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Abstract: Impervious surfaces (IS), the most common land cover in urban areas, not only provide
convenience to the city, but also exert significant negative environmental impacts, thereby affecting
the ecological environment carrying capacity of urban agglomerations. Most of the current research
considers IS as a single land-cover type, yet this does not fully reflect the complex physical char-
acteristics of various IS types. Therefore, limited information for urban micro-ecology and urban
fine management can be provided through one IS land-cover type. This study proposed a finer IS
classification scheme and mapped the detailed IS fraction in Guangzhou City, China using Landsat
imagery. The IS type was divided into seven finer classes, including blue steel, cement, asphalt, other
impervious surface, and other metal, brick, and plastic. Classification results demonstrate that finer
IS can be well extracted from the Landsat imagery as all root mean square errors (RMSE) are less
than 15%. Specially, the accuracies of asphalt, plastic, and cement are better than other finer IS types
with the RMSEs of 7.99%, 8.48%, and 9.92%, respectively. Quantitative analyses illustrate that asphalt,
other impervious surface, and brick are the dominant IS types in the study area with the percentages
of 9.68%, 6.27%, and 4.45%, respectively, and they are mainly located in Yuexiu, Liwan, Haizhu, and
Panyu districts. These results are valuable for research into urban fine management and can support
the detailed analysis of urban micro-ecology.

Keywords: subpixel classification; impervious surface; urban environment; finer IS category

1. Introduction

Large numbers of natural ground objects such as vegetation and soil located in cities
are being replaced by buildings made of asphalt, colored steel, cement, and other materials.
This has a negative impact on urban water resources, local climate, living environment,
etc. [1]. Such man-made substances are denoted as impervious surfaces (IS) as they cannot
be penetrated by water, and related land-cover variations are crucial in research on urban
expansion and urban land use changes [2]. The detailed classification of impervious
surfaces not only reflects the subtle changes in the development of urban built-up areas at
the micro level, but also provides key information for city governments in order to make
effective management and planning decisions.

In the sub-pixel scale land-use classification [3–5], the IS class is often represented
by high and low reflectivity objects [6–8], and bright and dark objects [9]. Phinn et al. [4]
used the V-I-S (vegetation–impervious surface–soil) model to classify land use in Brisbane,
Australia, based on Landsat5 data. The spectrally decomposed coverage images of each
class and the V-I-S section results revealed the composition and expansion of Brisbane. Jie
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and Wang [5] applied the V-I-S model to extract the impervious surfaces of Hong Kong’s
Kowloon Peninsula and surrounding urban areas, whereby surface temperature inversion
results were used to remove the impervious surface information from the low albedo
regions to further improve the classification accuracy (RSME of 10.26%). Yuan [8] extracted
information from Landsat imagery of Beijing via the V-H-L-S (vegetation-high albedo-low
albedo-soil) model and discussed the ecological impact of imperviousness. Qiu et al. [9]
used a B-D-G (brightness–darkness–greenness)-based soil classification model via a simple
threshold method on MODIS (moderate-resolution Imaging Spectroradiometer) imagery,
with an accuracy of 94%, and kappa index of 0.8789. In conclusion, the majority of related
research focus on extracting only impervious surfaces and the subsequent analysis of the
urban expansion [10], while studies on the secondary classification of permeable surfaces
are lacking.

However, pixels in the middle and coarse spatial resolution image generally combine
asphalt, cement pavements, color steel roofs, and other manmade covers, and only one
or two IS classes cannot present their physical properties well, especially their heating
characteristics. Thus, some scholars have discussed the possibility of subdividing the
IS classes. Xiong et al. [11] extracted seven impervious surface classes in Changping,
Beijing: cultivated land, woodland, water, bare land, buildings, cement, and asphalt.
Zheng et al. [12] took Xian’an, Xian Ning City as the study area to classify land use using
buffer analysis, road width, and watershed area with an accuracy of 93.7%. However, they
still did not address the mixed pixel problem during the classification.

