Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (235)

Search Parameters:
Keywords = Quaternary deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6826 KiB  
Article
Crack-Mitigating Strategy in Directed Energy Deposition of Refractory Complex Concentrated CrNbTiZr Alloy
by Jan Kout, Tomáš Krajňák, Pavel Salvetr, Pavel Podaný, Michal Brázda, Dalibor Preisler, Miloš Janeček, Petr Harcuba, Josef Stráský and Jan Džugan
Materials 2025, 18(15), 3653; https://doi.org/10.3390/ma18153653 - 4 Aug 2025
Abstract
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant [...] Read more.
The conventional manufacturing of refractory complex concentrated alloys (RCCAs) for high-temperature applications is complicated, particularly when material costs and high melting points of the materials processed are considered. Additive manufacturing (AM) could provide an effective alternative. However, the extreme temperatures involved represent significant challenges for manufacturing defect-free alloys using this approach. To address this issue, we investigated the preparation of a CrNbTiZr quaternary complex concentrated alloy from an equimolar blend of elemental powders using commercially available powder-blown L-DED technology. Initially, the alloys exhibited some defects owing to the internal stress caused by the temperature gradients. This was subsequently resolved by optimizing the deposition strategy. SEM, XRD and EDS were used to analyze the alloy in the as-deposited condition, revealing a BCC phase and a secondary Laves phase. Furthermore, Vickers hardness testing demonstrated a correlation between the hardness and the volume fraction of the Laves phase. Finally, successfully performed compression tests confirmed that the prepared material exhibits high-temperature strength and therefore is promising for high-temperature application under extreme conditions. Full article
Show Figures

Figure 1

23 pages, 4456 KiB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 - 1 Aug 2025
Viewed by 280
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 444
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

33 pages, 12144 KiB  
Article
Initial Discoveries from the Rhizoliths Petrified Forest of Chania
by Emmanouil Manoutsoglou
Heritage 2025, 8(7), 242; https://doi.org/10.3390/heritage8070242 - 22 Jun 2025
Viewed by 3386
Abstract
This study presents the initial scientific characterization of the recently discovered Rhizoliths Petrified Forest of Chania, located at Stavros in the Akrotiri peninsula of Crete, Greece. Unlike most known petrified forests that primarily preserve tree trunks, this site uniquely features an abundance of [...] Read more.
This study presents the initial scientific characterization of the recently discovered Rhizoliths Petrified Forest of Chania, located at Stavros in the Akrotiri peninsula of Crete, Greece. Unlike most known petrified forests that primarily preserve tree trunks, this site uniquely features an abundance of rhizoliths—fossilized root systems preserved through calcium carbonate mineralization. The rhizoliths exist within aeolianite formations along the coastal front, with diverse morphologies and sizes ranging from small trace-like forms to massive, branched structures exceeding one meter in length. The rhizoliths are exposed within historic Venetian quarries that operated from Minoan times through the medieval period at Stavros Bay, where quarrying operations have revealed these fossilized root systems preserved in coastal dune deposits. The site also contains in situ petrified trunks, calcrete formations, and biokarstic dissolution features that further enhance its scientific value. Microscopic examination of rhizolith samples has revealed valuable information about their internal structure, showing clear biogenic characteristics. The preservation of rhizolith structures and associated sedimentary features provides valuable insight into the Quaternary paleoenvironment, including former vegetation patterns, soil stabilization processes, and paleoclimatic conditions. The alternating layers of aeolianites and paleosols suggest cyclical environmental changes, with periods of active dune formation alternating with more stable conditions allowing soil development and vegetation establishment. This study documents the Stavros rhizoliths and their paleoenvironmental significance, contributing to the comparative understanding of similar features documented at other global sites. Full article
(This article belongs to the Section Geoheritage and Geo-Conservation)
Show Figures

