Quantitative Assessment of Riverbed Planform Adjustments, Channelization, and Associated Land Use/Land Cover Changes: The Ingauna Alluvial-Coastal Plain Case (Liguria, Italy)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.2. Active Channel Mapping
3.3. Bank Protection Assessment
3.4. Active Channel Planform Changes Analysis
3.5. LULC Change Analysis
4. Results
4.1. Active Channel Planform Adjustments
4.2. Channelization Works
4.3. LULC Changes
5. Discussion
5.1. Data and Metrics for the Analysis of Active-Channel Planform Adjustments
5.2. Active-Channel Morphological Evolution
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baena-Escudero, R.; Rinaldi, M.; García-Martínez, B.; Guerrero-Amador, I.C.; Nardi, L. Channel adjustments in the lower Guadalquivir River (Southern Spain) over the last 250 years. Geomorphology 2019, 337, 15–30. [Google Scholar] [CrossRef]
- Gilvear, D.J.; Winterbottom, S.J. Channel change and flood events since 1783 on the regulated river tay, Scotland: Implications for flood hazard management. Regul. Rivers Res. Manag. 1992, 7, 247–260. [Google Scholar] [CrossRef]
- Gob, F.; Houbrechts, G.; Hiver, J.M.; Petit, F. River dredging, channel dynamics and bedload transport in an incised meandering river (the River Semois, Belgium). River Res. Appl. 2005, 21, 791–804. [Google Scholar] [CrossRef]
- Gurnell, A.; Surian, N.; Zanoni, L. Multi-thread river channels: A perspective on changing European alpine river systems. Aquat. Sci. 2009, 71, 253. [Google Scholar] [CrossRef]
- Kiss, T.; Andrási, G.; Hernesz, P. Morphological alteration of the Dràva as the result of human impact. AGD Landsc. Environ. 2011, 5, 58–75. [Google Scholar]
- Lapuszek, M. Riverbed erosion estimation in the selected cross-sections of the upper Vistula River. Infrastrukt. I Ekol. Teren. Wiej. 2013, 2, 109–123. [Google Scholar]
- Liébault, F.; Piégay, H. Causes of 20th century channel narrowing in mountain and piedmont rivers of southeastern France. Earth Surf. Proc. Landf. 2002, 27, 425–444. [Google Scholar] [CrossRef]
- Petts, G.E.; Möller, H.; Roux, A.L. Historical Change of Large Alluvial Rivers: Western Europe; Wiley: Chichester, UK, 1989; Volume 75, p. 355. [Google Scholar]
- Surian, N.; Rinaldi, M.; Pellegrini, L.; Audisio, C.; Maraga, F.; Teruggi, L. Channel adjustments in northern and central Italy over the last 200 years. In Management and Restoration of Fluvial Systems with Broad Historical Changes and Human Impacts; Geological Society of America Special Papers; James, L.A., Rathburn, S.L., Whittecar, G.R., Eds.; Geological Society of America: Boulder, CO, USA, 2009; Volume 451, pp. 83–95. [Google Scholar]
- Uribelarrea, D.; Pérez-González, A.; Benito, G. Channel changes in the Jarama and Tagus rivers (Central Spain) over the past 500 years. Quat. Sci. Rev. 2003, 22, 2209–2221. [Google Scholar] [CrossRef]
- Winterbottom, S.J. Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geomorphology 2000, 34, 195–208. [Google Scholar] [CrossRef]
- Wyżga, B.; Zawiejska, J.; Hajdukiewicz, H. Multi-thread rivers in the Polish Carpathians: Occurrence, decline and possibilities of restoration. Quat. Int. 2016, 415, 344–356. [Google Scholar] [CrossRef]
- Zawiejska, J.; Wyżga, B. Twentieth-century channel change on the Dunajec River, southern Poland: Patterns, causes and controls. Geomorphology 2010, 117, 234–246. [Google Scholar] [CrossRef]
- Cencetti, C.; De Rosa, P.; Fredduzzi, A. Geoinformatics in morphological study of River Paglia, Tiber River basin, Central Italy. Environ. Earth Sci. 2017, 76, 128. [Google Scholar] [CrossRef]
- Scorpio, V.; Aucelli, P.P.C.; Giano, S.I.; Pisano, L.; Robustelli, G.; Rosskopf, C.M. River channel adjustments in Southern Italy over the past 150years and implications for channel recovery. Geomorphology 2015, 251, 77–90. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simoncini, C.; Sogni, D. Variazioni morfologiche recenti di due alvei ghiaiosi appenninici: Il F. Trebbia ed il F. Vara. Geogr. Fis. Din. Quat. 2005, 7, 313–319. [Google Scholar]
- Magliulo, P.; Bozzi, F.; Pignone, M. Assessing the planform changes of the Tammaro River (Southern Italy) from 1870 to 1955 using a GIS-aided historical map analysis. Environ. Earth Sci. 2016, 75, 355. [Google Scholar] [CrossRef]
- Rovira, A.; Batalla, R.J.; Sala, M. Response of a river sediment budget after historical gravel mining (the lower Tordera, NE Spain). River Res. Appl. 2005, 21, 829–847. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Marchetti, M. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology 2002, 44, 361–373. [Google Scholar] [CrossRef]