Some scholars tried to divide the IS into finer classes using hyperspectral images.
Ye et al. [13] proposed the extraction of surface material information using hyperspectral
images of building materials with varying spectral sensitivities. HRS (High-Resolution
Stereoscopic) Hyperion and China’s airborne hyperspectral PHI (Push broom Hyper-
spectral Imager) imagery was used as inputs for small-scale extraction experiments to
demonstrate the reliable classification of materials such as color steel tiles, cement concrete,
marble, and asphalt. Although Ye was able to classify the urban built-up area in detail,
further classification of the city based on the obtained spectral results was not performed.
Jilge et al. [14] discussed whether gradient analysis is applicable for mixed decomposi-
tion of complex spectra. Similarities of material compositions were analyzed based on
153 systematically distributed samples on a detailed surface material map using detrended
correspondence analysis (DCA). The study subdivided IS in Munich, Germany, into 27 sub-
categories with a simulated Environmental Mapping and Analysis Program (EnMAP)
imagery. This method is based on the land cover of German, a developed country, it may
not be suitable for the developing country where the building roof types are significantly
different from the developed countries.

Although IS was subdivided into finer classes using hyperspectral imageries, the
finer IS mapping using multispectral imagery has not been discussed yet. The current
class subdivision using multispectral images focused more on the finer vegetation type
mapping. Raczko [15] divided the forests of Poland’s Szklarska Poręba region into five
classes: spruce, larch, shrub, beech, and birch; Ren [16] classified the Baihua forest farm
in Gansu into seven classes, with an overall accuracy of 92.28%. Cui and Liu [17] fused
spectral information with a random forest method to divide vegetation into five classes:
Artemisia salina, Spartina alterniflora, reed, woodland, and other vegetation types.

The random forest (RF) [18] algorithm is both computationally efficient and accurate
in terms of its classification output. It is one of the most commonly used classifiers in
recent years, particularly in land classification applications, due to its high accuracy, fast
computation speed and excellent stability. For example, Cai [19] employed the random
forest method to classify cities based on high score data, with a secondary layer classification
accuracy reaching 89%. Due to the high computational efficiency and unlimited number of
classifications in spectral mixing analysis, RF outperforms other methods [20].

Therefore, this study aims to explore the feasibility of mapping the finer IS using
multispectral image. First, it proposes a classification scheme based on major IS type in
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the study area. Second, finer IS classes are mapped in subpixel scale using random forest
model with the Landsat 8 imagery in Guangzhou city, China. Finally, root mean square
error of each finer IS class is calculated using the estimated sample and according reference
values to assess the accuracy of the classification. The results in this study are expected to
provide more fundamental information of the inner urban construction which is valuable
for the micro-ecology studies and urban management.

2. Materials and Methods
2.1. Study Area

Guangzhou is located at the estuary of the Pearl River, China. Its latitude and longi-
tude range from 112◦57′–114◦3′ E, 22◦26′–23◦56′ N, with a high and low topography in the
northeast and northwest, respectively. The north is generally composed of low mountains
and hills, while the south is dominated by plains. The city is divided into 11 administrative
regions, Baiyun, Conghua, Haizhu, Huadu, Huangpu, Liwan, Nansha, Panyu, Tianhe,
Yuexiu and Zengcheng (Figure 1).
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2.2. Datasets and Data Processing

This paper employed Landsat 8 Operational Land Imager (OLI) imagery from geospa-
tial data cloud of Guangzhou city collected on 7 February 2016 (http://www.gscloud.cn/
search) at the input for the proposed approach. The image had a spatial resolution of
30 m × 30 m. Pre-processing steps included spectral calibration, atmospheric correction,
and the application of vegetation and water masks. The radiometric calibration and atmo-
spheric correction procedures were completed in accordance with the method suggested
by the United States Geological Survey (USGS) (http://glovis.usgs.gov/).

http://www.gscloud.cn/search
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The modified normalized difference water index (MNDWI) [21] and normalized
difference vegetation index (NDVI) [22] were used to mask the water and vegetation pixels,
and are described in Equations (1) and (2), respectively.

