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Abstract: Impervious surface is the major component of urban areas, and it has been widely considered
as the key for assessing the degree of urban sprawl. While the effectiveness of applying spectral
mixture analysis (SMA) and spectral indices in mapping urban impervious surface has been proved,
most studies have relied either on SMA or spectral indices without considering both. In this study, the
SMA and spectral indices were integrated together to map impervious surfaces distributions in both
Milwaukee County in the Wisconsin State and Fayette County in the Kentucky State. Specifically,
spectral indices were used for identifying major land covers. Two-dimensional feature space plots
were generated by calculated spectral indices images for endmember selection and extraction. Linear
constrained SMA was finally applied to quantify the fractional impervious surfaces. Research results
indicate that the proposed method has achieved a promising accuracy, and better performance
was achieved in less developed areas than the developed areas. Moreover, a comparative analysis
shows that the proposed method performs better than the conventional method in both the whole
study area and the developed areas, and a comparable performance has been achieved in the less
developed areas.
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1. Introduction

Since the second industrial revolution in the late 19th century, the world has experienced rapid
urbanization. The percentage of people who reside in cities raised from 13.3% in 1900 to 35.6%
in 1970 and 55.3% in 2018, and it is projected to be over 68% in 2050 [1]. Associated with rapid
urbanization, large numbers of natural lands (e.g., grassland and forest area) were replaced by
residential, transportation, industrial, and commercial land, which is majorly composed by impervious
surfaces [2–4]. Impervious surface is generally defined as human-made features that water cannot go
through (e.g., building rooftop, driveway, and parking areas). As the main part of urban areas, the
impervious surface was commonly assumed as an important indicator for evaluating the degree of
urban sprawl [5–8]. Therefore, the accurate mapping of impervious surfaces has become an important
research topic.

Several methods were proposed and used for mapping impervious surfaces at different scales.
Until now, manual interpretation has been considered as the most straightforward and accurate method.
However, it is time-consuming and difficult to be conducted in a large geographical region. Since the
launch of the first remote sensing satellite, remote sensing data have become widely used in urban
sprawl and land use land cover change studies as the large area coverage, regular revisit period, and
multiple spectral bands [9]. Since then, conventional classification techniques, such as supervised and
unsupervised classifications, have been applied in the estimation of impervious surfaces at different
scales. Although the conventional classification approaches are all straightforward, the classification is
only conducted at the pixel level. In fact, the spatial extent of a typical land cover is usually smaller
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than the pixel size, and there may be a lot of mixed pixels in an image owing to the variations of
land use combinations in urban areas, which result in less accurate estimation results [10]. To address
this issue, Ridd [11] proposed the vegetation-impervious surface-soil model (V-I-S) to quantify the
components of the urban environment at the sub-pixel scale with the assumption that the land use
land cover (LULC) types can be decomposed as the areal abundances of impervious surface, soil, and
vegetation. Based on the conceptual V-I-S model, numerous automated methods have been proposed,
and they can be grouped into three major types: (1) regression/decision tree (RT/DT), (2) artificial
neural networks (ANN), and (3) spectral mixture analysis (SMA) [3,9,12,13].

The DT/RT model is used to construct the relationship between a dependent variable and
independent variables by breaking up the data under certain specific rules over and over again, and
the ANNs model is a self-adjustment system, which modifies its composition through the learning
process to analyze and simulate the input and output data’s relationship. They are both considered as
machine learning methods and also have been widely used for impervious surface estimation through
constructing the empirical relationship with spatial and spectral characteristics offered by remote
sensing data [7,14–21]. However, the estimation accuracy of both methods is highly decided by the
chosen training data and test data, which is subjective for the model construction and validation [22,23].
Furthermore, some ANNs models, such as the Multi-Layer Perceptron model, require both presence
and absence data, and true and false information, which make the data collection rather challenging.