Figure 1

19 pages, 34681 KiB  
Article
Provenance and Geological Significance of Cenozoic Sandstones in the Nankang Basin, Southern Cathaysia Block, China
by Bing Zhao, Guojun Huang, Xiangke Wu, Shangyu Guo, Xijun Liu, Huoying Li, Hailin Huang and Hao Wu
Minerals 2025, 15(6), 556; https://doi.org/10.3390/min15060556 - 23 May 2025
Viewed by 352
Abstract
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral [...] Read more.
The Cenozoic Nankang Basin in China records a complex series of tectonic, magmatic, metamorphic, and sedimentary events associated with the surrounding Shiwanshan, Liuwanshan, and Yunkaishan orogenic systems. The Nankang Basin is a critical location for studying the Cenozoic tectono–sedimentary evolution and strategic mineral resources of the southern Cathaysia Block. We used core samples from multiple boreholes and regional geological survey data to analyze the rock assemblages, sediment types, and sedimentary facies of the Nankang Basin. In addition, we analyzed the detrital zircon U–Pb geochronology, sandstone detrital compositions, heavy mineral assemblages, and major element geochemistry. The detrital zircon grains from Cenozoic sandstones in the Nankang Basin have age peaks at 2500–2000, 1100–900, 500–400, and 300–200 Ma, with most grains having ages of 500–400 or 300–200 Ma. The provenance analysis indicates that the 300–200 Ma zircon grains originated mainly from the Liuwanshan pluton; the 500–400 Ma zircon grains originated from the Ningtan pluton; and the 2500–2000 and 1100–900 Ma zircon grains originated from the Lower Silurian Liantan Formation and Middle Devonian Xindu Formation. This indicates that the provenance of Cenozoic sandstones in the Nankang Basin primarily originates from Paleozoic–Early Mesozoic igneous in the surrounding area, while the regional old sedimentary rocks possibly serve as intermediate sedimentary reservoirs. The detrital compositions of the sandstones and heavy mineral assemblages indicate a change in the tectonic setting during the deposition of the Nankang and Zhanjiang Formations, with a change in the source of the sediments due to the uplift of the Shizishan. During the deposition of the Nankang Formation, the sediment transport direction was to the NNW, whereas during the deposition of the Zhanjiang Formation, it was to the NNE. The uplift of the Shizishan most probably occurred during the late Neogene and early Quaternary, separating the Hepu and Nankang Basins. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 37903 KiB  
Article
Palaeoenvironmental Synthesis of the Eastern Ebro Basin Loess–Palaeosol Sequences (LPSs)
by Daniela Álvarez, Carlos Alberto Torres-Guerrero, Jaume Boixadera, Carles Balasch, José Manuel Plata, Rafael Rodríguez Ochoa, José Ramón Olarieta and Rosa M. Poch
Quaternary 2025, 8(2), 25; https://doi.org/10.3390/quat8020025 - 12 May 2025
Viewed by 737
Abstract
Loess–palaeosol sequences (LPSs) are continuous records of palaeoenvironmental and palaeoclimatic conditions during the Quaternary. This study includes 17 LPS located in the NE of the Iberian Peninsula, irregularly distributed, associated with different river basins: the Ebro Basin, the Mora Basin, and the Ter [...] Read more.
Loess–palaeosol sequences (LPSs) are continuous records of palaeoenvironmental and palaeoclimatic conditions during the Quaternary. This study includes 17 LPS located in the NE of the Iberian Peninsula, irregularly distributed, associated with different river basins: the Ebro Basin, the Mora Basin, and the Ter sub-basin. The soils developed on these loess deposits present a loam–sandy texture, coarser than the typical loess, ochre in colour, with variable thickness (1–12 m), calcareous composition (20–45% CaCO3 eq.), very low or null organic matter (OM), and basic pH. These deposits have been classified as desert LPS, whose pedogenesis is mainly associated with the redistribution of calcium carbonate and, in some cases, gypsum. Several methodologies have been applied to determine their mineralogical, physical, and chemical characteristics and date them by luminescence techniques. In addition, some relevant pedofeatures (porosity, CaCO3, gypsum, etc.) have been characterised in detail. The aims of the present study have been to know the pedogenic development of the LPS by defining the main soil-forming factors that have affected them in order to associate these factors with the characteristic palaeoclimatic and palaeoenvironmental conditions reported in this area over time and to improve the understanding of soil evolution. Full article
Show Figures

