imbalanced data.

Table 4. Classification results (%) of the Salinas image, respectively obtained by SVM, RF, RoF, SMOTE-RoF, CNN, RBDF
and the proposed SMOTE-WDRoF in the case of the imbalance ratio of 12.51.

IR: 12.51 SVM RF RoF SMOTE-RoF CNN RBDF SMOTE-
WDRoF

1 100.00 ± 0.00 99.83± 0.04 99.92± 0.06 99.57± 0.16 96.22± 7.64 99.74± 0.14 99.81± 0.04
2 98.57± 0.39 99.65± 0.04 98.88± 0.38 99.66 ± 0.13 97.78± 2.24 98.56± 0.19 99.08± 0.37
3 89.20± 1.96 94.62± 0.55 95.66± 0.37 95.51± 0.60 94.03± 2.79 95.49± 0.28 97.08 ± 0.42
4 95.62± 0.92 98.19± 0.14 98.63 ± 0.43 98.46± 0.18 98.15± 0.17 95.01± 1.18 98.52± 1.07
5 89.39± 3.05 97.63± 0.06 98.03± 0.54 97.10± 0.83 90.24± 6.20 98.67± 0.16 99.30 ± 0.09
6 99.85± 0.17 99.94 ± 0.06 99.91± 0.05 99.85± 0.12 99.76± 0.18 99.90± 0.04 99.38± 0.22
7 99.37± 0.44 99.40± 0.25 99.40± 0.32 99.44 ± 0.21 97.97± 1.70 99.30± 0.08 99.17± 0.31
8 66.94± 0.75 75.58± 0.26 79.42± 0.68 80.15± 0.55 71.74± 4.84 79.22± 0.23 82.80 ± 0.19
9 96.98± 0.92 97.27± 2.42 98.79± 0.35 98.68± 0.37 97.91± 0.83 99.09± 0.16 99.62 ± 0.31

10 87.11± 0.78 93.02± 0.60 94.96 ± 1.32 92.56± 0.87 89.27± 3.76 94.05± 0.47 91.17± 1.15
11 83.67± 1.99 93.50± 0.77 94.79± 1.32 94.07± 0.70 78.61± 7.71 94.94± 0.71 95.70 ± 0.27
12 94.54± 0.59 95.46± 0.69 97.50± 0.91 98.40± 0.23 90.17± 9.00 96.68± 0.34 99.25 ± 0.24
13 93.49± 0.30 96.05± 0.21 97.17± 1.69 94.66± 0.64 93.69± 2.31 96.91± 0.60 97.92 ± 0.35
14 95.52± 1.26 92.55± 0.87 92.65± 1.25 96.21± 1.52 94.51± 2.21 97.64± 1.40 98.81 ± 0.16
15 78.45 ± 2.04 75.23± 0.41 78.42± 11.22 72.38± 1.28 78.40± 6.68 77.79± 0.87 74.90± 0.96
16 99.35± 0.37 97.76± 0.51 98.43± 0.44 99.67 ± 0.17 96.62± 1.40 99.21± 0.14 98.95± 0.19

AA (%) 91.75± 0.24 94.11± 0.14 95.16± 0.26 94.77± 0.16 91.57± 0.66 95.14± 0.03 95.72 ± 0.05
Recall (%) 90.18± 0.22 93.98± 0.27 94.75± 0.15 94.87± 0.17 91.61± 1.09 95.11± 0.05 96.05 ± 0.04
F-measure

(%) 90.22± 0.20 93.99± 0.09 94.03± 1.85 94.89± 0.16 91.09± 0.93 95.07± 0.02 95.73 ± 0.05

Kappa (%) 84.90± 0.98 88.83± 0.09 89.86± 0.12 90.04± 0.62 85.40± 1.43 90.44± 0.05 91.01 ± 0.05

(a) (b)

Figure 5. Cont.
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Figure 5. Ground truth (GT) and classification maps of SVM, RF, RoF, CNN, SMOTE-RoF, RBDF as well as the proposed
SMOTE-WDRoF method on the hyperspectral data Salinas. (a) GT. (b) SVM. (c) RF. (d) RoF. (e) SMOTE-RoF. (f) CNN.
(g) RBDF. (h) SMOTE-WDRoF.