SMA is seen as one powerful approach for the estimation of impervious surfaces in recent
years [3,24–26]. It has also been applied in many fields, such as geological mapping [27–29], natural
hazard risk assessment [30,31], vegetation mapping [32–35], etc. SMA uses a linear/nonlinear model
to explain the relationship between the spectra of a mixed pixel and the spectra of composed
land use land covers, and such relationships can help in deriving the areal abundances of each
land use/land cover based on the inverse least square’s deconvolution model. Until now, the
SMA model was widely employed in many studies, especially for mapping the abundances of
impervious surfaces [3,12,25,36–44]. Besides, many studies have also been conducted for improving
the performance of the SMA model for estimating urban impervious surfaces. Wu and Murray [3]
extracted the abundances of low and high albedos separately and combined them to map the impervious
surface fractions. Wu [12] has also proposed a normalized SMA to increase the mapping accuracy by
lowering the brightness variations among different endmember classes. Zhang et al. [45] developed
a prior knowledge-based SMA. In particular, the study area has been segmented into different
areas based on the urban intensity, and then unmixing analysis has been applied separately for the
segmented areas. Some other proposed popular techniques include derivative spectral unmixing
(DSU) [46], segmentation-based SMA [47], spectral weighting techniques [48], spatially adaptive
SMA(SASMA) [49], and multiple endmember spectral mixture analysis (MESMA) [50]. Recently, Li
and Wu [51] proposed phenology based temporal mixture analysis (TMA). Instead of applying image
reflectance, a vegetation index, Normalized Difference Vegetation Index (NDVI), has been applied, and
the phenology profile of endmember classes has been extracted and applied for impervious surface
estimation [52–54].

To map impervious surfaces, some spectral indices have also been developed and applied, such as
the Normalized Difference Built-up Index (NDBI) [55] and Biophysical Composition Index (BCI) [56].
NDBI is developed for mapping built-up in urban areas through identifying the significantly different
spectral profiles between built-up and other LULC types. BCI was introduced by Deng and Wu [56],
and instead of identifying only one land cover, BCI can effectively measure the density for several
different land covers, such as high albedo, low albedo, soil, and vegetation. Moreover, some other
spectral indices have also been proposed for mapping other land features and reducing the confusion
with impervious surfaces. For instance, the NDVI is the most commonly used spectral index in mapping
vegetation, and it is usually calculated by measuring the differences between red and near-infrared.
It is useful in understanding vegetation greenness and has been widely applied to determine the
vegetation density on a patch of land. The Ratio Normalized Difference Soil Index (RNDSI) is proposed



Remote Sens. 2020, 12, 94 3 of 16

for highlighting soil information in both urban and rural areas using satellite images, it is powerful in
separating soil from other land use/land covers (e.g., vegetation and impervious surface), and it could
be applied in both urban and nonurban environments [57].

While the effectiveness in applying spectral mixture analysis and spectral indices in quantifying
impervious surface has been proven, most studies have relied either on spectral mixture analysis
or spectral indices without considering both. In this study, take Milwaukee County in the State of
Wisconsin and Fayette County in the Kentucky State as study areas, the urban impervious surfaces
mapping were improved by using both spectral mixture analysis and spectral indices. In particular,
spectral indices, including NDVI, NDBI, RNDSI, and high and low albedos (from BCI), were applied
for identifying major land covers in the selected research regions and further guiding the endmember
selection and extraction. Furthermore, a constrained linear SMA was applied for quantifying the
fractional impervious surfaces.

2. Materials and Methods

2.1. Study Area

Milwaukee County in the State of Wisconsin and Fayette County in the Kentucky State were
selected in this study to test and verify the proposed method. Milwaukee county is situated in the
southeastern part of the Wisconsin State along Lake Michigan with the latitude of 43◦2′ N, the longitude
of 87◦54′ W, and a geographical area of 3079 km2 (Figure 1). The climate is a typical humid continental
climate, which is hot in summer and cold and snowy in winter. Fayette County is in the central part of
the Kentucky State with the latitude of 37◦59′ N and longitude of 84◦28′ W. The total area of Fayette
County is 740 km2. The climate is typically mild and moderate with four distinct seasons; summer is
warm, and winter is moderately cold. (Figure 1). Both Milwaukee County and Fayette County have
experienced rapid urbanization in the past decades, and it is expected to continue in the future. U.S.
Census Bureau reports that the population of Milwaukee County and Fayette County has reached
952,085 and 321,959 in 2017, respectively. This rapid urbanization brings a lot of benefits (e.g., economic
growth), but also caused several challenging problems, including air pollution, traffic congestion, etc.
As the impervious surface is the main part of the urbanized area and has also been widely applied
for evaluating the degree of urban sprawl, the accurate mapping of urban impervious surfaces in
Milwaukee County and Fayette County becomes more and more important.



