Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models
Abstract
:1. Introduction
Study Site
2. Materials and Methods
2.1. Characteristics of Quaternary Sedimentary Bodies
2.1.1. Pleistocene Moraines
2.1.2. Lacustrine Deposits
2.1.3. Fluvial Deposits
2.1.4. Debris Flow Lobe
2.1.5. Talus Slopes
2.1.6. Alluvial Fans
2.2. Data Acquisition and Visualisation Creation
2.3. Visualisation Analysis and Identification of Landscape Features
3. Results
3.1. Comparison of All Eleven Visualisation Types
3.2. Visual Analysis of Sedimentary Bodies and Identification of Landscape Features
3.2.1. Alluvial Fans
3.2.2. Glacial and Lacustrine Deposits
3.2.3. Scree Deposits
3.2.4. Debris Flow Deposits
3.2.5. Fluvial Deposits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanders, D.; Ostermann, M.; Kramers, J. Quaternary carbonate-rocky talus slope successions (Eastern Alps, Austria): Sedimentary facies and facies architecture. Facies 2009, 55, 345–373. [Google Scholar] [CrossRef]
- Sanders, D.; Ostermann, M. Post-last glacial alluvial fan and talus slope associations (Northern Calcareous Alps, Austria): A proxy for Late Pleistocene to Holocene climate change. Geomorphology 2011, 131, 85–97. [Google Scholar] [CrossRef]
- Deline, P.; Kirkbride, M.P. Rock avalanches on a glacier and morainic complex in Haut Val Ferret (Mont Blanc Massif, Italy). Geomorphology 2009, 103, 80–92. [Google Scholar] [CrossRef]
- Lardeux, P.; Glasser, N.; Holt, T.; Hubbard, B. Glaciological and geomorphological map of Glacier Noir and Glacier Blanc, French Alps. J. Maps 2015, 12, 582–596. [Google Scholar] [CrossRef] [Green Version]
- Gotz, J.; Otto, J.-C.; Et, A. Postglacial sediment storage and rockwall retreat in a semi-closed inner-Alpine sedimentary basin (Gradenmoos, Hohe Tauern, Austria). Geogr. Fis. Din. Quat 2013, 36, 63–80. [Google Scholar]
- Bowman, D. Principles of Alluvial Fan Morphology, 1st ed.; Springer: Dordrecht, The Netherlands, 2019. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Milana, J.P. The sieve lobe paradigm: Observations of active deposition. Geology 2010, 38, 207–210. [Google Scholar] [CrossRef]
- Ostermann, M.; Sanders, D.; Ivy-Ochs, S.; Alfimov, V.; Rockenschaub, M.; Römer, A. Early Holocene (8.6ka) rock avalanche deposits, Obernberg valley (Eastern Alps): Landform interpretation and kinematics of rapid mass movement. Geomorphology 2012, 171–172, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, N.; Daunisiestadella, J.; Di Crescenzo, G.; DI Donato, V.; Faillace, P.I.; Martín-Fernández, J.A.; Romano, P.; De Santo, A.V.; Scorpio, V. Topographic predictors of susceptibility to alluvial fan flooding, Southern Apennines. Earth Surf. Process. Landf. 2012, 37, 803–817. [Google Scholar] [CrossRef]
- Ouellet, M.A.; Germain, D. Hyperconcentrated flows on a forested alluvial fan of eastern Canada: Geomorphic characteris-tics, return period, and triggering scenarios. Earth Surf. Process. Landf. 2014, 39, 1876–1887. [Google Scholar] [CrossRef]
- Brenna, A.; Surian, N.; Ghinassi, M.; Marchi, L. Sediment–water flows in mountain streams: Recognition and classification based on field evidence. Geomorphology 2020, 371, 107413. [Google Scholar] [CrossRef]
- Procter, E.; Stoffel, M.; Schneuwly-Bollschweiler, M.; Neumann, M. Exploring debris-flow history and process dynamics using an integrative approach on a dolomitic cone in western Austria. Earth Surf. Process. Landf. 2012, 37, 913–922. [Google Scholar] [CrossRef]
- Sofia, G. Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way for-ward. Geomorphology 2020, 355, 107055. [Google Scholar] [CrossRef]
- Tarolli, P. High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology 2014, 216, 295–312. [Google Scholar] [CrossRef]