Graphical abstract

19 pages, 4116 KiB  
Article
Climatic Conditions in the Central Part of the Kashmir Valley During the Pleistocene–Holocene Transition: Insights from Lithostratigraphy, Geochemical Analyses, and Radiocarbon Chronology of Palaeosol Sequences
by Rayees Ahmad Shah, Shakil Ahmad Romshoo, Imran Khan and Pankaj Kumar
Atmosphere 2025, 16(5), 564; https://doi.org/10.3390/atmos16050564 - 8 May 2025
Viewed by 550
Abstract
The Kashmir Valley, characterized by its rich loess–palaeosol sequences (LPSs), provides a unique geo-archive for reconstructing Late Quaternary climate dynamics. This study presents an extensive multi-proxy study, integrating high-resolution lithostratigraphy, geochemical analyses, stable isotope analysis of soil organic matter (δ13C-VPDB), and [...] Read more.
The Kashmir Valley, characterized by its rich loess–palaeosol sequences (LPSs), provides a unique geo-archive for reconstructing Late Quaternary climate dynamics. This study presents an extensive multi-proxy study, integrating high-resolution lithostratigraphy, geochemical analyses, stable isotope analysis of soil organic matter (δ13C-VPDB), and radiocarbon (14C) chronology of a sediment sequence approximately 200 cm thick, to unravel the complex interplay of climatic, pedogenic and environmental processes shaping the region spanning the Pleistocene–Holocene transition. The results establish a precise chronology of the sediment sequence between 13.4 ka and 7.2 ka, covering the transition from the Pleistocene to the Holocene Epoch. The results reveal distinct climatic and environmental conditions during this Epoch. The study reveals substantial loess deposition during the cold and dry glacial climate towards the end of the Pleistocene, followed by a shift to a warmer and wetter interglacial climate at the onset of the Holocene Epoch. This climatic shift led to the development of soil units with pronounced fluvial characteristics around 10 ka, eventually transitioning to fluvial deposition. Geochemical indices such as Ca/Ti, Al/Ti, Si/Ti, and K/Ti indicate low weathering intensity prior to 11 ka, followed by a noticeable increase around 11 ka, possibly driven by enhanced precipitation. δ13C values, ranging from −26.2‰ to −22.5‰, suggest C3-dominated vegetation during the Late Pleistocene, indicating wetter climatic conditions. This study provides valuable insights into the intricate interactions between climate, soil development, and vegetation dynamics during the critical Late Pleistocene–Holocene transition in the Kashmir Valley. Full article
(This article belongs to the Special Issue Paleoclimate Changes and Dust Cycle Recorded by Eolian Sediments)
Show Figures

Figure 1

18 pages, 4516 KiB  
Article
Fabrication and Optoelectronic Properties of Advanced Quinary Amorphous Oxide Semiconductor InGaZnSnO Thin Film
by Hongyu Wu, Liang Fang, Zhiyi Li, Fang Wu, Shufang Zhang, Gaobin Liu, Hong Zhang, Wanjun Li and Wenlin Feng
Materials 2025, 18(9), 2090; https://doi.org/10.3390/ma18092090 - 2 May 2025
Viewed by 503
Abstract
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger [...] Read more.
As the typical representative of amorphous oxide semiconductors (AOS), quaternary indium gallium zinc oxide (IGZO) has been applied as the active layer of thin-film transistors (TFTs), but their mobility is still low (usually ~10 cm2/Vs). IGTO is reported to have larger mobility owing to the addition of Tin (Sn) in IZO. So, whether Sn doping can increase the optoelectronic properties of IGZO is a new topic worth studying. In this study, four series of quinary InGaZnSnO (IGZTO) oxide thin films were deposited on glass substrates using a high-purity IGZTO (In:Ga:Zn:Sn:O = 1:0.5:1.5:0.25:x, atomic ratio) ceramic target by RF magnetron sputtering. The effects of fabrication parameters (sputtering power, argon gas flow, and target-to-substrate distance) and film thickness on the microstructure, optical, and electrical properties of IGZTO thin films were investigated. The results show that all IGZTO thin films deposited at room temperature (RT) are amorphous and have a smooth and uniform surface with a low roughness (RMS of 0.441 nm, RA of 0.332 nm). They exhibit good average visible light transmittance (89.02~90.69%) and an optical bandgap of 3.47~3.56 eV. When the sputtering power is 90 W, the argon gas flow rate is 50 sccm, and the target-to-substrate distance is 60 mm, the IGZTO films demonstrate optimal electrical properties: carrier concentration (3.66 × 1019 cm−3), Hall mobility (29.91 cm2/Vs), and resistivity (0.54 × 10−2 Ω·cm). These results provide a valuable reference for the property modulation of IGZTO films and the potential application in optoelectronic devices such as TFTs. Full article
(This article belongs to the Special Issue The Microstructures and Advanced Functional Properties of Thin Films)
Show Figures