4.4.4. Experimental Results on University of Pavia scenes

The results for the proposed SMOTE-WDRoF and six comparison methods on the
University of Pavia ROSIS are exhibited in Table 5. Compared with the other methods,
SMOTE-WDRoF improves the classification performance by creating new samples to
construct the balanced dataset and automatically updating the sample weights based on
the classification error information. The proposed SMOTE-WDRoF surpasses RBDF by
2.59%, 2.21%, and 2.32% in terms of Recall, F-measure, and Kappa. Although the AA
of the RDBF algorithm is slightly higher than SMOTE-WDRoF, its F-measure that is the
synthesis of recall and AA, is significantly lower than SMOTE-WDRoF. While dealing with
the minority classes, such as Class 5 and Class 7, the SMOTE-WDRoF performs better than
CNN, RDBF, and the other four traditional methods. For visual comparisons, Figure 6
shows the categorization maps of the classification results for all these methods. From
Figure 6, we can observe that the proposed method exhibits the best result with least
noise. It is obvious that SMOTE-WDRoF obtains the best effect on the University of Pavia
ROSIS dataset.
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Figure 6. Ground truth (GT) and classification maps of SVM, RF, RoF, CNN, SMOTE-RoF, RBDF as well as the pro-
posed SMOTE-WDRoF method on the hyperspectral data the University of Pavia ROSIS. (a) GT. (b) SVM. (c) RF. (d) RoF.
(e) SMOTE-RoF. (f) CNN. (g) RBDF. (h) SMOTE-WDRoF.
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Table 5. Classification results (%) of the University of Pavia ROSIS image, respectively obtained by SVM, RF, RoF, SMOTE-
RoF, CNN, RBDF and the proposed SMOTE-WDRoF in the case of the imbalance ratio of 19.83.

IR: 19.83 SVM RF RoF SMOTE-RoF CNN RBDF SMOTE-
WDRoF

1 76.73± 1.01 91.13± 0.40 88.96± 0.32 89.58± 0.31 96.12 ± 1.57 90.51± 0.94 95.68± 0.16
2 84.25± 0.48 90.18± 0.21 91.87± 0.57 92.32± 0.28 93.09± 1.66 88.68± 0.35 96.09 ± 0.17
3 81.64 ± 3.97 69.90± 1.12 76.30± 8.67 73.55± 0.93 79.00± 7.55 72.97± 1.78 76.73± 0.64
4 91.77± 2.88 87.63± 0.78 90.06± 1.06 90.71± 0.84 73.99± 5.34 95.07 ± 0.84 88.35± 0.43
5 99.04± 0.47 96.06± 0.45 99.22± 0.32 99.55± 0.26 98.78± 0.12 99.10± 0.10 99.71 ± 0.11
6 92.96 ± 1.48 76.64± 0.75 79.96± 0.76 78.66± 1.22 73.97± 9.20 88.50± 0.37 75.09± 0.95
7 0.87± 1.94 82.89± 1.28 85.45± 0.33 82.31± 1.32 74.49± 10.90 88.05± 0.81 88.50 ± 1.47
8 71.08± 4.04 79.64± 0.65 82.47± 0.65 82.70± 0.40 80.93± 6.64 84.33± 1.15 88.60 ± 0.18
9 99.97± 0.04 99.86± 0.04 100.00 ± 0.00 99.89 ± 0.13 99.91± 0.04 98.44± 1.19 86.63± 0.63

AA (%) 77.59± 0.79 85.99± 0.23 88.25± 0.20 87.70± 0.22 85.59± 1.46 89.52 ± 0.07 88.38± 0.28
Recall (%) 70.80± 0.64 85.27± 0.37 85.89± 0.30 86.83± 0.23 88.69± 0.92 85.65± 0.31 91.28 ± 0.23
F-measure

(%) 71.42± 1.11 85.52± 0.25 86.88± 0.18 71.54± 35.11 86.52± 1.20 87.23± 0.18 89.44 ± 0.26

Kappa (%) 76.61± 0.63 82.64± 0.19 84.72± 0.39 84.86± 0.36 82.56± 1.67 85.00± 0.17 87.32 ± 0.36

4.4.5. Training Time of Different Deep Learning Methods

The training times of CNN and SMOTE-WDRoF are shown in Table 6. For the CNN,
the model needs to continuously adjust the parameters through backpropagation to achieve
good performance. Consequently, a large number of parameters need to be calculated in
the time-consuming training process. Different from traditional deep learning methods
which require backpropagation, the SMOTE-WDRoF needs much less training time. For
Indian Pines AVRIS, the training time of CNN is 30,830 s, while the training time of the
proposed algorithm is only 3942 s. For KSC, the training time of the proposed algorithm is
only one-fourth of that of CNN. For Salinas and University of Pavia ROSIS, SMOTE-WDRoF
spends one-sixth and one-twelfth as much time training as CNN, respectively.

Table 6. Training times (seconds) of CNN and SMOTE-WDRoF for four hyperspectral image datasets.