- Parrinello, G.; Bizzi, S.; Surian, N. The retreat of the delta: A geomorphological history of the Po river basin during the twentieth century. Water Hist. 2021, 13, 117–136. [Google Scholar] [CrossRef]
- Wishart, D.; Warburton, J.; Bracken, L. Gravel extraction and planform change in a wandering gravel-bed river: The River Wear, Northern England. Geomorphology 2008, 94, 131–152. [Google Scholar] [CrossRef]
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Ibisate, A.; Díaz, E.; Ollero, A.; Acín, V.; Granado, D. Channel response to multiple damming in a meandering river, middle and lower Aragón River (Spain). Hydrobiologia 2013, 712, 5–23. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Rubin, Z.K.; Minear, J.T. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 2014, 50, 5158–5169. [Google Scholar] [CrossRef]
- Shields, F.D.; Simon, A.; Steffen, L.J. Reservoir Effects on Downstream River Channel Migration. Environ. Conserv. 2000, 27, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, A.; Maerker, M.; Firpo, M. ‘The stolen space’: A history of channelization, reduction of riverine areas and related management issues. The lower Scrivia River case study (NW Italy). Int. J. SDP 2019, 14, 118–129. [Google Scholar] [CrossRef]
- Wyzga, B. Changes in the Magnitude and Transformation of Flood Waves Subsequent to the Channelization of the Raba River, Polish Carpathians. Earth Surf. Process. Landf. 1996, 21, 749–763. [Google Scholar] [CrossRef]
- Lajczak, A. The impact of river regulation, 1850-1990, on the channel and floodplain of the upper Vistula River, southern Poland. In River Geomorphology; Hickin, E.J., Ed.; Wiley: Chichester, UK, 1995; pp. 209–233. [Google Scholar]
- García-Ruiz, J.M.; White, S.; Lasanta, T.; Marti, C.; Gonzalez, C.; Errea, M.P. Assessing the effects of land-use changes on sediment yield and channel dynamics in the central Spanish Pyrenees. Proc. Rabat Symp. 1997, 245, S6. [Google Scholar]
- Keesstra, S.D.; van Huissteden, J.; Vandenberghe, J.; Van Dam, O.; de Gier, J.; Pleizier, I.D. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 2005, 69, 191–207. [Google Scholar] [CrossRef]
- Piégay, H.; Walling, D.; Landon, N.; He, Q.; Liébault, F.; Petiot, R. Contemporary changes in sediment yield in an alpine montane basin due to afforestation (the Upper-Drome in France). Catena 2004, 55, 183–212. [Google Scholar] [CrossRef]
- Bravard, J.P.; Amoros, C.; Pautou, G.; Bornette, G.; Bournaud, M.; Creuzé des Châtelliers, M. River incision in south-east France: Morphological phenomena and ecological effects. Regul. Rivers Res. Manag. 1997, 13, 75–90. [Google Scholar] [CrossRef]
- Pellegrini, L.; Maraga, F.; Turitto, O.; Audisio, C.; Duci, G. Evoluzione morfologica di alvei fluviali mobili nel settore occidentale del bacino padano. Ital. J. Quat. Sci. 2008, 21, 251–266. [Google Scholar]
- Diodato, N.; Santoni, G.; Cevasco, A.; Fiorillo, F.; Bellocchi, G. Damaging hydrological events during the exiting of the Little Ice Age in a highland area of Southern Italy. Int. J. Hydrol. Sci. Technol. 2021, 11, 136–165. [Google Scholar] [CrossRef]
- Diodato, N.; Soriano, M.; Bellocchi, G.; Fiorillo, F.; Cevasco, A.; Revellino, P. Historical evolution of slope instability in the Calore River Basin, Southern Italy. Geomorphology 2017, 282, 74–84. [Google Scholar] [CrossRef]
- Preciso, E.; Salemi, E.; Billi, P. Land use changes, torrent control works and sediment mining: Effects on channel morphology and sediment flux, case study of the Reno River (Northern Italy). Hydrol. Process. 2012, 26, 1134–1148. [Google Scholar] [CrossRef]
- Mandarino, A.; Luino, F.; Faccini, F. Flood-induced ground effects and flood-water dynamics for hydro-geomorphic hazard assessment: The 21–22 October 2019 extreme flood along the lower Orba River (Alessandria, NW Italy). J. Maps 2021, 17, 136–151. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M. Dinamica recente ed attuale degli alvei fluviali in Italia: Stato dell’arte e prospettive. Ital. J. Quat. Sci. 2008, 21, 233–240. [Google Scholar]
- Bollati, I.M.; Pellegrini, L.; Rinaldi, M.; Duci, G.; Pelfini, M. Reach-scale morphological adjustments and stages of channel evolution: The case of the Trebbia River (Northern Italy). Geomorphology 2014, 221, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Clerici, A.; Perego, S.; Chelli, A.; Tellini, C. Morphological changes of the floodplain reach of the Taro River (Northern Italy) in the last two centuries. J. Hydrol. 2015, 527, 1106–1122. [Google Scholar] [CrossRef]
- Mandarino, A.; Luino, F.; Turconi, L.; Faccini, F. Urban geomorphology of a historical city straddling the Tanaro River (Alessandria, NW Italy). J. Maps 2020, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, A.; Pepe, G.; Maerker, M.; Cevasco, A.; Brandolini, P. Short-Term GIS Analysis for the Assessment of the Recent Active-Channel Planform Adjustments in a Widening, Highly Altered River: The Scrivia River, Italy. Water 2020, 12, 514. [Google Scholar] [CrossRef] [Green Version]