Graphical abstract

18 pages, 13190 KiB  
Article
Evolution of Stratigraphic Sequence and Sedimentary Environment in Northern Yellow River Delta Since MIS5
by Haonan Li, Guangxue Li, Jian Zhang, Jiejun Yang, Lvyang Xing, Wenyu Ji and Siyu Liu
J. Mar. Sci. Eng. 2025, 13(5), 832; https://doi.org/10.3390/jmse13050832 - 23 Apr 2025
Viewed by 375
Abstract
Quaternary climate has been characterized by pronounced glacial–interglacial cycles, with eustatic sea-level fluctuations directly controlling coastal sedimentary environments. The Yellow River Delta, situated on the southwestern coast of Bohai Bay, bears a distinct stratigraphic imprint of marine–terrestrial environmental transitions. However, critical knowledge gaps [...] Read more.
Quaternary climate has been characterized by pronounced glacial–interglacial cycles, with eustatic sea-level fluctuations directly controlling coastal sedimentary environments. The Yellow River Delta, situated on the southwestern coast of Bohai Bay, bears a distinct stratigraphic imprint of marine–terrestrial environmental transitions. However, critical knowledge gaps persist in reconstructing an integrated continental–marine stratigraphic framework. This study focuses on the nearshore core CB2302, integrating sediment lithology, grain size, foraminiferal assemblages, and geochemical proxies to establish a regional stratigraphic chronology since MIS5. Three depositional units (DU1–DU3) and 12 sedimentary subunits (C1–C12) were identified based on grain-size distributions, geochemical signatures, hydrodynamic, and microfossil assemblages. Integration of AMS 14C dating and sequence stratigraphic analysis establishes a post-MIS 5 stratigraphic framework for the northern Yellow River Delta, revealing sedimentary responses to three transgressive–regressive cycles (MIS 5e, 5c, and 5a) and confirming widespread terrestrial deposition during MIS 4–2, with no detectable marine influence in MIS 3 strata. Furthermore, correlation with representative cores across the Yellow–Bohai Sea coastal system elucidates a unified model of shoreline migration patterns driven by post-MIS5 sea-level oscillations. These findings advance the understanding of Quaternary sediment–landscape interactions in deltaic systems and provide critical stratigraphic benchmarks for petroleum exploration and coastal engineering in active depositional basins. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