MNDWI =
G−MIR1
G + MIR1

, (1)

NDVI =
NIR− R
NIR + R

, (2)

where G, MIR1, NIR and R are the green, mid-infrared, near-infrared and red bands,
respectively. Figure 2 presents the gray histogram derived via the MNDWI for water and
non-water sampling pixels. Based on the histogram, the optimal mask threshold was
determined as 0.425. Similarly, the NDVI pixel values were used to mask the vegetation
in order to reduce the occurrence of non-vegetation mis-masking [23,24]. The vegetation
mask threshold was determined as 0.747, ensuring that non-vegetation pixels were not
mis-masked while also reducing the classification error (Figure 3).
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Figure 2. Histogram of water and non-water pixels. The x- and y-axis denote the value of the modified
normalized difference water index (MNDWI) of each pixel and the number of pixels, respectively.
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Figure 3. Histogram of vegetation and non-vegetation pixels based on normalized difference vegeta-
tion index (NDVI) values.
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2.3. Methods

The classification process is described as follows. First, images with minimal cloud cov-
erage over the study area were selected and underwent preprocessing (Section 2.2). Second,
a detailed classification system for a wide range of materials (blue steel, cement, asphalt,
other impervious surfaces, other metal, brick, plastic) was determined based on the spectral
information of objects with impervious surfaces within the city. This was combined with
high-resolution images from Google Earth in order to select samples. These samples were
grouped into training (1-pixel 30 m × 30 m) and reference (3-pixel 90 m × 90 m) samples
via the established classification system, and the random forest method then performed
image mixing decomposition on the sub-pixel scale of the preprocessed images to extract
the coverage of the various impervious surface classes in Guangzhou. Stratified random
sampling is selected as the sampling method. Firstly, according to the high-resolution his-
torical images provided by Google Earth and the spectral characteristics, the images were
classified by visual interpretation, and the impervious surface of Guangzhou was classified
in detail. Then we evenly selected each class of samples on the image. Referenced fractions
of each class in Google Earth images were extracted through digitizing the corresponding
areas within samples. The spatial distribution and area of each class in Guangzhou were
determined, and the potential urban planning and urban fine management strategies based
on the results are discussed. Figure 4 details the steps of the analysis procedure.

2.3.1. Finer Impervious Surfaces (IS) Classification Scheme

In the initial experiment stage, the researchers reviewed the published papers about
land cover in Guangzhou research on its classification [25–28]. Then based on methods for
extracting information about the construction materials [13], the detailed classification of
impervious surface is confirmed. The effects of artificial land cover on urban climate and
ecology vary with type [29]. Composition materials include plastic, metal, rubber, glass,
cement, wood, shingles, sand, gravel, brick, stone, etc. The surface material information of
ground objects based on the varying spectral sensitivity of different building materials was
extracted [13,19]. Data obtained from the field survey of Guangzhou build-up was used to
determine the artificial feature classes in each region at a greater spatial resolution. It is
determined that the city of Guangzhou is roughly divided into impervious surfaces, bare
land, water, woodland, and grassland. Among them, the impervious surfaces are divided
into blue steel, cement, asphalt, other impervious surface, other metal, brick, and plastic. A
total of 7 classes of ground objects were determined eventually (Figure 5).

2.3.2. Endmember Selection

Ground objects were identified on the Landsat 8 image and combined with historical
high-resolution imagery between December 2015 to March 2016 from Google Earth. Each
object class with 10 pixels (1-pixel 30 m × 30 m) was used as the training sample. Figure 6
shows the spectrum curve of the selected pure end members. Mixed pixels containing
vegetation were still observed in the masked image, thus pure woodland and grassland
endmembers were selected in order to improve the classification accuracy.

Following this, reference sample with a dimension of 3 × 3 pixels (90 m × 90 m)
were selected. The average value of the pixels in the reference sample window were
used to estimate the object coverage in the sample window. The sampling window of
the corresponding location and area on the Google Earth high-resolution image were
subsequently determined, and the proportion of ground objects in the sampling area was
visually estimated. This was used as a reference value for the feature coverage. A total
of 103 training and 231 reference sample were determined. Table 1 reports the number of
ground object samples.
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Table 1. Numbers of samples for each class.

Classes Training Samples
(1-Pixel, 30 m × 30 m)

Reference Samples
(3-Pixel, 90 m × 90 m)