- Mandarino, A.; Maerker, M.; Firpo, M. Channel planform changes along the Scrivia River floodplain reach in northwest Italy from 1878 to 2016. Quat. Res. 2019, 91, 620–637. [Google Scholar] [CrossRef]
- Comiti, F.; Da Canal, M.; Surian, N.; Mao, L.; Picco, L.; Lenzi, M.A. Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology 2011, 125, 147–159. [Google Scholar] [CrossRef]
- Marchese, E.; Scorpio, V.; Fuller, I.; McColl, S.; Comiti, F. Morphological changes in Alpine rivers following the end of the Little Ice Age. Geomorphology 2017, 295, 811–826. [Google Scholar] [CrossRef]
- Moretto, J.; Rigon, E.; Mao, L.; Picco, L.; Delai, F.; Lenzi, M.A. Channel Adjustments and Island Dynamics in the Brenta River (italy) Over the Last 30 Years. River Res. Appl. 2014, 30, 719–732. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simon, A. Bed-level adjustments in the Arno River, central Italy. Geomorphology 1998, 22, 57–71. [Google Scholar] [CrossRef]
- Rinaldi, M. Recent channel adjustments in alluvial rivers of Tuscany, central Italy. Earth Surf. Process. Landf. 2003, 28, 587–608. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Pellegrini, L.; Maraga, F.; Turitto, O. Attuali conoscenze sull’evoluzione recente di corsi d’acqua del Bacino Padano ed implicazioni per la gestione e riqualificazione fluviale. Biol. Ambient. 2010, 24, 29–40. [Google Scholar]
- de Musso, N.M.; Capolongo, D.; Caldara, M.; Surian, N.; Pennetta, L. Channel Changes and Controlling Factors over the Past 150 Years in the Basento River (Southern Italy). Water 2020, 12, 307. [Google Scholar] [CrossRef] [Green Version]
- Scorpio, V.; Piégay, H. Is afforestation a driver of change in italian rivers within the Anthropocene era? Catena 2020, 10, 105031. [Google Scholar] [CrossRef]
- Campana, D.; Marchese, E.; Theule, J.I.; Comiti, F. Channel degradation and restoration of an Alpine river and related morphological changes. Geomorphology 2014, 221, 230–241. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simoncini, C.; Piégay, H. Scientific design strategy for promoting sustainable sediment management: The case of the Magra River (Central-Northern Italy). River Res. Appl. 2009, 25, 607–625. [Google Scholar] [CrossRef]
- Paliaga, G.; Faccini, F.; Luino, F.; Roccati, A.; Turconi, L. A clustering classification of catchment anthropogenic modification and relationships with floods. Sci. Total Environ. 2020, 740, 139915. [Google Scholar] [CrossRef]
- Roccati, A.; Mandarino, A.; Perasso, L.; Robbiano, A.; Luino, F.; Faccini, F. Large-scale geomorphology of the Entella River floodplain (Italy) for coastal urban areas management. J. Maps 2020, 17, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Roccati, A.; Faccini, F.; Luino, F.V.; De Graff, J.; Turconi, L. Morphological changes and human impact in the Entella River floodplain (Northern Italy) from the 17th century. Catena 2019, 182, 104–122. [Google Scholar] [CrossRef]
- Roccati, A.; Luino, F.; Turconi, L.; Piana, P.; Watkins, C.; Faccini, F. Historical Geomorphological Research of a Ligurian Coastal Floodplain (Italy) and Its Value for Management of Flood Risk and Environmental Sustainability. Sustainability 2018, 10, 3727. [Google Scholar] [CrossRef] [Green Version]
- Faccini, F.; Paliaga, G.; Piana, P.; Sacchini, A.; Watkins, C. The Bisagno stream catchment (Genoa, Italy) and its major floods: Geomorphic and land use variations in the last three centuries. Geomorphology 2016, 273, 14–27. [Google Scholar] [CrossRef]
- Mandarino, A.; Faccini, F.; Terrone, M.; Paliaga, G. Anthropogenic landforms and geo-hydrological hazards of the Bisagno Stream catchment (Liguria, Italy). J. Maps 2021, 17, 122–135. [Google Scholar] [CrossRef]
- Piana, P.; Faccini, F.; Luino, F.; Paliaga, G.; Sacchini, A.; Watkins, C. Geomorphological Landscape Research and Flood Management in a Heavily Modified Tyrrhenian Catchment. Sustainability 2019, 11, 4594. [Google Scholar] [CrossRef] [Green Version]
- Luino, F.; Paliaga, G.; Roccati, A.; Sacchini, A.; Turconi, L.; Faccini, F. Anthropogenic changes in the alluvial plains of the Tyrrhenian Ligurian basins. Rend. Online Soc. Geol. Ital. 2019, 48, 10–16. [Google Scholar] [CrossRef]
- Rinaldi, M.; Simoncini, C. Studio geomorfologico del Fiume Magra e del Fiume Vara finalizzato alla gestione dei sedimenti e della fascia di mobilità. In Nuovi Approcci per la Comprensione dei Processi Fluviali e la Gestione dei Sedimenti. Applicazioni nel Bacino del Magra; Autorità, B.M., Ed.; Atti Delle Giornate di Studio: Sarzana, Italy, 2006; pp. 93–109. [Google Scholar]