40 pages, 9928 KiB  
Article
Remarkable Geosites of Quito That Are Aspiring to Be a UNESCO Global Geopark
by Theofilos Toulkeridis, Grace Tatiana Páez-Barrera, María Fernanda Chávez-Melo, Gabriela Fernanda Alvarez-Calupiña, Pablo Marcelo Espinoza-Carriel, Danny Fernando Chiriboga-Barba, Florencio Delgado-Espinoza, Melany Velasquez-Muela, Wilson Salas-Álvarez, Catherine Frey and Izar Sinde-González
Geosciences 2025, 15(4), 116; https://doi.org/10.3390/geosciences15040116 - 25 Mar 2025
Viewed by 2455
Abstract
An analysis of different geosites as territories of high geo-biodiverse value located within the Metropolitan District of Quito (DMQ) in Ecuador is performed based on the geoscientific inventory of thirty-six territorial zones and their geological history, cultural, and biological wealth. This is based [...] Read more.
An analysis of different geosites as territories of high geo-biodiverse value located within the Metropolitan District of Quito (DMQ) in Ecuador is performed based on the geoscientific inventory of thirty-six territorial zones and their geological history, cultural, and biological wealth. This is based on years of research and was complemented with the Geosites Assessment Model (GAM) methodology, the application of the criteria of which results in an impartial quantitative evaluation of each of these geosites, resulting in the determination of geographic areas with high tourist, archeological, and social potential. It also establishes a baseline to generate conservation strategies, scientific dissemination, and the determination of priorities in the management of the conservation of the geological heritage of the DMQ in Ecuador. The geological and geomorphological evolution of the DMQ grants this region a variety of sites formed by mainly cretaceous and quaternary volcanic and sedimentary deposits, geological faults, and other remarkable formations or sequences, which, together with the geoarchaeological sites, give a unique geohistorical value to the DMQ. In this context, the protection of each of the regionally important study sites for their scientific, educational, and cultural value in the geological area, as well as their scenic beauty and biodiversity, is essential. All of these attributes will be input to the future sustainable development approaches of the proposed UNESCO-DMQ Global Geopark by academic experts and researchers working in this territory. Additionally, this study also defines the need for the protection of each study area. The results of the evaluation will help to plan the effective management of the geosites based on their strengths and weaknesses and thus promote the Global Geopark. In this context, the value of the geodiversity of the DMQ has been recognized in this research, specifically for each of the geosites proposed as part of the UNESCO Global Geopark; the DMQ project, highlighting this geological and biodiverse heritage, contributes to direct benefits for the community and at an international level. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

16 pages, 12450 KiB  
Article
Investigation and Evaluation of Geothermal Resources in Northern Shanxi Province, China
by Zhongxu Lu, Yang Yang, Yajun Mo, Haizhi Liao and Youlian Cai
Energies 2025, 18(6), 1494; https://doi.org/10.3390/en18061494 - 18 Mar 2025
Viewed by 399
Abstract
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi [...] Read more.
In this study, survey methods including seismic techniques and controlled-source audio-frequency magnetotelluric, drilling, and pumping tests were employed to investigate the geothermal systems and their formation mechanisms in northern Shanxi Province, China. The following characteristics were observed: (1) Geothermal resources in northern Shanxi Province are primarily located in Archean metamorphic rocks and fracture zone aquifer groups. The direct heat source is likely uncooled magma chambers in the middle-upper crust, whereas the overlying layers consist of Quaternary, Neogene, and Paleogene deposits. (2) The high-temperature geothermal system is of the convective-conductive type: atmospheric precipitation and surface water infiltrate pore spaces and fault fractures to reach thermal storage, where they are heated. Hot water then rises along the fracture channels and emerges as shallow hot springs, and ongoing extensional tectonic activity has caused asthenospheric upwelling. The partial melting of the upper mantle forms basic basaltic magma, which ascends to the middle-upper crust and forms multiple magma chambers. Their heat is transferred to the shallow subsurface, causing geothermal anomalies. (3) Borehole YG-1 findings revealed that these geothermal resources are primarily static reserves. Our findings provide a foundation for further geothermal development in the region, including the strategic deployment of wells to improve geothermal energy extraction. Full article
Show Figures