Blue steel 23 25
Cement 10 35
Asphalt 10 30

Other IS 1 5 30
Other metal 8 17

Brick 8 30
Plastic 6 30

Other classes 2 33 34
Total 103 231

1 Other IS: other impervious surface; 2 Other classes: bare land, woodland, and grassland.

2.3.3. Random Forest-Based Detailed Classification

The classification approach is based on the random forest method. More specifically,
the bootstrap sampling was applied to randomly determine N samples from the original
dataset with replacement to form a training set. This process is denoted as bagging.
Following this, for each node, m (m ≤ M) features were randomly selected from all M
original feature variables and divided into internal nodes. The prediction results of the
N decision trees generated by the collection were then determined by voting in order to
select the new sample classes [30]. RF has a high prediction accuracy, can handle high-
dimensional and multicollinear data, has a high tolerance for outliers and missing values,
requires less manual intervention, and is not prone to overfitting problems [31,32]. In this
paper, the spectral characteristics obtained from the remote sensing images were used to
test the contribution of the feature variables to the classification. This allowed us to select
the optimal classification scheme for the detailed urban impervious surface classification.
Herein, this study adopted the Random Forest Classifier from the sklearn for classification.
The parameters of Random Forest Classifier from scikit-learn are set as: n_estimators = 120,
oob_score = True, n_jobs = 2, random_state = 42.

In addition, the support vector machine (SVM) classifier has very effective perfor-
mance in classification tasks with limited training samples [33]. It was also employed in
this study in order to compare the performance of random forest.

2.3.4. Accuracy Assessment

The RMSE (root mean square error) of the sample reference and estimated values
were used as the accuracy verification method for the proposed approach:

RMSE =

√
∑N

i=1(Yi − Xi)
2

N
, (3)

where Xi is the estimated value of the coverage of ground objects; Yi represents the reference
value of the ground object coverage; and N is the number of reference sample for each class.
The smaller the value of RMSE, the better the classification of the model. High-resolution
images from Google Earth were employed as the accuracy verification data, and the RMSE
as the accuracy evaluation index.

3. Results
3.1. Fractions of Finer Impervious Surface Classes

Since the water and vegetation were masked before the classification, statistical anal-
ysis was not performed on the areas with vegetation and water. Figure 7 presents the
coverage images of the 7 classes (blue steel, cement, asphalt, other impervious surface,
other metal, brick, and plastic). The impervious surfaces are generally located in the west of
Guangzhou, particularly in Tianhe and Yuexiu. Among them, the distribution of blue steel
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is concentrated principally in the central area of Haizhu and Huadu, and the southwestern
area of Baiyun, while cement is mainly concentrated in the southern part of Baiyun. The
coverage image of asphalt clearly exhibits the principle traffic arteries of each city circle in
Guangzhou. The distribution of the other impervious surfaces is generally concentrated in
the four central urban areas of Liwan, Yuexiu, Tianhe, and Haizhu, all of which have higher
building densities compared to the other regions. The distribution of the other metal is
clustered in industrial areas, such as the southwest of Tianhe, the northwest of Panyu, and
the south of Huadu. Brick surfaces are mainly observed in the southwest of Zengcheng, the
east of Baiyun, and the southwest of Huangpu. Plastic surfaces are principally concentrated
in the universities around Central Lake Park in the northeast of Panyu and schools and
large stadiums of Yuexiu, Tianhe, and Haizhu.
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The result of impervious surface area (ISA) is shown in Figure 8. Moreover, Figure 8
selects a typical area of impervious surface in Guangzhou, and the reference samples are
enlarged to display more details. At the same time, the reference samples of Landsat 8
band4/3/2 were compared with each class of estimated result, and the selection of ref-
erence samples of Google earth was showed. It can be seen from the results of (1)–(7)
in Figure 9 that the asphalt shows good extraction. Based on visual interpretation and
the detailed classification of impervious surface in Guangzhou, the fractional values of
reference samples were estimated. Then the referenced fractions of each class in Google
Earth images were extracted through digitizing the corresponding areas within samples
(See subfigures C in Figure 9).
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3.2. Accuracy

The RMSE of each random forest classification class was determined as follows: blue
steel 11.75%, cement 9.92%, asphalt 7.99%, other impervious surfaces 10.04%, other metals
12.95%, brick 11.16%, and plastic 8.48% (Figure 10). Thus, asphalt and other metals were
observed to have the highest and lowest classification accuracies, respectively. Otherwise,
the classification accuracy RMSE of the results obtained by the support vector machine
method is: blue steel 12.94%, cement 22.06%, asphalt 11.39%, other impervious surfaces
19.87%, other metals 24.63%, brick 11.63%, and plastic 9.55%. The class with the lowest
classification accuracy of the two methods is other metals. It is obvious that the RMSE of
all classification class in the RF is lower than that of the support vector machine, especially
for other metals, cement and other impervious surfaces. In general, of the two methods, RF
has better accuracy for fine classification of cities.
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Figure 10. RMSE results of each class compared with random forest (RF) and support vector
machine (SVM).