- Dufour, S.; Rinaldi, M.; Piégay, H.; Michalon, A. How do river dynamics and human influences affect the landscape pattern of fluvial corridors? Lessons from the Magra River, Central–Northern Italy. Landsc. Urban Plan. 2015, 134, 107–118. [Google Scholar] [CrossRef]
- Nardi, L.; Rinaldi, M. Spatio-temporal patterns of channel changes in response to a major flood event: The case of the Magra River (central–northern Italy). Earth Surf. Process. Landf. 2015, 40, 326–339. [Google Scholar] [CrossRef]
- Brandolini, P.; Mandarino, A.; Paliaga, G.; Faccini, F. Anthropogenic landforms in an urbanized alluvial-coastal plain (Rapallo city, Italy). J. Maps 2020, 18, 1–12. [Google Scholar] [CrossRef]
- Brandolini, P.; Cappadonia, C.; Luberti, G.M.; Donadio, C.; Stamatopoulos, L.; Di Maggio, C. Geomorphology of the Anthropocene in Mediterranean urban areas. Progr. Phys. Geogr. 2019, 44, 461–494. [Google Scholar] [CrossRef]
- Cevasco, A.; Diodato, N.; Revellino, P.; Fiorillo, F.; Grelle, G.; Guadagno, F.M. Storminess and geo-hydrological events affecting small coastal basins in a terraced Mediterranean environment. Sci. Total Environ. 2015, 532, 208–219. [Google Scholar] [CrossRef]
- Pepe, G.; Mandarino, A.; Raso, E.; Scarpellini, P.; Brandolini, P.; Cevasco, A. Investigation on Farmland Abandonment of Terraced Slopes Using Multitemporal Data Sources Comparison and Its Implication on Hydro-Geomorphological Processes. Water 2019, 11, 1552. [Google Scholar] [CrossRef] [Green Version]
- Raso, E.; Mandarino, A.; Pepe, G.; Calcaterra, D.; Cevasco, A.; Confuorto, P. Geomorphology of Cinque Terre National Park (Italy). J. Maps 2020, 17, 171–184. [Google Scholar] [CrossRef]
- Fierro, G.; Berriolo, G.; Ferrari, M. Le Spiagge Della Liguria Occidentale: Analisi Evolutiva; Regione Liguria: Genova, Italy, 2010; p. 174. [Google Scholar]
- Brandolini, P.; Faccini, F.; Robbiano, A.; Terranova, R. Relationship between flood hazards and geomorphology applied to land planning in the upper Aveto Valley (Liguria, Italy). Geogr. Fis. Din. Quat. 2008, 31, 73–82. [Google Scholar]
- Brandolini, P.B.; Canepa, G.; Faccini, F.; Robbiano, A.; Terranova, R. Geomorphological and geo-environmental features of the Graveglia Valley (Ligurian Apennines, Italy). Geogr. Fis. Din. Quat. 2007, 30, 99–116. [Google Scholar]
- Brandolini, P.; Cevasco, A. Geo-hydrological risk mitigation measures and land-management in a highly vulnerable small coastal catchment. In Engineering Geology for Society and Territory-Urban Geology, Sustainable Planning and Landscape Exploitation; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 759–762. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G. Preliminary analysis of the November 10, 2014 rainstorm and related landslides in the lower Lavagna valley (Eastern Liguria). Ital. J. Eng. Geol. Environ. 2017, 1, 5–15. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; D’Amato Avanzi, G.; Giannecchini, R. A study on the 10 November 2014 intense rainfall and the related landslides in the lower Lavagna valley (eastern Liguria). Rend. Online Soc. Geol. Ital. 2015, 35, 66–69. [Google Scholar] [CrossRef]
- Cevasco, A.; Pepe, G.; Brandolini, P. Geotechnical and stratigraphic aspects of shallow landslides at Cinque Terre (Liguria, Italy). Rend. Online Soc. Geol. Ital. 2013, 24, 52–54. [Google Scholar]
- Faccini, F.; Luino, F.; Paliaga, G.; Roccati, A.; Turconi, L. Flash Flood Events along the West Mediterranean Coasts: Inundations of Urbanized Areas Conditioned by Anthropic Impacts. Land 2021, 10, 620. [Google Scholar] [CrossRef]
- Faccini, F.; Luino, F.; Sacchini, A.; Turconi, L.; De Graff, J.V. Geohydrological hazards and urban development in the Mediterranean area: An example from Genoa (Liguria, Italy). Nat. Hazards Earth Syst. Sci. 2015, 15, 2631–2652. [Google Scholar] [CrossRef] [Green Version]
- Pepe, G.; Mandarino, A.; Raso, E.; Cevasco, A.; Firpo, M.; Casagli, N. Extreme flood and landslides triggered in the Arroscia Valley (Liguria Region, Northwestern Italy) during the November 2016 rainfall event. In Engineering Geology for a Sustainable World; Shakoor, A., Cato, K., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 171–175. [Google Scholar] [CrossRef]
- Zingaro, M.; Refice, A.; Giachetta, E.; D’Addabbo, A.; Lovergine, F.; De Pasquale, V. Sediment mobility and connectivity in a catchment: A new mapping approach. Sci. Total Environ. 2019, 672, 763–775. [Google Scholar] [CrossRef]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. IDRAIM–Sistema di Valutazione Idromorfologica, Analisi e Monitoraggio dei Corsi D’acqua; ISPRA-Manuali e Linee Guida: Roma, Italy, 2016.