Remote Sens. 2020, 12, 94 4 of 16Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 

 

 

Figure 1. Map of the study areas: (A) Milwaukee County, Wisconsin and (B) Fayette County, 

Kentucky. 

2.2. Dataset 

To map fractional impervious surfaces in Milwaukee County and Fayette County through the 

proposed approach, two Landsat Thematic Mapper (TM) images with 6 bands (the thermal band was 

excluded) acquired on the 12 September 2010 and the 23 September 2010 were applied. The images 

were collected from the official website of the United States Geological Survey (USGS). The collected 

images have an appropriate resolution (30 m) to capture urban features. Image reflectance was 

calculated based on the digital number of the collected remote sensing images using ERDAS 

IMAGINE. In addition to the Landsat TM data, I also collected the digital orthophotography images 

of Milwaukee County on 5 October 2010, with a fine spatial resolution as the references for accuracy 

assessment. The digital orthophotography images were obtained from the American Geographical 

Society Library at UW-Milwaukee library. Moreover, the images of Fayette County with fine 

resolution were collected from Google Earth (recorded in December 2010) and used as references to 

verify the performance of the proposed method. With the V-I-S model, the urban area was composed 

of vegetation, impervious surface, and soil. Wu and Murray [3] further clarified that urban 

impervious surface can be explained by high albedos and low albedos, and the urban environment 

could be considered as the combination of vegetation, high albedo, low albedo, and soil. Therefore, 

four endmembers, including vegetation, high albedo, low albedo, and soil, are considered in this 

study for unmixing analysis. 

Figure 1. Map of the study areas: (A) Milwaukee County, Wisconsin and (B) Fayette County, Kentucky.

2.2. Dataset

To map fractional impervious surfaces in Milwaukee County and Fayette County through the
proposed approach, two Landsat Thematic Mapper (TM) images with 6 bands (the thermal band
was excluded) acquired on the 12 September 2010 and the 23 September 2010 were applied. The
images were collected from the official website of the United States Geological Survey (USGS). The
collected images have an appropriate resolution (30 m) to capture urban features. Image reflectance was
calculated based on the digital number of the collected remote sensing images using ERDAS IMAGINE.
In addition to the Landsat TM data, I also collected the digital orthophotography images of Milwaukee
County on 5 October 2010, with a fine spatial resolution as the references for accuracy assessment. The
digital orthophotography images were obtained from the American Geographical Society Library at
UW-Milwaukee library. Moreover, the images of Fayette County with fine resolution were collected
from Google Earth (recorded in December 2010) and used as references to verify the performance of
the proposed method. With the V-I-S model, the urban area was composed of vegetation, impervious
surface, and soil. Wu and Murray [3] further clarified that urban impervious surface can be explained
by high albedos and low albedos, and the urban environment could be considered as the combination
of vegetation, high albedo, low albedo, and soil. Therefore, four endmembers, including vegetation,
high albedo, low albedo, and soil, are considered in this study for unmixing analysis.
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2.3. Methodology

The proposed method could be carried out in three major steps: major land covers mapping
through calculating spectral indices, endmember class selection and extraction, and constrained linear
SMA (Figure 2). The detail of the proposed method is included below.
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Figure 2. Flowchart of the proposed method.