The linear relationship between the test values and the estimated values compared
with RF and SVM is displayed in Figure 11. Among the selected reference samples, linear
regression was used to generate coefficient of determination values. The determination
values closer to 1 indicate a better simulation effect of the model. It can be seen from
Figure 11 that the RF outperforms the SVM on all seven classifications in terms of accuracy.
However, in blue steel and other metal, there was a small difference between the two
methods on average. Since the performance of SVM is far inferior to RF, subsequent
research mainly uses the result data obtained by RF.

3.3. Statistic Results

Table 2 reports the area statistics of each class. The total area of impervious surfaces
in Guangzhou is determined as 2258.5 km2, accounting for 36.33% of the total. Figure 12
presents the proportion of each class. Among them, asphalt occupies the largest area in
Guangzhou with 691.71 km2 (9.68%), followed by other impervious surfaces, with an area
of 447.84 km2 (6.27%). Blue steel occupies the least area in Guangzhou, with a total area of
78.79 km2, accounting for 1.1%.
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Figure 12. Proportion of ground objects in Guangzhou.
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Table 2. Area of each class in Guangzhou.

Class Area (km2)

Blue steel 78.79
Cement 276.72
Asphalt 691.71

Other IS 1 447.84
Other metal 192.31

Brick 318.43
Plastic 252.72

Guangzhou 7147.81
1 Other IS: other impervious surface.

Table 3 reports the statistics of the object areas in the 11 administrative districts
of Guangzhou. The area distribution of blue steel is concentrated in Panyu, Huadu,
Zengcheng, Baiyun, and Conghua, with the largest area in Panyu (14.72 km2) and the
lowest in Yuexiu (1.03 km2). Figure 13 identifies Haizhu, Liwan, and Yuexiu to have
the highest proportion of blue steel (between 2% and 3%). The distribution of cement
is concentrated in Panyu, Huadu, Zengcheng, Baiyun, and Conghua, with a peak in
Panyu (58.27 km2) and minimum in Yuexiu (3.07 km2). The proportion of cement is
the highest among the three districts of Haizhu, Liwan, and Yuexiu, ranging from 9%
to 12%. Asphalt is concentrated in the four districts of Panyu, Huadu, Zengcheng, and
Baiyun, with Panyu holding the largest area (163.4 km2) and Yuexiu the lowest (10.01 km2).
Furthermore, asphalt accounts for the highest proportion in Haizhu, Liwan, Tianhe, and
Yuexiu (20–30%). The other impervious surfaces are principally located in the four districts
of Panyu, Huadu, Zengcheng, and Baiyun, with Panyu and Yuexiu exhibiting the largest
and lowest distributions of 79.04 km2 and 5.5 km2, respectively. Liwan and Yuexiu exhibit
the highest proportion of other impervious surfaces, with values ranging from 14% to
16%. Other metals are distributed in Panyu, Huadu, Zengcheng, and Conghua, with
the largest distribution in Panyu (47.65 km2) and lowest in Yuexiu (2.01 km2). The other
metals account for the highest proportion in Haizhu, Liwan, Nansha, Panyu, and Yuexiu,
with values between 6–9%. Brick surfaces are generally distributed in Panyu, Huadu,
Zengcheng, Baiyun, and Conghua, with Zengcheng and Yuexiu exhibiting the largest and
lowest distributions of 61.32 km2 and 1.69 km2, respectively. The proportion of bricks
is relatively evenly spread across the 11 districts, with values between 2% and 7%. The
distribution of plastics is concentrated in the four districts of Panyu, Huadu, Zengcheng,
and Conghua, with the greatest area in Conghua (58.3 km2) and the lowest in Yuexiu
(0.87 km2). The proportion of plastics is also evenly distributed within the 11 districts,
ranging from 2% to 5%.

Table 3. Distribution and area of each class in the districts of Guangzhou.