- Brierley, G.J.; Fryirs, K.A.; Boulton, A.; Cullum, C. Working with change: The importance of evolutionary perspectives in framing the trajectory of river adjustment. In River Futures: An Integrative Scientific Approach to River Repair; Brierley, G.J., Fryirs, K.A., Eds.; Island Press: Washington, DC, USA, 2008; pp. 65–84. [Google Scholar]
- Dufour, S.; Piégay, H. From the myth of a lost paradise to targeted river restoration: Forget natural references and focus on human benefits. River Res. Appl. 2009, 25, 568–581. [Google Scholar] [CrossRef]
- Grabowski, R.C.; Surian, N.; Gurnell, A.M. Characterizing geomorphological change to support sustainable river restoration and management. WIREs Water 2014, 1, 483–512. [Google Scholar] [CrossRef]
- Leys, K.F.; Werritty, A. River channel planform change: Software for historical analysis. Geomorphology 1999, 29, 107–120. [Google Scholar] [CrossRef]
- Sohl, T.; Sleeter, B. Role of remote sensing for land-use and land-cover change modeling. In Remote Sensing of Land Use and Land Cover: Principles and Applications; Giri, C.P., Ed.; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA; CRC Press: Boca Raton, FL, USA, 2012; pp. 225–239. [Google Scholar]
- Gurnell, A.M. Channel change on the River Dee meanders, 1946–1992, from the analysis of air photographs. Regul. Rivers Res. Manag. 1997, 13, 13–26. [Google Scholar] [CrossRef]
- Hooke, J.M. Changes in Meander Morphology. In International Geomorphology 1986 Proc 1st Conference; Gardiner, V., Ed.; Wiley: Chichester, UK, 1987; Volume 1, pp. 591–609. [Google Scholar]
- Nicoll, T.J.; Hickin, E.J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 2010, 116, 37–47. [Google Scholar] [CrossRef]
- Passmore, D.G.; Macklin, M.G.; Brewer, P.A.; Lewin, J.; Rumsby, B.T.; Newson, M.D. Variability of late Holocene braiding in Britain. Geol. Soc. Lond. Spec. Publ. 1993, 75, 205–229. [Google Scholar] [CrossRef]
- Tiegs, S.D.; Pohl, M. Planform channel dynamics of the lower Colorado River: 1976–2000. Geomorphology 2005, 69, 14–27. [Google Scholar] [CrossRef]
- Toone, J.; Rice, S.P.; Piégay, H. Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drôme River, southeast France: Contingent responses to external and internal controls. Geomorphology 2014, 205, 5–16. [Google Scholar] [CrossRef]
- Trimble, S.W.; Cooke, R.U. Historical Sources for Geomorphological Research in the United States. Prof. Geogr. 1991, 43, 212–228. [Google Scholar] [CrossRef]
- Werritty, A.; Ferguson, R.I. Pattern changes in a Scottish braided river over 1, 30 and 200 years. In Timescales in Geomorphology; Cullingford, R.A., Davidson, D.A., Lewin, J., Eds.; Wiley: Chichester, UK, 1980; pp. 53–68. [Google Scholar]
- Dingle, E.H.; Paringit, E.C.; Tolentino, P.L.; Williams, R.D.; Hoey, T.B.; Barrett, B. Decadal-scale morphological adjustment of a lowland tropical river. Geomorphology 2019, 333, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Dewan, A.; Corner, R.; Saleem, A.; Rahman, M.M.; Haider, M.R.; Rahman, M.M. Assessing channel changes of the Ganges-Padma River system in Bangladesh using Landsat and hydrological data. Geomorphology 2017, 276, 257–279. [Google Scholar] [CrossRef]
- Dixon, S.J.; Sambrook Smith, G.H.; Best, J.L.; Nicholas, A.P.; Bull, J.M.; Vardy, M.E. The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery. Earth-Sci. Rev. 2018, 176, 1–18. [Google Scholar] [CrossRef]
- Fisher, G.B.; Bookhagen, B.; Amos, C.B. Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology 2013, 194, 46–56. [Google Scholar] [CrossRef]
- Fisher, G.B.; Amos, C.B.; Bookhagen, B.; Burbank, D.W.; Godard, V. Channel widths, landslides, faults, and beyond: The new world order of high-spatial resolution Google Earth imagery in the study of earth surface processes. In Google Earth and Virtual Visualizations in Geoscience Education and Research; Whitmeyer, S.J., Bailey, J.E., De paor, D.G., Ornduff, T., Eds.; Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2012; Volume 492, pp. 1–22. [Google Scholar]
- Gracchi, T.; Rossi, G.; Tacconi Stefanelli, C.; Tanteri, L.; Pozzani, R.; Moretti, S. Tracking the Evolution of Riverbed Morphology on the Basis of UAV Photogrammetry. Remote Sens. 2021, 13, 829. [Google Scholar] [CrossRef]
- Nawfee, S.M.; Dewan, A.; Rashid, T. Integrating subsurface stratigraphic records with satellite images to investigate channel change and bar evolution: A case study of the Padma River, Bangladesh. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Gupta, N.; Atkinson, P.M.; Carling, P.A. Decadal length changes in the fluvial planform of the River Ganga: Bringing a mega-river to life with Landsat archives. Remote Sens. Lett. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Hazarika, N.; Das, A.K.; Borah, S.B. Assessing land-use changes driven by river dynamics in chronically flood affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote Sens. Space Sci. 2015, 18, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Gan, T.Y.; Baki, A.B.M. Assessing morphological changes of the Ganges River using satellite images. Quat. Int. 2013, 304, 142–155. [Google Scholar] [CrossRef]
- Kuo, C.W.; Chen, C.F.; Chen, S.C.; Yang, T.C.; Chen, C.W. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan. Water 2017, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Martha, T.R.; Sharma, A.; Kumar, K.V. Development of meander cutoffs—A multi-temporal satellite-based observation in parts of Sindh River, Madhya Pradesh, India. Arab. J. Geosci. 2015, 8, 5663–5668. [Google Scholar] [CrossRef]
- Peixoto, J.M.A.; Nelson, B.W.; Wittmann, F. Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote Sens. Environ. 2009, 113, 2258–2266. [Google Scholar] [CrossRef]
- Yao, Z.; Xiao, J.; Ta, W.; Jia, X. Planform channel dynamics along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008: Analysis using Landsat images and topographic maps. Environ. Earth Sci. 2013, 70, 97–106. [Google Scholar] [CrossRef]
