Extraction and Analysis of Finer Impervious Surface Classes in Urban Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Data Processing
2.3. Methods
2.3.1. Finer Impervious Surfaces (IS) Classification Scheme
2.3.2. Endmember Selection
2.3.3. Random Forest-Based Detailed Classification
2.3.4. Accuracy Assessment
3. Results
3.1. Fractions of Finer Impervious Surface Classes
3.2. Accuracy
3.3. Statistic Results
4. Discussion
5. Conclusions
- (1)
- Finer impervious surface classes can be divided using the random forest classification method within Landsat data. RMSE values of all impervious surface classes are below 15%, with asphalt demonstrating the highest classification accuracy.
- (2)
- The total area of impervious surfaces in the study area is 2258.5 km2, accounting for 36.33% of the entire Guangzhou. Asphalt, other impervious surface, and brick are the dominant impervious surface area types with the percentages of 9.68%, 6.27%, and 4.45%, respectively. They are mainly located in Yuexiu, Liwan, Haizhu, and Panyu districts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Z.; Wang, C.; Guo, H.; Shang, R. A Modified Normalized Difference Impervious Surface Index (MNDISI) for Automatic Urban Mapping from Landsat Imagery. Remote Sens. 2017, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Hetrick, S.; Moran, E. Impervious surface mapping with Quickbird imagery. Int. J. Remote Sens. 2011, 32, 2519–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Wang, L.; Li, B.; Yu, J. Towards a comprehensive evaluation of V-I-S sub-pixel fractions and land surface temperature for urban land-use classification in the USA. Int. J. Remote Sens. 2012, 33, 5996–6019. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.T.; Shyy, P.T. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
- Jie, J.; Wang, X. Application of land surface temperature in extracting urban impervious surfaces based on spectral mixture analysis. Mine Surv. 2018, 46, 5–11. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Cui, T.; Long, Y.; Wang, Y.; Hu, Q.; Liu, Y. Research on the Process of Urban Expansion In Suzhou City Based on Spectral Mixture Analysis. China Rural Water Hydropower 2016, 402, 59–62. [Google Scholar] [CrossRef]
- Yuan, C.; Wu, B.; Luo, X.; Li, Z.; Yan, N. Estimating urban impervious surface distribution with RS. Eng. Surv. Mapp. 2009, 18. [Google Scholar] [CrossRef]
- Qiu, B.; Zhang, K.; Tang, Z.; Chen, C.; Wang, Z. Developing soil indices based on brightness, darkness, and greenness to improve land surface mapping accuracy. GISci. Remote Sens. 2017, 54, 759–777. [Google Scholar] [CrossRef]
- Yan, L.; Shi, X.-F.; Yu, L.-Z.; Miao, Y.-G.; Yao, L.-P.; Li, L. Elimination effects of riparian vegetation buffer zones on surface water nitrogen and phosphorus in Shenyang suburbs. Chin. J. Eco-Agric. 2011, 19, 403–408. [Google Scholar] [CrossRef]
- Xiong, H.; Yu, C.; Li, X.; Li, L. Rapid Extraction of Impervious Surface Based on High-resolution Remotely Sensed Image. Territory Nat. Res. Study 2015, 529–554. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiang, H.; Liu, W. Study on Urban Fine Land Use Classification Based on High-resolution Remote Sensing Image. J. Fujian Teach. Univ. Nat. Sci. 2017, 33, 60–68. [Google Scholar] [CrossRef]
- Chengming, Y.; Cui, P.; Pirasteh, S.; Li, J.; Li, Y. Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery. J. Zhejiang Univ. A 2017, 18, 984–990. [Google Scholar] [CrossRef]
- Jilge, M.; Heiden, U.; Neumann, C.; Feilhauer, H. Gradients in urban material composition: A new concept to map cities with spaceborne imaging spectroscopy data. Remote Sens. Environ. 2019, 223, 179–193. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Ren, C.; Ju, H.; Zhang, H.; Huang, J.; Zheng, Y. Multi-Source Data for Forest Land Type Precise Classification. Sci. Silvae Sinicae 2016, 52, 54–65. [Google Scholar] [CrossRef]