District Name District Area Blue Steel Cement Asphalt Other IS Other Metal Brick Plastic

Baiyun 671.24 11.12 50.61 106.52 73.46 22.84 41.25 27.59
Conghua 1981.24 9.58 13.72 44.19 46.08 8.99 47.73 58.30
Haizhu 100.82 3.18 9.60 26.52 15.11 6.77 4.98 2.53
Huadu 955.20 12.63 42.03 108.79 73.46 31.69 57.06 41.45

Huangpu 457.11 5.17 22.71 48.57 33.35 9.92 21.58 15.46
Liwan 70.88 2.01 9.06 20.47 11.15 5.28 3.42 1.83

Nansha 336.22 5.83 27.89 53.50 21.55 31.93 18.00 10.92
Panyu 798.75 14.72 58.27 163.40 79.04 47.65 53.63 33.22
Tianhe 127.64 2.62 10.47 26.78 15.04 4.72 7.78 4.66
Yuexiu 32.89 1.03 3.07 10.01 5.50 2.01 1.69 0.87

Zengcheng 1615.81 10.90 29.29 82.96 74.11 20.51 61.32 55.88

Bold values are the top three regions that occupy the most area in each class.
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Figure 13. Proportion of each class in each district of Guangzhou.

4. Discussion

The majority of current related research provides a general classification of all ground
objects in urban built-up areas as impervious surfaces. However, this paper presents an
approach that classifies impervious surfaces in detail via the application of non-linear
spectral hybrid analysis to subdivide impervious surfaces. This makes it possible to
determine quantitative information on detailed objects in built-up urban areas. Results
provide data for the improvement of urban ecological spaces and confirm that the detailed
classification of urban built-up areas can aid in the development of urban planning and
policy formulation, thus contributing to future urban development [19].

Previously, some scholars have used random forest and spectral mixture analysis
(SMA) to extract the impervious surface, but they have not conducted in-depth analysis of
finer impervious surface classes [3,34,35]. They simply divide the impervious surface into
one or two classes (high albedo-low albedo) on the basis of different spectral reflectance.
This paper used the same methods and data sources as the above research, but the differ-
ence is that the detailed classes in the impervious surface was subdivided, and the results
achieved reliable accuracy. In addition, some scholars have made a fine classification of
cities, but the data sources were different [13,14,19]. Due to the abundant hyperspectral
bands, hyperspectral data have obvious advantages in subdivision of ground objects. How-
ever, hyperspectral data is computation-intensive and time-consuming, and the research
based on it cannot cover a large area. For example, Zhong et al. [36] used unmanned aerial
vehicle (UAV)-borne hyperspectral systems to acquire hyperspectral imagery for precise
crop classification. This research was focusing on agricultural instead of urban structures.

The detailed classification of impervious surfaces not only improves the extraction
accuracy of impervious surfaces in low and medium resolution data, but also provides
quantitative statistics on the internal structure of urban built-up areas and a wide range
of objects in built-up areas. The classification of blue steel and other metals is useful for
research on the distribution of industrial areas in Guangzhou and variations in the urban
temperature [37]. The extraction of cement presented here is of positive significance to
research on urban underlying surfaces [38]. The classification results of asphalt are also
important for the planning of urban road and maintains the urban environment [39], for
example, common road and roofing asphalts produced complex mixtures of organic com-
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pounds, including hazardous pollutants [40]. The classification results of other impervious
surfaces and bricks can provide reference data for studies on the spatial distribution of
residential areas in Guangzhou [41]. Changes in plastic and its spatial distribution can
also contribute to the division of urban functional areas such as schools and stadiums.
Recently, Elhacham et al. [42] have quantified the human-made mass, referred to as ‘an-
thropogenic mass’, which include plastic, metal, glass, cement, brick, etc., and compare it
to the overall living biomass on Earth. The result showed that for each person on the globe,
anthropogenic mass equal to more than his or her bodyweight is produced every week.
Similar to their purpose, quantifying the artificial ground objects has become an important
step in investigating the impact of human development on nature.

The detailed classification of impervious surfaces also has an important impact on the
internal temperature, ecology and urban planning of cities [43]. Detailed classifications
are of great research significance for the effective mitigation of the heat island effect, as
well as quantifying the specific classes of surface coverage in urban areas, including the
detailed composition of materials (asphalt roads, non-ferrous metals, bright and dark
roofs, etc.) [29,44]. A wide range of ground objects with impervious surfaces have altered
the urban ecological spatial structure. A detailed classification can provide effective data
for urban ecological carrying capacity and urban greening planning strategies [45,46].
Moreover, ground objects with impervious surfaces also have different service lives and
aging rates. Research on their distribution has a positive significance on population
production, city appearance maintenance, disaster emergency management, and urban
village reconstruction.