- Johnstone, S.A.; Hudson, A.M.; Nicovich, S.; Ruleman, C.A.; Sare, R.M.; Thompson, R.A. Establishing chronologies for alluvial-fan sequences with analysis of high-resolution topographic data: San Luis Valley, Colorado, USA. Geosphere 2018, 14, 2487–2504. [Google Scholar] [CrossRef]
- Jagodnik, P.; Gazibara, S.B.; Željko, A.; Arbanas, S.M. Engineering geological mapping using airborne LiDAR datasets—an example from the Vinodol Valley, Croatia. J. Maps 2020, 16, 855–866. [Google Scholar] [CrossRef]
- Sarala, P.; Räisänen, J.; Johansson, P.; Eskola, K. Aerial LiDAR analysis in geomorphological mapping and geochronological determination of surficial deposits in the Sodankylä region, northern Finland. GFF 2015, 137, 293–303. [Google Scholar] [CrossRef]
- Mitasova, H.; Harmon, R.S.; Weaver, K.J.; Lyons, N.J.; Overton, M.F. Scientific visualization of landscapes and landforms. Geomorphology 2012, 137, 122–137. [Google Scholar] [CrossRef]
- Sander, L.; Fruergaard, M.; Pejrup, M. Coastal landforms and the Holocene evolution of the Island of Samsø, Denmark. J. Maps 2016, 12, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Razak, K.; Straatsma, M.; van Westen, C.; Malet, J.-P.; De Jong, S. Airborne laser scanning of forested landslides characterization: Terrain model quality and visualization. Geomorphology 2011, 126, 186–200. [Google Scholar] [CrossRef]
- Roering, J.J.; Mackey, B.H.; Marshall, J.A.; Sweeney, K.E.; Deligne, N.I.; Booth, A.M.; Handwerger, A.L.; Cerovski-Darriau, C. ‘You are HERE’: Connecting the dots with airborne lidar for geomorphic fieldwork. Geomorphology 2013, 200, 172–183. [Google Scholar] [CrossRef]
- Schneevoigt, N.J.; van der Linden, S.; Thamm, H.-P.; Schrott, L. Detecting Alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology 2008, 93, 104–119. [Google Scholar] [CrossRef]
- Eeckhaut, M.V.D.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Nyssen, J.; Moeyersons, J.; Van Beek, L.P.H.; Vandekerckhove, L. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf. Process. Landf. 2006, 32, 754–769. [Google Scholar] [CrossRef]
- Petschko, H.; Bell, R.; Glade, T. Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides 2016, 13, 857–872. [Google Scholar] [CrossRef]
- Marston, B.E.; Jenny, B. Improving the representation of major landforms in analytical relief shading. Int. J. Geogr. Inf. Sci. 2015, 29, 1144–1165. [Google Scholar] [CrossRef]
- Žiga, K.; Somrak, M. Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. Remote. Sens. 2019, 11, 747. [Google Scholar] [CrossRef] [Green Version]
- Biland, J.; Çöltekin, A. An empirical assessment of the impact of the light direction on the relief inversion effect in shaded relief maps: NNW is better than NW. Cartogr. Geogr. Inf. Sci. 2017, 44, 358–372. [Google Scholar] [CrossRef]
- Jenny, B.; Patterson, T. Aerial perspective for shaded relief. Cartogr. Geogr. Inf. Sci. 2021, 48, 21–28. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef] [Green Version]
- Eeckhaut, M.V.D.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Moeyersons, J.; Nyssen, J.; van Beek, L. The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology 2005, 67, 351–363. [Google Scholar] [CrossRef]
- Farmakis-Serebryakova, M.; Hurni, L. Comparison of Relief Shading Techniques Applied to Landforms. ISPRS Int. J. Geo-Inf. 2020, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Mayoral, A.; Toumazet, J.-P.; Simon, F.-X.; Vautier, F.; Peiry, J.-L. The Highest Gradient Model: A New Method for Analytical Assessment of the Efficiency of LiDAR-Derived Visualization Techniques for Landform Detection and Mapping. Remote. Sens. 2017, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Doneus, M. Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote. Sens. 2013, 5, 6427–6442. [Google Scholar] [CrossRef] [Green Version]