Data Indian Pines AVRIS KSC Salinas University of Pavia Scenes

CNN 30,830 5958 11,430 21,030
SMOTE-WDRoF 3942 1389 1809 1752

4.5. Influence of Model Parameters on Classification Performance
4.5.1. Influence of Level

In order to study the influence of level on SMOTE-WDRoF, we present in Figure 7 the
evolution of the AA and Recall on Indian Pines AVRIS, KSC, Salinas and University of Pavia
ROSIS. Similar to the traditional depth model, the deep forest structure of SMOTE-WDRoF
is of great significance to improve the classification performance. When the output of
each level is used as the feature and stacked with the original feature as the input of the
next level, the sample weights are adjusted accordingly. Consequently, the classification
accuracy is enhanced with the growth of the level. As can be seen from Figure 7a, AA
of four hyperspectral datasets is increased significantly when the level increased from 1
to 3. When the level is 4, the growth rate of AA slowed down gradually. And when the
level number exceeds 5, the AA of the four datasets reaches a stable value. For Indian Pines
AVRIS, KSC, Salinas and University of Pavia ROSIS, the stable values are 91.55%, 91.87%,
95.44% and 88.37% respectively. The evolution of the Recall on four hyperspectral datasets
is shown in Figure 7b. It can be observed that at first recall is increased greatly. With the
increase in levels, the recall turns to a relatively stable value. When the level is set as 5, the
stable values are 91.67%, 92.40%, 96.05% and 91.28% respectively on Indian Pines AVRIS,
KSC, Salinas and University of Pavia ROSIS. These results demonstrate that when there are
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too many levels in the proposed model, the output of the last several levels cannot afford
helpful information for classification anymore. Therefore, statistically better performance
can be achieved when L is equal to 5. And in other experiments, the level is set as 5.

(a) (b)

Figure 7. (a) Evolution of the AA according to level. (b) Evolution of the Recall according to level.

4.5.2. Influence of the Window Size

Due to the spatial homogeneity of hyperspectral images, neighboring samples are
likely to belong to the same class. Consequently, neighboring pixels are introduced to be the
local spatial information by a sliding window in SMOTE-WDRoF. To study the influence
of window size on classification accuracies, we vary this parameter from 1× 1× D to
7× 7×D for four hyperspectral datasets to introduce different numbers of spatial neighbor
pixels. D represents the number of bands for hyperspectral data. For Indian Pines AVRIS,
KSC, Salinas and University of Pavia ROSIS, D are 220, 176, 224 and 103 respectively. The
results with different window sizes are shown in Figure 8. While the window size increases,
the classification accuracy also presents an upward trend. More specifically, for Indian Pines
AVRIS, AA, Recall, F-measure and Kappa increase from 87.69%, 71.27%, 74.81% and 85.05%
to 91.71%, 91.12%, 91.29% and 88.41% respectively when the size of window is changed
from 1× 1× 1× 220 to 7× 7× 220. And the highest precision of Indian Pines AVRIS is
obtained at 7× 7× 220. For KSC, the three indexes, Recall, AA, and F-measure, reach the
highest precision at 7× 7× 176. Besides, the value of Kappa first rises and then falls, and
it achieves the highest value at 5× 5× 176. For Salinas, the high precision is obtained at
5× 5× 224, and then the precision almost no longer increases with the expansion of the
window size. In addition, SMOTE-WDRoF with a window size of 5× 5× 103 delivers
the best performance for University of Pavia ROSIS. This phenomenon is not surprising.
More useful spatial information can be introduced by a relatively large window, which is
beneficial to improve classification performance. However, if the window size is too large,
samples that do not belong to the same class as the central pixel will be extracted, which
will result in the decreased accuracy.



Remote Sens. 2021, 13, 464 22 of 25

(a) (b)

(c) (d)

Figure 8. Recall, AA, F-measure and Kappa of SMOTE-WDRoF with different window sizes on four hyperspectral image
datasets. (a) Indian Pines AVRIS, (b) KSC, (c) Salinas and (d) the University of Pavia ROSIS.

5. Conclusions

In this paper, the SMOTE-Based Weighted Deep Rotation Forest(SMOTE-WDRoF)
algorithm is proposed for the imbalanced hyperspectral data classification. First of all, the
local spatial structure of samples is extract to enrich the data information, and the balanced
datasets are built by SMOTE. Second, RoF and multi-layer cascade RF form the WDRoF
model which uses the output probability of each layer as a supplement feature of the next
layer and updates the sample weights adaptively to improve classification performance.
The proposed method is validated on four public hyperspectral image datasets. Compared
with the traditional deep learning models, SMOTE-WDRoF consumes much less training
time. Experimental results show that the proposed SMOTE-WDRoF is effective for dealing
with multi-class imbalanced data and significantly outperforms SVM, RF, RoF, SMOTE-
RoF, CNN, and RBDF and Besides, the parameter analysis has also been implemented
and the results have demonstrated the advantages of our algorithm in terms of accuracy
and robustness.
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