- Henshaw, A.J.; Gurnell, A.M.; Bertoldi, W.; Drake, N.A. An assessment of the degree to which Landsat TM data can support the assessment of fluvial dynamics, as revealed by changes in vegetation extent and channel position, along a large river. Geomorphology 2013, 202, 74–85. [Google Scholar] [CrossRef]
- Rowland, J.C.; Shelef, E.; Pope, P.A.; Muss, J.; Gangodagamage, C.; Brumby, S.P. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 2016, 184, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Akay, S.S.; Özcan, O.; Şanlı, F.B.; Görüm, T.; Şen, Ö.L.; Bayram, B. UAV-based evaluation of morphological changes induced by extreme rainfall events in meandering rivers. PLoS ONE 2020, 15, e0241293. [Google Scholar] [CrossRef]
- Gomez, C.; Purdie, H. UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring—A Review. Geoenviron. Dis. 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Özcan, O.; Özcan, O. Multi-temporal UAV based repeat monitoring of rivers sensitive to flood. J. Maps 2020, 17, 163–170. [Google Scholar] [CrossRef]
- Lei, C.; Zhu, L. Spatio-temporal variability of land use/land cover change (LULCC) within the Huron River: Effects on stream flows. Clim. Risk Manag. 2018, 19, 35–47. [Google Scholar] [CrossRef]
- Matysik, M.; Absalon, D.; Habel, M.; Maerker, M. Surface Water Quality Analysis Using CORINE Data: An Application to Assess Reservoirs in Poland. Remote Sens. 2020, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Meek, C.S.; Richardson, D.M.; Mucina, L. A river runs through it: Land-use and the composition of vegetation along a riparian corridor in the Cape Floristic Region, South Africa. Biol. Conserv. 2010, 143, 156–164. [Google Scholar] [CrossRef]
- Muyibul, Z.; Jianxin, X.; Muhtar, P.; Qingdong, S.; Run, Z. Spatiotemporal changes of land use/cover from 1995 to 2015 in an oasis in the middle reaches of the Keriya River, southern Tarim Basin, Northwest China. Catena 2018, 171, 416–425. [Google Scholar] [CrossRef]
- Prasad, G.; Ramesh, M.V. Spatio-Temporal Analysis of Land Use/Land Cover Changes in an Ecologically Fragile Area—Alappuzha District, Southern Kerala, India. Nat. Resour. Res. 2019, 28, 31–42. [Google Scholar] [CrossRef]
- Szatten, D.; Habel, M. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote Sens. 2020, 12, 3414. [Google Scholar] [CrossRef]
- Baena-Escudero, R.; Guerrero-Amador, I.C.; Rinaldi, M.; Sayago, A.G. Hydrological and geomorphic effects upstream of the Cantillana Dam along the Guadalquivir River (Southern Spain). Geomorphology 2021, 388, 107786. [Google Scholar] [CrossRef]
- Pavlek, K.; Faivre, S. Geomorphological changes of the Cetina River channels since the end of the nineteenth century, natural vs anthropogenic impacts (the Dinarides, Croatia). Environ. Earth Sci. 2020, 79, 482. [Google Scholar] [CrossRef]
- Decarlis, A.; Dallagiovanna, G.; Lualdi, A.; Maino, M.; Seno, S. Stratigraphic evolution in the Ligurian Alps between Variscan heritages and the Alpine Tethys opening: A review. Earth-Sci. Rev. 2013, 125, 43–68. [Google Scholar] [CrossRef]
- Boni, P.; Peloso, G.F.; Vercesi, P.L. Nuovi dati e considerazioni sulla stratigrafia del bacino pliocenico di Albenga (Alpi Marittime). Mem. Soc. Geol. Ital. 1986, 28, 385–396. [Google Scholar]
- Boni, P. Il Pliocene e la Neotettonica nelle Alpi Liguri. Mem. Soc. Geol. Ital. 1984, 28, 229–265. [Google Scholar]
- Fanucci, F.; Firpo, M.; Ramella, A. Genesi ed evoluzione di piane costiere del Mediterraneo: Esempi di piccole piane della Liguria. Geogr. Fis. Din. Quat. 1987, 10, 193–203. [Google Scholar]
- Agenzia Regionale per la Protezione dell’Ambiente Ligure. Annali Idrologici. 2011. Available online: https://www.arpal.liguria.it/homepage/meteo/pubblicazioni/annali-idrologici.html (accessed on 1 May 2021).
- Capello, M.; Cutroneo, L.; Ferranti, M.P.; Budillon, G.; Bertolotto, R.M.; Ciappa, A. Simulations of dredged sediment spreading on a Posidonia oceanica meadow off the Ligurian coast, Northwestern Mediterranean. Mar. Pollut. Bull. 2014, 79, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Autorità di Bacino Regionale. Piano di Bacino Stralcio per l’assetto Idrogeologico del Torrente Centa. 2019. Available online: http://www.pianidibacino.ambienteinliguria.it/SV/03centa/centa.html (accessed on 15 January 2021).
- Agrillo, G.; Bonati, V. Atlante Climatico Della Liguria; ARPAL-Centro Funzionale Meteoidrologico di Protezione Civile: Genova, Italy, 2013; p. 128. [Google Scholar]
- National Group for Prevention of Hydrological Hazards (GNDCI) of the National Research Council. Inventory of Areas Affected by Landslides and Floods in Italy from 1918 to 2000. AVI («Aree Vulnerabili Italiane») Project. 2000. Available online: http://avi.gndci.cnr.it/ (accessed on 15 January 2021).
- Cuca, B.; Barazzetti, L. Damages from extreme flooding events to cultural heritage and landscapes: Water component estimation for Centa River (Albenga, Italy). Adv. Geosci. 2018, 45, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Bartzas, G.; Tinivella, F.; Medini, L.; Zaharaki, D.; Komnitsas, K. Assessment of groundwater contamination risk in an agricultural area in north Italy. Inf. Process. Agric. 2015, 2, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Rinaldi, M.; Belletti, B.; Comiti, F.; Nardi, L.; Bussettini, M.; Mao, L.; Gurnell, A.M. The Geomorphic Units Survey and Classification System (GUS); Deliverable 6.2, Part 4, of REFORM (REstoring Rivers FOR Effective Catchment Management), a Collaborative Project (Large-Scale Integrating Project) Funded by the European Commission within the 7th Framework Programme under Grant Agreement 282656. 2015. Available online: https://www.researchgate.net/publication/283539400_The_Geomorphic_Units_survey_and_classification_System_GUS_Deliverable_62_Part_4_of_REFORM_REstoring_rivers_FOR_effective_catchment_Management_a_Collaborative_project_large-scale_integrating_project_fu (accessed on 13 July 2021).
- QGIS Development Team. QGIS [Internet]. 2021. Available online: https://qgis.org/en/site/# (accessed on 10 January 2021).