2.3.1. Mapping Major Land Covers Using Spectral Indices

Five spectral indices, NDVI [58], NDBI [55], RNDSI [57], and high and low albedo (from BCI) [56],
were employed in this research to map major land use/land covers in the research regions. The
generalized expressions of these spectral indices are listed as follows:

NDVI =
NIR−Red
NIR + Red

(1)

NDBI =
MIR−NIR
MIR + NIR

(2)

where NIR represents the reflectance obtained in the near-infrared band, and Red is the reflectance
collected in the red bands. MIR is the reflectance derived in the medium infrared band.

RNDSI =
NNDSI
NTCI

(3)

NNDSI =
NDSI −NDSImin

NDSImax −NDSImin
(4)

NDSI =
Band7− Band2
Band7 + Band2

(5)



Remote Sens. 2020, 12, 94 6 of 16

TCI =
TC1− TC1min

TC1max − TC1min
(6)

where NDSI represents the normalized difference soil index. NNDSI is the normalized NDSI. NDSImax

is the maximum value of the calculated NDSI, and NDSImin is the minimum value of the calculated
NDSI. Band7 is the seventh band of the collected image, and Band2 is the second band of the obtained
image. TC1 is the first component of the image after the tasseled cap transformations, and NTC1 is the
normalized TC1. For details, please refer to Deng et al. [57].

H =
TC1− TC1min

TC1max − TC1min
(7)

L =
TC3− TC3min

TC3max − TC3min
(8)

where H and L are high albedos and low albedo from the BCI. TC1 is the first component, and TC3 is
the third component of the TM image after the tasseled cap transformation. TC1max is the maximum
value of the TC1, and TC1min is the minimum value of the TC1. TC3max is the maximum value of the
TC3, and TC3min is the minimum value of the TC3. For details, please refer to Deng and Wu [56].

2.3.2. Selecting and Extracting Endmembers

Selecting the endmembers is the key step for spectral mixture analysis. In general, statistical
analysis was applied (e.g., Principal component analysis (PCA) and Minimum noise fraction (MNF))
for helping the endmember selection. In this study, instead of applying PCA or MNF, five spectral
indices were used in selecting endmembers. In order to generate feature space plots for guiding the
endmember selection and extraction, ERDAS IMAGINE was used in this study. Specifically, all spectral
indices images were stacked as one image with five bands using the layer stack function. Furthermore,
the feature space plot function was applied to generate all two-dimensional feature space plots, and
the vertices of those two-dimensional scatter plots were identified as endmembers. In addition, the
selected endmembers were also verified with ground reference data (Figure 3). These endmembers
include vegetation, high albedo, low albedo, and soil.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17 
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2.3.3. Constrained Linear SMA

Based on the selected endmembers, a constrained linear SMA was applied. The spectra of the
mixed pixels could be linearly explained by the spectra of all endmembers, and the abundances of all
endmembers could be extracted accordingly. The constrained linear SMA and corresponding constrain
could be expressed as follows.

Rb =
N∑

i=1
Ri,b fi + eb

Subject to
∑N

i=1 fi = 1 and fi ≥ 0
(9)

where Rb is the mixed spectral index value at band b, N is the total amount of endmember classes (four
endmember classes are included in this study), fi is the areal abundances of endmember class i, Ri,b
is the spectral index value for endmember i at band b, and eb is the residual. To evaluate the model
performance, the eb and RMS have been calculated and could be expressed as follows,

RMS = (

∑M
b=1 e2

b
M

)

1
2

(10)

where M is the total amount of bands (5 spectral indices images).

2.3.4. Conventional SMA

In order to compare the performance of the proposed method with conventional SMA, the
conventional SMA was also implemented in this study. With conventional SMA, the reflectance has
been calculated for each image and an MNF has been applied to remove noise (Figure 4). Endmember
classes were selected from the first three components of MNF, and the reflectance images were applied
for spectral mixture analysis. The same as in the proposed method, four endmembers, including
vegetation, high albedo, low albedo, and soil, were included in this study. The constrained linear SMA
could be expressed as follows.