- Verbovšek, T.; Popit, T.; Kokalj, Ž. VAT Method for Visualization of Mass Movement Features: An Alternative to Hillshaded DEM. Remote. Sens. 2019, 11, 2946. [Google Scholar] [CrossRef]
- Štular, B.; Žiga, K.; Oštir, K.; Nuninger, L. Visualization of lidar-derived relief models for detection of archaeological features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Kokalj, Ž.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice, 1st ed.; Gregorič Bon, N., Ed.; Založba ZRC: Ljubljana, Slovenia, 2017; ISBN 978-961-254-984-8. [Google Scholar]
- Smith, M.J.; Clark, C.D. Methods for the visualization of digital elevation models for landform mapping. Earth Surf. Process. Landf. 2005, 30, 885–900. [Google Scholar] [CrossRef]
- Inomata, T.; Pinzón, F.; Ranchos, J.L.; Haraguchi, T.; Nasu, H.; Fernandez-Diaz, J.C.; Aoyama, K.; Yonenobu, H. Archaeological Application of Airborne LiDAR with Object-Based Vegetation Classification and Visualization Techniques at the Lowland Maya Site of Ceibal, Guatemala. Remote Sens. 2017, 9, 563. [Google Scholar] [CrossRef] [Green Version]
- Masini, N.; Gizzi, F.T.; Biscione, M.; Fundone, V.; Sedile, M.; Sileo, M.; Pecci, A.; Lacovara, B.; Lasaponara, R. Medieval Archaeology Under the Canopy with LiDAR. The (Re)Discovery of a Medieval Fortified Settlement in Southern Italy. Remote Sens. 2018, 10, 1598. [Google Scholar] [CrossRef] [Green Version]
- Somrak, M.; Džeroski, S.; Kokalj, Ž. Learning to Classify Structures in ALS-derived Visualizations of Ancient Maya Settlements with CNN. Remote. Sens. 2020, 12, 2215. [Google Scholar] [CrossRef]
- Thompson, A.E. Detecting Classic Maya Settlements with Lidar-Derived Relief Visualizations. Remote Sens. 2020, 12, 2838. [Google Scholar] [CrossRef]
- Bennett, R.; Welham, K.; Hill, R.A.; Ford, A. A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data. Archaeol. Prospect. 2012, 19, 41–48. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A. Visualization and comparison of DEM-derived parameters. Application to volcanic areas. Geomorphology 2017, 290, 69–84. [Google Scholar] [CrossRef]
- Chen, R.-F.; Lin, C.-W.; Chen, Y.-H.; He, T.-C.; Fei, L.-Y.; Jin-King Liu, J.; Gloaguen, R.; Thenkabail, P.S. Detecting and Characterizing Active Thrust Fault and Deep-Seated Landslides in Dense Forest Areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sens. 2015, 7, 15443–15466. [Google Scholar] [CrossRef] [Green Version]
- Delaney, C.A.; McCarron, S.; Davis, S. Irish Ice Sheet dynamics during deglaciation of the central Irish Midlands: Evidence of ice streaming and surging from airborne LiDAR. Geomorphology 2018, 306, 235–253. [Google Scholar] [CrossRef]
- Novak, A.; Popit, T.; Šmuc, A. Sedimentological and geomorphological characteristics of Quaternary deposits in the Planica-Tamar Valley in the Julian Alps (NW Slovenia). J. Maps 2018, 14, 382–391. [Google Scholar] [CrossRef]
- Bohinec, V. K morfologiji in glaciologiji rateške pokrajine. Geogr. Vestn. 1935, 11, 100–132. [Google Scholar]
- Triglav Čekada, M.; Barborič, B.; Zorn, M.; Ferk, M. Lasersko skeniranje Slovenije in akumulacijske reliefne oblike v slovenskem visokogorju. In Raziskave s Področja Geodezije in Geofizike 2015, Ljubljana; Kuhar, M., Čop, R., Ličer, M., Vreča, P., Gosar, A., Kobold, M., Kralj, P., Skok, G., Stopar, B., Čarman, M., Eds.; Fakulteta za Gradbeništvo in Geodezijo: Ljubljana, Slovenia, 2015; pp. 51–65. ISBN 978-961-6884-34-1. [Google Scholar]
- Šmuc, A.; Janecka, K.; Lempa, M.; Kaczka, R.J. The Spatio-Temporal Dynamics of the Ciprnik Complex Landslide, Tamar Valley, Julian Alps, Slovenia. Stud. Geomorphol. Carpatho-Balc. 2015, 49, 35–54. [Google Scholar] [CrossRef]