- Hughes, M.L.; McDowell, P.F.; Marcus, W.A. Accuracy assessment of georectified aerial photographs: Implications for measuring lateral channel movement in a GIS. Geomorphology 2006, 74, 1–16. [Google Scholar] [CrossRef]
- Block, D.L. Historical channel-planform change of the Little Colorado River near Winslow, Arizona; Scientific Investigations Report No.: 2014–5112; U.S. Geological Survey: Reston, VA, USA, 2014; p. 35.
- Neteler, M.; Mitasova, H. Open Source GIS: A GRASS GIS Approach; Springer: New York, NY, USA, 2008; p. 406. [Google Scholar]
- LMIC. Positional Accuracy Handbook-Using the National Standard for Spatial Data Accuracy to Measure and Report Geographic Data Quality; Minnesota Governor’s Council on Geographic Information; Minnesota Land Management Information Center (LMIC): St. Paul, MI, USA, 1999; p. 33.
- Michalková, M.; Piégay, H.; Kondolf, G.M.; Greco, S.E. Lateral erosion of the Sacramento River, California (1942–1999), and responses of channel and floodplain lake to human influences. Earth Surf. Process. Landf. 2011, 36, 257–272. [Google Scholar] [CrossRef]
- Jautzy, T.; Herrault, P.A.; Chardon, V.; Schmitt, L.; Rixhon, G. Measuring river planform changes from remotely sensed data—A Monte Carlo approach to assessing the impact of spatially variable error. Earth Surf. Dyn. 2020, 8, 471–484. [Google Scholar] [CrossRef]
- Liébault, F.; Piégay, H. Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 2001, 36, 167–186. [Google Scholar] [CrossRef]
- Nelson, N.C.; Erwin, S.O.; Schmidt, J.C. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming. Geomorphology 2013, 200, 132–142. [Google Scholar] [CrossRef]
- Brierley, G.J.; Fryirs, K.A. Geomorphology and River Management: Applications of the River Styles Framework; Blackwell Publishing: Oxford, UK, 2005; p. 416. [Google Scholar]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180, 96–108. [Google Scholar] [CrossRef]
- Rinaldi, M.; Belletti, B.; Bussettini, M.; Comiti, F.; Golfieri, B.; Lastoria, B. New tools for the hydromorphological assessment and monitoring of European streams. J. Environ. Manag. 2017, 202, 363–378. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A methodological framework for hydromorphological assessment, analysis and monitoring (IDRAIM) aimed at promoting integrated river management. Geomorphology 2015, 251, 122–136. [Google Scholar] [CrossRef]
- Surian, N.; Rinaldi, M.; Pellegrini, L. Linee Guida per l´Analisi Geomorfologica Degli Alvei Fluviali e Delle loro Tendenze Evolutive; Cleup: Padova, Italy, 2009; p. 78. [Google Scholar]
- Ashmore, P. Channel Morphology and Bed Load Pulses in Braided, Gravel-Bed Streams. Geogr. Ann. A 1991, 73, 37–52. [Google Scholar] [CrossRef]
- Egozi, R.; Ashmore, P. Defining and measuring braiding intensity. Earth Surf. Process. Landf. 2008, 33, 2121–2138. [Google Scholar] [CrossRef]
- Malavoi, J.R.; Bravard, J.P. Éléments d’hydromorphologie fluviale. Onema (Office national de l’eau et des milieux aquatiques), 2010; Volume 5, p. 224. Available online: https://www.documentation.eauetbiodiversite.fr/notice/00000000015dd1c55f01fd71f480da33 (accessed on 13 July 2021).
- Surian, N.; Ziliani, L.; Comiti, F.; Lenzi, M.A.; Mao, L. Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of North-Eastern Italy: Potentials and limitations for channel recovery. River Res. Appl. 2009, 25, 551–567. [Google Scholar] [CrossRef]
- Hooke, J.M. Temporal variations in fluvial processes on an active meandering river over a 20-year period. Geomorphology 2008, 100, 3–13. [Google Scholar] [CrossRef]
- Mount, N.; Louis, J. Estimation and propagation of error in measurements of river channel movement from aerial imagery. Earth Surf. Process. Landf. 2005, 30, 635–643. [Google Scholar] [CrossRef]
- Rapp, C.F.; Abbe, T.B. A Framework for Delineating Channel Migration Zones; Ecology Publication No. 03-06–027; Washington State Department of Ecology and Department of Transportation: Lacey, WA, USA, 2003.