REb =
N∑

i=1

REi,b fi + eb (11)

where REb is the mixed reflectance value at band b, N is the total amount of endmember classes (four
endmember classes are included in this study), fi is the areal abundances of endmember class i, REi,b is
the reflectance for endmember i at band b, and eb is the residual.
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2.3.5. Accuracy Assessment

To assess the model performance of the proposed method and conventional SMA, the digital
orthophotography images of Milwaukee County on 5 October 2010 and the Google Earth images of
Fayette County (with fine resolution) on December 2010 were collected and used in this study as the
reference data. Moreover, two widely used measures, including systematic error (SE, Equation (12)) and
mean absolute error (MAE, Equation (13)) were employed to assess the performance of the developed
new method [3,49,51,59,60]. The SE is the percentage of estimation error calculated based on the
mapped impervious surface and referenced impervious surface; it can reflect the bias and the overall
tendency for under- or overestimation. The MAE is the absolute estimation error percentage calculated
using the mapped impervious surface and referenced the impervious surface, and it can measure the
relative estimation errors of the fractional impervious surface. The details about the two measures, SE
and MAE, could be expressed as below,

SE =

∑P
i=1

(
Fi − Fi

)
P

(12)

MAE =

∑P
i=1

∣∣∣Fi − Fi
∣∣∣

P
(13)

where Fi is the simulated abundances of impervious surfaces from the proposed new method at pixel i,
Fi is the referenced abundances of impervious surface at pixel i, and P is the total amount of pixels.
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3. Results

3.1. Mapped Major Land Cover Distributions

The distribution of high and low albedo, soil, built-up, and vegetation of Milwaukee County
and Fayette were reported in Figure 5A–J based on the calculation of spectral indices. It illustrates
different spatial patterns of LULC in Milwaukee County and Fayette County. In Milwaukee County,
the built-ups (composed by both high albedos and low albedos) are majorly distributed in the central
eastern part of the Milwaukee County, along Lake Michigan. Vegetations, mainly forests and crops, are
situated in the southwestern part of Milwaukee County. In Fayette County, the built-ups are located in
the central part of Fayette County as the largest city, Lexington, is situated there. Vegetations, mainly
cropland, are distributed in the outlier of the County. In both counties, the soil is mixed together with
croplands and some built-ups.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17 
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3.2. Quantified Impervious Surface Distribtuions

With the derived spectral indices images, pure endmembers were selected and applied in unmixing
analysis to extract four fractional images: high albedo, low albedo, vegetation, and soil. In most studies,
the impervious surface was considered as the combination of high albedo and low albedo. Therefore,
in this study, the fractional impervious surface map was generated by combining the quantified high
albedo and low albedo images (Figure 6). Figure 6A,C illustrate that the spatial distributions of the
quantified impervious surface fractions are consistent with the known land use/land cover pattern
of Milwaukee County and Fayette County. For Milwaukee County, high abundances of impervious
surfaces (AIS > 70%) are majorly distributed in the most urbanized and populated areas, such as the
City of Milwaukee (the largest city in Milwaukee County). Medium abundances of impervious surfaces
(AIS: 30–70%) are located in the satellite cities around the City of Milwaukee, such as West Allis,
Shorewood, and Glendale, which are commonly recognized as residential communities. Moreover, low
abundances of impervious surfaces (AIS < 30%) are majorly located in the southern and northern areas
of Milwaukee County, which are mostly recognized as vegetation, such as crops, forests, and grasses.
For Fayette County, the high fractional impervious surfaces (AIS > 70%) are mainly located in the largest
city and also the center of the County, the City of Lexington. Medium fractional impervious surfaces
(AIS: 30–70%) are distributed around the City of Lexington, especially the southwestern part of the
County, which is majorly covered by houses and apartments. The low fractional impervious surfaces
(AIS < 30%) are distributed on the outskirts of the county, which are mostly covered by croplands.
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A quantitative analysis was also conducted in this study for evaluating the performance of the
proposed method. One hundred sample points were randomly selected for each study area, Milwaukee
County and Fayette County, using a stratified random selection technique (Figure 7). The impervious
surface was manually digitized using the software of ERDAS IMAGINE for each selected sampled area,
and the abundances of the impervious surface were calculated by dividing the areas of the digitized
impervious surface by the total areas of the sampling place. Finally, the estimation accuracy of the
abundances of impervious surfaces for both Milwaukee County and Fayette County are included in
Table 1. It indicates that the proposed method has achieved a very good performance in mapping
the abundance of impervious surfaces for both Milwaukee County and Fayette County. Specifically,
in Milwaukee County, the whole study area had an SE of −2.61% and MAE of 10.13%. For Fayette
County, the SE and MAE of the whole study area was −4.11% and 12.48%, respectively. In order to
assess the model performance in detail, the whole study area was separated into developed areas and
less developed areas based on the definition of developed land from the Environmental Protection
Agency [61]. In particular, the developed areas were defined as having fractional impervious surfaces
equal or over 30%, and less developed areas were defined as having fractional impervious surfaces
smaller than 30% [61]. Further analysis has shown that much better performance was found in the less
developed areas (SE = 4.45% (Milwaukee), 4.01% (Fayette), and MAE = 9.21% (Milwaukee), 8.63%
(Fayette)) than the developed areas (SE = −5.83% (Milwaukee), −7.31% (Fayette), and MAE = 12.76%
(Milwaukee), 14.17% (Fayette)). Moreover, a slight overestimation in the less developed areas and
underestimation in the developed areas were found for both Milwaukee County and Fayette County.
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Table 1. Accuracy assessment of impervious surfaces derived with the proposed method and
conventional SMA.