- Gale, L.; Celarc, B.; Caggiati, M.; Kolar-Jurkovšek, T.; Jurkovšek, B.; Gianolla, P. Paleogeographic significance of Upper Triassic basinal succession of the Tamar Valley, northern Julian Alps (Slovenia). Geol. Carpathica 2015, 66, 269–283. [Google Scholar] [CrossRef]
- Celarc, B. Problematika »cordevolskih« apnencev in dolomitov v slovenskih Južnih Alpah Problems of the “Cordevolian” Limestone and Dolomite in the Slovenian part of the Southern Alps. Geologija 2004, 47, 139–149. [Google Scholar] [CrossRef]
- ARSO Lidar Slovenia. Available online: http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso (accessed on 16 May 2021).
- Blair, T.C.; McPherson, J.G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A Sediment. Petrol. Process. 1994, 64, 450–489. [Google Scholar] [CrossRef]
- ESRI an Overview of the to Raster Toolset—Help | ArcGIS for Desktop. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/conversion-toolbox/an-overview-of-the-to-raster-toolset.htm (accessed on 9 July 2021).
- ESRI LAS Dataset to Raster—Help | ArcGIS for Desktop. Available online: https://desktop.arcgis.com/en/arcmap/10.3/tools/conversion-toolbox/las-dataset-to-raster.htm (accessed on 9 July 2021).
- RVT Relief Visualization Toolbox in Python Documentation. Available online: https://rvt-py.readthedocs.io/en/latest/ (accessed on 16 May 2021).
- QGIS QGIS. Available online: https://www.qgis.org/en/site/ (accessed on 9 July 2021).
- QGIS QGIS Python Plugins Repository. Available online: https://plugins.qgis.org/plugins/profiletool/ (accessed on 9 July 2021).
- Pingel, T.J.; Clarke, K.; Ford, A. Bonemapping: A LiDAR processing and visualization technique in support of archaeology under the canopy. Cartogr. Geogr. Inf. Sci. 2015, 42, 18–26. [Google Scholar] [CrossRef]
- Middleton, M.; Heikkonen, J.; Nevalainen, P.; Hyvönen, E.; Sutinen, R. Machine learning-based mapping of micro-topographic earthquake-induced paleo-Pulju moraines and liquefaction spreads from a digital elevation model acquired through laser scanning. Geomorphology 2020, 358, 107099. [Google Scholar] [CrossRef]
- Guyot, A.; Lennon, M.; Hubert-Moy, L. Objective comparison of relief visualization techniques with deep CNN for archaeology. J. Archaeol. Sci. Rep. 2021, 38, 103027. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Xu, E. A two-level nested model for extracting positive and negative terrains combining morphology and visualization indicators. Ecol. Indic. 2019, 109, 105842. [Google Scholar] [CrossRef]
Visualisation | Parameter 1 | Parameter 2 | Parameter 3 |
---|---|---|---|
Analytical hillshading | Sun azimuth (A): 315° | Sun elevation angle (H): 35° | |
Hillshading from multiple directions | Number of directions (D): 16 | Sun elevation angle (H): 35° | |
Principal component analysis from hillshading | Number of components saved: 3 | ||
Slope gradient (also compressed 8-bit version) | Number of parameters: none | ||
Simple local relief model | Radius of trend assessment: 20 | ||
Sky view factor (also compressed 8-bit version) | Number of search directions: 8 | Search radius: 10 | Remove noise: none |
Anisotropic sky view factor (Sky view factor allow) | anisotropy level: low | main direction of anisotropy: 315° | |
Openness-positive | Parameters are set as sky view factor method | ||
Openness-negative | Parameters are set as sky view factor method | ||
Sky illumination model | Sky-model: overcast | Number of sampling points: 250 | Maximum shadow modelling distance: 100 pixels |
Local dominance | Minimum radius: 10 pixels | Maximum radius: 20 pixels |
Sedimentary Body/Landform | Morphological Features | Sedimentary Feature |
---|---|---|