Figure 1

22 pages, 10789 KiB  
Article
Characteristics and Rapid Prediction of Seismic Subsidence of Saturated Seabed Foundation with Interbedded Soft Clay–Sand
by Liuyuan Zhao, Miaojun Sun, Jianhong Ye, Fuqin Yang and Kunpeng He
J. Mar. Sci. Eng. 2025, 13(3), 559; https://doi.org/10.3390/jmse13030559 - 13 Mar 2025
Viewed by 687
Abstract
Seabed foundations consisting of interbedded layers of saturated soft clay and sand deposited during the Quaternary period are widely distributed in the coastal areas of Southeastern China. These soil foundations are prone to significant settlement under seismic loading. The study of the seismic [...] Read more.
Seabed foundations consisting of interbedded layers of saturated soft clay and sand deposited during the Quaternary period are widely distributed in the coastal areas of Southeastern China. These soil foundations are prone to significant settlement under seismic loading. The study of the seismic dynamic response characteristics of saturated foundations with interbedded soft clay–sand and the development of rapid prediction models are essential for controlling settlement and ensuring the service safety of marine structures. A total of 4000 sets of seabed foundation models are randomly generated, with layers of saturated soft clay and sand and with a random distribution of layer thickness and burial depth. The mechanical behavior of saturated soft clay is described using the Soft Clay model based on the boundary surface theory, and the generalized elastoplastic constitutive model PZIII is used to characterize the mechanical behavior of sandy soil. The finite element platform FssiCAS is employed for a computational analysis to study the characteristics of seismic subsidence in saturated seabed foundations with interbedded soft clay–sand. A machine learning model is implemented based on the Random Forest algorithm, in which 3200 sets of numerical simulation results are used for model training, and 800 sets are used for validating the model’s reliability. The results show that under seismic excitation, the pore water pressure within the saturated seabed foundation with interbedded soft clay–sand accumulates, effective stress decreases, and the seabed foundation softens, to a certain extent. During the post-seismic consolidation phase, significant settlement of the seabed foundation occurs. The fast prediction model based on the Random Forest algorithm could reliably predict the settlement characteristics of submarine foundations. This research provides a new technological avenue for the rapid prediction of the seismic settlement of submarine foundations, which could be of use in engineering design, assessment, and prediction. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

32 pages, 8172 KiB  
Article
Tectono-Stratigraphic Framework and Hydrocarbon Potential in the Albert Rift, Uganda: Insights from Basin and Petroleum System Modeling
by Lauben Twinomujuni, Keyu Liu, Hafiz Ahmed Raza Hassan, Kun Jia, Shunyu Wang, Tonny Sserubiri and Mathias Summer
Appl. Sci. 2025, 15(6), 3130; https://doi.org/10.3390/app15063130 - 13 Mar 2025
Viewed by 881
Abstract
The Albert Rift in Uganda is a significant geological and petroleum exploration frontier within the East African Rift System. The basin has been comprehensively analyzed thorough the means of literature survey, seismic data analysis, well-log interpretation, and basin and petroleum systems modeling to [...] Read more.
The Albert Rift in Uganda is a significant geological and petroleum exploration frontier within the East African Rift System. The basin has been comprehensively analyzed thorough the means of literature survey, seismic data analysis, well-log interpretation, and basin and petroleum systems modeling to examine the complex interactions of tectonics, sedimentation, and hydrocarbon generation and expulsion within the rift basin. Our findings reveal a detailed tectonostratigraphic framework with multiple Neogene to Quaternary depositional sequences and structural features influencing hydrocarbon maturation, generation, and expulsion. Key stratigraphic units are identified, highlighting their contributions to a viable petroleum system present within the basin. The Albert Rift is a Neogene petroleum system that is currently generating and expelling hydrocarbons to various potential traps. Mid-Miocene sediments were deposited in a favorable lacustrine environment as a viable source rock, which began generating and expelling hydrocarbons from the Middle to Late Pliocene in the deeper parts of the rift basin, while those deposits in shallower areas have only recently entered the oil window and have yet to start major petroleum generation. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 5079 KiB  
Article
Holey Carbon Nanohorns-Based Nanohybrid as Sensing Layer for Resistive Ethanol Sensor
by Bogdan-Catalin Serban, Niculae Dumbravescu, Octavian Buiu, Marius Bumbac, Mihai Brezeanu, Cristina Pachiu, Cristina-Mihaela Nicolescu, Oana Brancoveanu and Cornel Cobianu
Sensors 2025, 25(5), 1299; https://doi.org/10.3390/s25051299 - 20 Feb 2025
Cited by 1 | Viewed by 664
Abstract
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w [...] Read more.
The study presents the ethanol vapor sensing performance of a resistive sensor that utilizes a quaternary nanohybrid sensing layer composed of holey carbon nanohorns (CNHox), graphene oxide (GO), SnO2, and polyvinylpyrrolidone (PVP) in an equal mass ratio of 1:1:1:1 (w/w/w/w). The sensing device includes a flexible polyimide substrate and interdigital transducer (IDT)-like electrodes. The sensing film is deposited by drop-casting on the sensing structure. The morphology and composition of the sensitive film are analyzed using scanning electron microscopy (SEM), Energy Dispersive X-ray (EDX) Spectroscopy, and Raman spectroscopy. The manufactured resistive device presents good sensitivity to concentrations of alcohol vapors varying in the range of 0.008–0.16 mg/cm3. The resistance of the proposed sensing structure increases over the entire range of measured ethanol concentration. Different types of sensing mechanisms are recognized. The decrease in the hole concentration in CNHox, GO, and CNHox due to the interaction with ethanol vapors, which act as electron donors, and the swelling of the PVP are plausible and seem to be the prevalent sensing pathway. The hard–soft acid-base (HSAB) principle strengthens our analysis. Full article
(This article belongs to the Special Issue Recent Advances in Sensors for Chemical Detection Applications)
Show Figures