Study Area Methods Sub-Area SE (%) MAE (%)

Milwaukee
County

SMA with spectral indices Overall 1 −2.61 10.13
Developed areas 2 −5.83 12.76

Less developed areas 3 4.45 9.21
Conventional Overall −3.75 12.57

SMA Developed areas −7.95 13.24
Less developed areas 4.23 8.15

Fayette
County

SMA with spectral indices Overall −4.11 12.48
Developed areas −7.31 14.17

Less developed areas 4.01 8.63
Conventional Overall −6.29 13.01

SMA Developed areas −9.17 15.54
Less developed areas 3.64 7.45

1 Overall: the whole study area. 2 Developed areas: fractional impervious surfaces ≥30%. 3 Less developed areas:
fractional impervious surfaces <30%.

3.3. Comparative Analysis

For comparison purposes, the conventional SMA was also implemented, and the performance
of the conventional SMA was also included in Figure 6 and Table 1. Figure 6 indicates that similar
spatial distribution patterns were achieved for both the proposed method and the conventional SMA.
However, compared with the proposed method, an obvious underestimation for the urban area could
be detected by the conventional SMA. Quantitative analysis confirms the visual observations. For
the whole study area and developed areas, the proposed method has achieved a better performance
than the conventional SMA. For instance, for the whole study area, the SE and MAE values of
the proposed method are −2.61% (Milwaukee), −4.11% (Fayette), and 10.13% (Milwaukee), 12.48%
(Fayette), respectively, much lower than the conventional SMA with an SE of −3.75% (Milwaukee),
−6.29% (Fayette) and MAE of 12.57% (Milwaukee), 13.01% (Fayette), respectively. Moreover, in
developed areas, the SE and MAE values of the proposed method are −5.83% (Milwaukee), −7.31%
(Fayette) and 12.76% (Milwaukee), 14.17% (Fayette), respectively, much lower than the conventional
SMA with the SE and MAE of −7.95% (Milwaukee), −9.17% (Fayette), and 13.24% (Milwaukee), 15.54%
(Fayette). In summary, the proposed method has achieved much better performance for the whole
study area and developed areas, and comparable performance for the less developed areas.