In addition, the image was collected during winter in the northern hemisphere, and
part of the arable land exhibits the spectral characteristics of bare land due to autumn
harvest and the newly expanded building space. Consequently, the classification results
demonstrate the presence of bare land near Nansha in the southwest of the study area.
Although the image was subject to water and vegetation masks prior to the classification,
some water and vegetation pixels were still present. In particular, for the vegetation
mask, the model easily confuses dark blue steel with vegetation, resulting in incorrect
masking results.

The RMSE of blue steel, other impervious surfaces, other metals, and brick are all
greater than 10%. The classification result of the above classes is not precise enough.
Similar to this study findings, some scholars have proposed that due to the similar spec-
tral characteristics, blue steel is easy to confuse with shadows, low reflection buildings
and vegetation [47,48]. Meanwhile, Li, et al. [49] have demonstrated that buildings are
commonly found with complex spectral and spatial characteristics in densely populated
urban areas. Shadow and other impervious surfaces may have similar spectral, textual,
and geometrical characteristics, resulting in a high mis-classification rate between them.
Moreover, Iftene, et al. [50] proved that other metal and light roof buildings cannot be
distinguished well in extraction. However, he found that the height characteristics can
be used to distinguish between the two ground objects. At the same time, he proposed
that with the aid of height information or data such as shadows and light detection and
ranging (LiDAR), the metal extraction results will be better. Furthermore, Yan, et al. [51]
proposed that the brick is similar to that of bare land in the visible spectrum, but in the
mid-infrared band, the brightness of the sun-facing side of the brick is significantly higher
than that of the bare land and the shaded brick. From their research results, it can be found
that mid-infrared band is very effective for the extraction of bricks.

This study focuses on distinguishing different finer impervious surface classes in urban
area with the random forest model. The random forest model is flexible for different data
acquired from various remote-sensing platforms. It can be applied to different remotely
sensed data with their according samples. The major challenge of this study is selecting
the samples of each finer impervious surface class. Coarse spatial resolution imagery’s
pixels cover a large ground area, and it is hard to select pure finer impervious surface
class samples (a pixel only contains one finer impervious surface class). For example,
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the image of moderate-resolution imaging spectroradiometer (MODIS), its best spatial
resolution is 250 m, which it covers 250 × 250 = 62,500 square meters in a pixel. Many
finer impervious surface classes in urban areas have areas of far less than 62,500 squares.
Thus, it is hard to collect these samples, preventing the application of finer impervious
surface classes identification. The samples recorded from the field investigation and lab
experiment, to some degree, can address the limitation of sample selection. However,
high-quality atmospheric correction should be applied to the imagery before classification
to avoid the mismatch between the spectra recorded from the remotely sensors and the
samples recorded from ground experiments. For the imageries which have finer spatial
resolution than Landsat data, the method in this study can be perfectly applied since these
types of imageries can present more pure finer impervious surface classes in a pixel [52].
The limitation of selecting pure samples can be easily addressed in higher spatial resolution
imageries. Therefore, this method can be applied to higher spatial resolution (spatial
resolution is higher than 30 m) imagery.

5. Conclusions

This study extracted the finer IS classes using Landsat imagery with a random forest
method. The IS was divided into seven finer impervious surface classes (blue steel, cement,
asphalt, other impervious surfaces, other metal, brick, and plastic). Several conclusions can
be drawn as follows:

(1) Finer impervious surface classes can be divided using the random forest classification
method within Landsat data. RMSE values of all impervious surface classes are below
15%, with asphalt demonstrating the highest classification accuracy.

(2) The total area of impervious surfaces in the study area is 2258.5 km2, accounting for
36.33% of the entire Guangzhou. Asphalt, other impervious surface, and brick are
the dominant impervious surface area types with the percentages of 9.68%, 6.27%,
and 4.45%, respectively. They are mainly located in Yuexiu, Liwan, Haizhu, and
Panyu districts.

This study is a trial to distinguish the finer impervious surface classes using median
spatial resolution images. Its major contribution is providing a more detailed structure in-
formation about the urban areas which could be used for urban toughness analysis [53–55],
urban micro ecology [56] and urban planning [57].
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