Figure 1

17 pages, 11459 KiB  
Article
Geochemical Exploration Techniques with Deep Penetration: Implications for the Exploration of Concealed Potash Deposits in the Covered Area on the Southern Margin of the Kuqa Basin
by Junyang Li, Yu Zhou, Chengling Liu, Songyuang Zhang, Fujun Yao, Guoliang Yang and Wenbin Hou
Water 2025, 17(3), 298; https://doi.org/10.3390/w17030298 - 22 Jan 2025
Cited by 2 | Viewed by 1190
Abstract
In recent years, deep–penetrating geochemical exploration techniques have played a crucial role in the detection of concealed minerals. These methods effectively detect deep−seated anomalies and have been tested in various landscape–covered areas, yielding remarkable results. This study focuses on the covered areas of [...] Read more.
In recent years, deep–penetrating geochemical exploration techniques have played a crucial role in the detection of concealed minerals. These methods effectively detect deep−seated anomalies and have been tested in various landscape–covered areas, yielding remarkable results. This study focuses on the covered areas of the southern margin of the Kuqa Basin, utilizing deep–penetrating geochemical methods for systematic sampling to explore concealed potassium salt. This study examines the chemical composition of several underground brine samples, revealing salinity levels ranging from 9.41 to 26.16 g/L and potassium concentrations of between 0.04 and 0.22 g/L. The hydrochemical coefficients indicate a high nNa+/nCl value, with low K+ × 103/Cl values. The average nNa+/nCl ratio is approximately 0.97, and the Br × 103/C1 value is about 0.07. The brine samples fall within the halite phase region of the Quaternary system Na+, K+, Mg2+//C1–H2O at 25 °C, concentrated at the high Na terminal, suggesting halite dissolution. In the metastable phase diagram of the Na+, K+, Mg2+//C1, SO42−–H2O five−element water system, all the brine samples were cast in the glauberite phase area, which may indicate that the shallow underground brine is still in the initial stage of potassium salt deposition. The underground brine mainly dissolved and filtered the stone salt in the formation during the process of runoff underground and then was squeezed by the strong active structure and discharged to the surface along the formation fault or fissure channel. The deep–penetration geochemical survey of the fracture reveals that certain profile points show significantly higher potassium and other salt contents than others, indicating a potassium anomaly. This suggests the potential ascent and migration of potassium–rich brine along deep fracture segments, providing preliminary evidence of potassium richness in the Kuqa Basin’s depths and offering significant guidance for key exploration areas in potassium salt prospecting. Full article
Show Figures

Figure 1

Back to TopTop