Alluvial fans | Channels, braided channel systems, channel bars | Sieve deposits, out-of-channel deposits, boulder-sized clasts |
Pleistocene moraine | Ridges, undulated terrain | Boulders |
Lacustrine deposits | Lacustrine flats | |
Fluvial deposits | Torrential channels, channel bars | Out-of-channel deposits |
Talus slopes | Gullies, lobes | Grain flow deposits, boulder sized clasts |
Debris flow deposit | Depositional lobes, surface of rupture | Boulder sized clasts |
Visualisation | Advantage | Disadvantage | Suitable for Alpine Quaternary Landforms |
---|---|---|---|
Analytical hillshading | Good for a general terrain representation | Objects parallel to the illumination are poorly visible | Yes |
Hillshading from multiple directions | Objects are well visible regardless of illumination angle | Some subtle features are not well pronounced | Yes |
Principal component analysis from hillshading | Good visibility of small-scale features | Not an intuitive visualisation | No, but suitable for non-alpine landscape |
Slope gradient (also 8-bit version) | Good for precise delineation of subtle objects on low- to mid-gradient surfaces (8-bit version) | Steep slopes are poorly visible on 8-bit version; uncompressed version is not intuitive | Yes (compressed 8-bit version for low- to mid-gradient surfaces) |
Simple local relief model | Good delineation between steep and flat surfaces | Features are invisible on low-gradient surfaces; not intuitive | No, but suitable for non-alpine landscape |
Sky view factor (also 8-bit version) | 8-bit version works well on low- to mid-gradient surfaces; uncompressed version on steep surfaces | Slightly poorer delineation of objects compared to 8-bit Slope; 8-bit version is not suitable for steep surfaces; uncompressed version is not suitable for low- to mid-gradient surfaces | Yes (compressed 8-bit version for low- to mid-gradient surface, uncompressed version for very steep slopes) |
Anisotropic sky view factor | Very good recognition of steep cliff faces; good delineation between steep and flat surfaces | Poor visibility of low- to mid-gradient surfaces | Yes (steep gradient), No (low- to mid-gradient surface) |
Openness-positive | Good delineation between very steep and flat surfaces | Very poor visibility of low- to mid-gradient surfaces; not intuitive | No, but suitable for non-alpine landscape |
Openness-negative | Good delineation between very steep and flat surfaces | Very poor visibility of low- to mid-gradient surfaces; not intuitive | No, but suitable for non-alpine landscape |
Sky illumination model | Very good delineation between very steep and flat surfaces | Very poor visibility of low- to mid-gradient surfaces; feature edges are not sharp | No, but suitable for non-alpine landscape |
Local dominance | Good delineation between steep and flat surfaces | Very poor visibility of low- to mid-gradient surfaces; not intuitive | No, but suitable for non-alpine landscape |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novak, A.; Oštir, K. Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models. Remote Sens. 2021, 13, 4211. https://doi.org/10.3390/rs13214211
Novak A, Oštir K. Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models. Remote Sensing. 2021; 13(21):4211. https://doi.org/10.3390/rs13214211
Chicago/Turabian StyleNovak, Andrej, and Krištof Oštir. 2021. "Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models" Remote Sensing 13, no. 21: 4211. https://doi.org/10.3390/rs13214211
APA StyleNovak, A., & Oštir, K. (2021). Towards Better Visualisation of Alpine Quaternary Landform Features on High-Resolution Digital Elevation Models. Remote Sensing, 13(21), 4211. https://doi.org/10.3390/rs13214211