4. Discussion

In this study, both SMA and spectral indices were employed to quantify fractional impervious
surfaces. The spatial distribution of fractional impervious surfaces in both Milwaukee County and
Fayette County are well-reflected. When implementing SMA, one of the most important steps is
the endmember selection and extraction. While the traditional statistic methods, such as MNF
and PCA, were widely applied [23,46,48,62], the selection and extraction of endmembers are still
challenging. Spectral indices seem to be helpful in endmember selection and extraction. Specifically,
major land covers can be more accurately identified through spectral indices calculation, and the
generated two-dimensional space plots are more straightforward and easily applied in guiding the
endmember selection and extraction. Compared with the results derived from the conventional SMA,
the performance of the proposed method is much better in the whole study area and developed areas.
The improvement in the whole study area is significant (Milwaukee: SE of −2.61% vs. −3.75% and
MAE of 10.13% vs. 12.57%; Fayette: SE of −4.11% vs. −6.29% and 12.48% vs. 13.01%). Moreover, a
more significant improvement could be found in the developed areas (Milwaukee: SE of −5.83% vs.
−7.95% and MAE of 12.76% vs. 13.24%; Fayette: SE of −7.31% vs. −9.17% and MAE of 14.17% vs.
15.54%). While less satisfying performance was achieved in the less developed areas, they are still
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comparable to the conventional SMA. Hence, the use of both SMA and spectral indices produced a
more accurate urban impervious surface map than studies only using SMA.

While the proposed method has achieved a satisfactory performance for mapping the abundances
of impervious surfaces, there are still some limitations. For instance, there is a slight overestimation in
the less developed areas and underestimation in the developed areas due to the variability issue of both
endmember class and spectra. In fact, because of the spatial variations of physical and socio-economic
forces, endmember spectra are varied from place to place, and a fixed endmember spectrum cannot be
enough to represent the complex geographic conditions throughout the whole study area, thereby
inevitably generating the estimation error. Moreover, endmember class could also be varied from
location to location. If an endmember class is not existing but included in the spectral mixture analysis,
the modeled abundances of the non-existing endmember class are usually larger than zero, which
may result in large overestimation mistakes. Therefore, further work is still needed for improving
the performance of spectral mixture analysis by incorporating both spatial and temporal knowledge
into the SMA process. Such knowledge may be helpful in handling the issues of both endmember
class and spectra variability and finally addressing the challenging problems of the impervious surface
overestimation in the less developed areas and underestimation in the developed areas. Moreover,
this study only tested and verified the performance of the proposed method for mapping impervious
surfaces in Milwaukee County and Fayette County, so further work is still needed for testing and
verifying the model performance in other areas with different natural and human conditions.

5. Conclusions

Impervious surface is a very important component of the urbanized area, and several methods
have been proposed and applied for quantifying the abundances of impervious surfaces. While
the SMA has been broadly considered as one of the most efficient methods, it is still challenging to
accurately extract impervious surface. In addition, many spectral indices have also been introduced
and applied in mapping urban features, and the effectiveness has also been reported in many studies.
In order to improve the impervious surfaces mapping, spectral mixture analysis and spectral indices
were integrated together for mapping impervious surfaces in Milwaukee County and Fayette County.
This article started at mapping major land covers through calculating spectral indices. Furthermore,
four two-dimensional feature spaces were generated to guide the endmember selection and extraction.
Finally, a constrained linear SMA was applied to estimate the abundances of impervious surfaces.

Research results suggest some major conclusions. Firstly, the proposed method has achieved a
promising performance for quantifying the abundances of impervious surfaces for both Milwaukee
County (SE of −2.61%, MAE of 10.13%) and Fayette County (SE of −4.11%, MAE of 12.48%) in the
whole study area. Further analysis has also indicated better modeling results in the less developed
areas than the developed areas for both Milwaukee County and Fayette County. Secondly, to compare
the modeling results of the proposed method with the conventional SMA, both were conducted for
mapping the abundances of impervious surfaces for Milwaukee County and Fayette County. Accuracy
assessment shows that the estimation accuracy of the proposed method is much better than the
conventional SMA with the SE of −2.61% (Milwaukee), −4.11% (Fayette) (conventional SMA: −3.75%
(Milwaukee), −6.29% (Fayette)) and MAE of 10.13% (Milwaukee), 12.48% (Fayette) (conventional SMA:
12.57% (Milwaukee), 13.01% (Fayette)). Further analysis has also shown that the estimation accuracy
of the proposed method is better than the conventional SMA in the developed areas. Moreover, a
comparable performance was achieved by the proposed method and conventional SMA in the less
developed areas.
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