- Cui, X.; Liu, Z. Wetland Vegetation Classification Based on Object-based Classification Method and Multi-source Remote Sensing Images. Geom. Spatial Inf. Technol. 2018, 41, 113–116. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cai, G.; Ren, H.; Yang, L.; Zhang, N.; Du, M.; Wu, C. Detailed Urban Land Use Land Cover Classification at the Metropolitan Scale Using a Three-Layer Classification Scheme. Sensors 2019, 19, 3120. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yun, W.; Zhou, X.; Peng, J.; Li, S.; Zhou, Y. Classification and Extraction of Land Use Information in Hilly Area Based on MESMA and RF Classifier. Trans. Chin. Soc. Agric. Mach. 2017, 48, 136–144. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar] [CrossRef]
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1978; p. 338. [Google Scholar]
- Zhou, W.; Huang, G.; Troy, A.; Cadenasso, M. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769–1777. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Z.; Chen, Y. Urban Material Identification Based on Linear Mixture Model Using Hyperspectral Data. J. Basic Sci. Eng. 2009, 17, 206–218. [Google Scholar] [CrossRef]
- Fan, S.; Liu, Z.; Hu, Y. Remote Sensing Information Extraction of Urban Built-up Land Based on Spectral Signature Analysis of Normalized Difference Index. Digit. Commun. World 2019, 5–9. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, L.; Li, X.; Liao, M.; Qiu, J. Detection and analysis of urban land use changes through multi-temporal impervious surface mapping. J. Remote Sens. 2010, 14, 593–606. [Google Scholar]
- Sun, M.; Deng, Y.; Li, M.; Jiang, H.; Huang, H.; Liao, W.; Liu, Y.; Yang, J.; Li, Y. Extraction and Analysis of Blue Steel Roofs Information Based on CNN Using Gaofen-2 Imageries. Sensors 2020, 20, 4655. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley and Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ghosh, A.; Sharma, R.; Joshi, P.K. Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion. Appl. Geogr. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Lin, H.; Shao, C.; Li, H.; Gu, H.; Wang, L. Five Object-oriented Classification Methods Analysis Based on High-resolution Remote Sensing Image. Bull. Surv. Mapp. 2017, 17–21. [Google Scholar] [CrossRef]
- Guo, Y.; Chi, T.; Peng, L.; Liu, J.; Yang, L. Classification of GF-1 Remote Sensing Image Based on Random Forests for Urban Land-use. Bull. Surv. Mapp. 2016, 73–76. [Google Scholar] [CrossRef]
- Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Li, W. Mapping Urban Impervious Surfaces by Using Spectral Mixture Analysis and Spectral Indices. Remote Sens. 2019, 12, 94. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1053–1062. [Google Scholar] [CrossRef]
- Zhong, Y.; Hu, X.; Luo, C.; Wang, X.; Zhao, J.; Zhang, L. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sens. Environ. 2020, 250, 112012. [Google Scholar] [CrossRef]
- Tang, J. Analysis on the Redevelopment Policy of Urban Inefficient Land. China Land 2013, 41–43. [Google Scholar] [CrossRef]
- Wang, C.; Sun, J.; Hu, F.; Jiang, W. Observation and Analysis of the Characteristics of Urban Concrete Surface Energy Balance. J. Nanjing Univ. Nat. Sci. Ed. 2007, 43, 270–279. [Google Scholar]
- Li, S.; Huang, T. Influence on Rainfall Run-off due to Urbanization and Rain-water Flood Control in the City. China Munic. Eng. 2002, 35–37. [Google Scholar] [CrossRef]
- Khare, P.; Machesky, J.; Soto, R.; He, M.; Presto, A.A.; Gentner, D.R. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors. Sci. Adv. 2020, 6, eabb9785. [Google Scholar] [CrossRef]
- Xu, H. Quantitative analysis on the relationship of urban impervious surface with other components of the urban ecosystem. Acta Ecol. Sin. 2009, 29, 2456–2462. [Google Scholar] [CrossRef]
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global human-made mass exceeds all living biomass. Nat. Cell Biol. 2020, 588, 442–444. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Geocarto Int. 1987, 2, 65. [Google Scholar] [CrossRef]
- Burghardt, W. Soil sealing and soil properties related to sealing. Geol. Soc. Lond. Spéc. Publ. 2006, 266, 117–124. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, D.; Wang, X.; Han, F.; Li, Y.; Wu, X.; Ma, S. Horizontal Heat Impact of Urban Structures on the Surface Soil Layer and Its Diurnal Patterns under Different Micrometeorological Conditions. Sci. Rep. 2016, 6, 18790. [Google Scholar] [CrossRef] [Green Version]
- Fan, S.; Hu, Y.; Liu, Z. Research of Information Extraction of City Building Based on a New Object-Oriented Method. J. South China Norm. Univ. (Nat. Sci. Ed.) 2015, 47, 91–97. [Google Scholar] [CrossRef]
- Li, M.; Nian, Y.; Bian, R.; Bai, Y.; Ma, J. Classification of Picea crassifolia and Sabina przewalskii based on Multi-source Remote Sensing Images. Remote Sens. Technol. Appl. 2020, 35, 128–136. [Google Scholar] [CrossRef]
- Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network. ISPRS J. Photogramm. Remote Sens. 2016, 122, 192–205. [Google Scholar] [CrossRef]
- Iftene, M.; Liu, Q.; Wang, Y. Very high-resolution images classification by fine tuning deep convolutional neural networks. In Proceedings of the Eighth International Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; Volume 10033, p. 100332D. [Google Scholar]
- Yan, L.; Li, Q.; Wang, Y.; Ye, Z. Classification Performance of Airborne Mid-wave Infrared Imagery. Remote Sens. Inf. 2019, 34, 7–14. [Google Scholar] [CrossRef]
- Wang, Q.; Blackburn, G.A.; Onojeghuo, A.O.; Dash, J.; Zhou, L.; Zhang, Y.; Atkinson, P.M. Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3885–3899. [Google Scholar] [CrossRef] [Green Version]
- Mao, W.; Xia, L. Analysis on spatial-temporal change monitoring of urban resilience. Bull. Surv. Mapp. 2019, 141–144. [Google Scholar] [CrossRef]
- Xiu, C.; Wei, Y.; Wang, Q. Evaluation of urban resilience of Dalian city based on the perspective of “Size-Density-Morphology”. Acta Geogr. Sin. 2018, 73, 2315–2328. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, L.; Zhong, Z.; Ou, Y.; Xu, Q.; Meng, M.; Hao, S. Comprehensive evaluation and spatial differentiation of community resilience in Guangzhou based on response of the city to public health hazards. Acta Geogr. Sin. 2019, 74, 266–284. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2016, 31, 745–760. [Google Scholar] [CrossRef]
- Kang, J.; Körner, M.; Wang, Y.; Taubenböck, H.; Zhu, X.X. Building instance classification using street view images. ISPRS J. Photogramm. Remote Sens. 2018, 145, 44–59. [Google Scholar] [CrossRef]
Classes | Training Samples (1-Pixel, 30 m × 30 m) | Reference Samples (3-Pixel, 90 m × 90 m) |
---|---|---|
Blue steel | 23 | 25 |
Cement | 10 | 35 |
Asphalt | 10 | 30 |
Other IS 1 | 5 | 30 |
Other metal | 8 | 17 |
Brick | 8 | 30 |
Plastic | 6 | 30 |
Other classes 2 | 33 | 34 |
Total | 103 | 231 |
Class | Area (km2) |
---|---|
Blue steel | 78.79 |
Cement | 276.72 |
Asphalt | 691.71 |
Other IS 1 | 447.84 |
Other metal | 192.31 |
Brick | 318.43 |
Plastic | 252.72 |
Guangzhou | 7147.81 |
District Name | District Area | Blue Steel | Cement | Asphalt | Other IS | Other Metal | Brick | Plastic |
---|---|---|---|---|---|---|---|---|
Baiyun | 671.24 | 11.12 | 50.61 | 106.52 | 73.46 | 22.84 | 41.25 | 27.59 |
Conghua | 1981.24 | 9.58 | 13.72 | 44.19 | 46.08 | 8.99 | 47.73 | 58.30 |
Haizhu | 100.82 | 3.18 | 9.60 | 26.52 | 15.11 | 6.77 | 4.98 | 2.53 |
Huadu | 955.20 | 12.63 | 42.03 | 108.79 | 73.46 | 31.69 | 57.06 | 41.45 |
Huangpu | 457.11 | 5.17 | 22.71 | 48.57 | 33.35 | 9.92 | 21.58 | 15.46 |
Liwan | 70.88 | 2.01 | 9.06 | 20.47 | 11.15 | 5.28 | 3.42 | 1.83 |
Nansha | 336.22 | 5.83 | 27.89 | 53.50 | 21.55 | 31.93 | 18.00 | 10.92 |
Panyu | 798.75 | 14.72 | 58.27 | 163.40 | 79.04 | 47.65 | 53.63 | 33.22 |
Tianhe | 127.64 | 2.62 | 10.47 | 26.78 | 15.04 | 4.72 | 7.78 | 4.66 |
Yuexiu | 32.89 | 1.03 | 3.07 | 10.01 | 5.50 | 2.01 | 1.69 | 0.87 |
Zengcheng | 1615.81 | 10.90 | 29.29 | 82.96 | 74.11 | 20.51 | 61.32 | 55.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Deng, Y.; Li, M.; Sun, M.; Yang, J.; Xu, J. Extraction and Analysis of Finer Impervious Surface Classes in Urban Area. Remote Sens. 2021, 13, 459. https://doi.org/10.3390/rs13030459
Liao W, Deng Y, Li M, Sun M, Yang J, Xu J. Extraction and Analysis of Finer Impervious Surface Classes in Urban Area. Remote Sensing. 2021; 13(3):459. https://doi.org/10.3390/rs13030459
Chicago/Turabian StyleLiao, Wenyue, Yingbin Deng, Miao Li, Meiwei Sun, Ji Yang, and Jianhui Xu. 2021. "Extraction and Analysis of Finer Impervious Surface Classes in Urban Area" Remote Sensing 13, no. 3: 459. https://doi.org/10.3390/rs13030459
APA StyleLiao, W., Deng, Y., Li, M., Sun, M., Yang, J., & Xu, J. (2021). Extraction and Analysis of Finer Impervious Surface Classes in Urban Area. Remote Sensing, 13(3), 459. https://doi.org/10.3390/rs13030459