- Urban, M.A.; Rhoads, B.L. Catastrophic Human-Induced Change in Stream-Channel Planform and Geometry in an Agricultural Watershed, Illinois, USA. Ann. Am. Assoc. Geogr. 2003, 93, 783–796. [Google Scholar] [CrossRef]
- Zhou, M.; Xia, J.; Lu, J.; Deng, S.; Lin, F. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology 2017, 285, 325–332. [Google Scholar] [CrossRef]
- Das, S.; Pal, S. Character and Cardinality of Channel Migration of Kalindri River, West Bengal, India. Int. Res. J. Earth Sci. 2016, 4, 13–26. [Google Scholar]
- Giardino, J.R.; Lee, A.A. Rates of Channel Migration on the Brazos River; Final Report; Texas A&M University: College Station, TX, USA, 2011; p. 45. [Google Scholar]
- Gurnell, A.M.; Downward, S.R.; Jones, R. Channel planform change on the river dee meanders, 1876–1992. Regul. Rivers Res. Manag. 1994, 9, 187–204. [Google Scholar] [CrossRef]
- Clerici, A.; Perego, S. A Set of GRASS GIS-Based Shell Scripts for the Calculation and Graphical Display of the Main Morphometric Parameters of a River Channel. Int. J. Geosci. 2016, 07, 135. [Google Scholar] [CrossRef] [Green Version]
- Costa Restagno, J. Problemi territoriali, carte e cartografi nell’Ingauna medievale e moderna. In Carte e Cartografi in Liguria; Quaini, M., Ed.; Sagep Editrice: Genova, Italy, 1986. [Google Scholar]
- Previtali, M. A virtual logbook for the documentation of a continuously changing archaeological site: The San Clemente site in Albenga (Italy). Virtual Archaeol. Rev. 2019, 10, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Roascio, S. The site of San Calocero di Albenga (SV). An inter-disciplinary methodological training ground. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 1011–1016. [Google Scholar] [CrossRef] [Green Version]
- Dépret, T.; Gautier, E.; Hooke, J.; Grancher, D.; Virmoux, C.; Brunstein, D. Causes of planform stability of a low-energy meandering gravel-bed river (Cher River, France). Geomorphology 2017, 285, 58–81. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Mount, J.F.; Chin, A. Bank Erosion as a Desirable Attribute of Rivers. BioScience 2008, 58, 519–529. [Google Scholar] [CrossRef]
- Kiss, T.; Fiala, K.; Sipos, G. Alterations of channel parameters in response to river regulation works since 1840 on the Lower Tisza River (Hungary). Geomorphology 2008, 98, 96–110. [Google Scholar] [CrossRef]
- Kiss, T.; Blanka, V. River channel response to climate- and human-induced hydrological changes: Case study on the meandering Hernád River, Hungary. Geomorphology 2012, 175–176, 115–125. [Google Scholar] [CrossRef]
- Ollero, A. Channel changes and floodplain management in the meandering middle Ebro River, Spain. Geomorphology 2010, 117, 247–260. [Google Scholar] [CrossRef]
- Vandenberghe, J.; de Moor, J.J.W.; Spanjaard, G. Natural change and human impact in a present-day fluvial catchment: The Geul River, Southern Netherlands. Geomorphology 2012, 159–160, 1–14. [Google Scholar] [CrossRef]
- Hooke, J.M. Spatial variability, mechanisms and propagation of change in an active meandering river. Geomorphology 2007, 84, 277–296. [Google Scholar] [CrossRef]
- Regione Liguria. Piano di Tutela dell’Ambiente Marino e Costiero per l’Ambito Costiero 08. 2016. Available online: https://www.regione.liguria.it/homepage/ambiente/ambiente-piani-programmi/ambiente-piani-programmi-6tutelamare.html (accessed on 20 January 2021).
Year | Datum | Scale | Data Source for GIS | Positional Accuracy (m) |
---|---|---|---|---|
1930 | Historical map—sheet n. 92-3-SE Alassio of the “Carta d’Italia” | 1:25,000 | Digital image | 27 |
1954 | Aerial photographs (B/W)—national coverage | 1:65,000 | Digital image | 12 |
1973 | Aerial photographs (C)—regional coverage | 1:8000 | Digital image | 7 |
1988 | Orthophotos (B/W)—national coverage | 1:10,000 | National Geoportal WMS | ≤4 |
1997 | Orthophotos (B/W)—national coverage | 1:10,000 | National Geoportal WMS | ≤4 |
1999 | Orthophotos (C)—national coverage | 1:10,000 | National Geoportal WMS | ≤4 |
2007 | Orthophotos (C)—national coverage | 1:10,000 | National Geoportal WMS | ≤4 |
2010 | Orthophotos (C)—national coverage | 1:10,000 | Liguria Region Geoportal WMS | ≤4 |
2016 | Orthophotos (C)—regional coverage | 1:5000 | Liguria Region Geoportal WMS | ≤4 |
2018 | Google Earth images (C) | 1:2500 * | QGIS plugin Quick Map Services ** | 3 |
2020 | Google Earth images (C) | 1:2500 * | QGIS plugin Quick Map Services ** | 3 |
CAI (%) | >75 | 50–75 | 35–50 | 15–35 | ≤15 | |
---|---|---|---|---|---|---|
CFI (%) | Class | VH | H | M | L | VL |
>75 | VH | I | I | I * | I * | I * |
50–75 | H | I | I | I * | M * | M * |
35–50 | M | I ** | I ** | M | S * | S * |
15–35 | L | I ** | M ** | S ** | N | N |
≤15 | VL | I ** | M ** | S ** | N | N |
Reach | Length (km) | Average Width (m) | Area (ha) | Confinement | SI | BI | Channel Pattern |
---|---|---|---|---|---|---|---|
A1 | 1.58 | 58 | 9.19 | PC | 1.1 | 1 | SAB |
A2 | 2.60 | 106 | 27.58 | U | 1.1 | 1.1 | SAB |
A3 | 3.55 | 132 | 46.79 | U | 1.1 | 1.2 | SAB |
N1 | 1.96 | 39 | 7.64 | PC | 1.1 | 1 | SAB |
N2 | 2.06 | 55 | 11.39 | U | 1 | 1 | ST |
C1 | 2.03 | 110 | 22.36 | U | 1 | 1.1 | SAB |
C2 | 1.32 | 109 | 14.48 | U | 1 | 1 | ST |
Period | A1 | A2 | A3 | N1 | N2 | C1 | C2 |
---|---|---|---|---|---|---|---|
1930–1954 | M ** | S ** | M ** | N | N | N | S ** |
1954–1973 | N | M ** | S ** | S ** | S ** | S ** | N |
1973–1988 | N | N | N | N | N | N | N |
1988–1997 | N | N | N | N | N | N | N |
1997–1999 | N | N | N | N | N | N | N |
1999–2007 | N | N | N | N | N | N | N |
2007–2010 | N | N | N | N | N | N | N |
2010–2016 | N | N | N | N | N | N | N |
2016–2018 | N | N | N | N | N | N | N |
2018–2020 | N | N | N | N | N | N | N |
1930–2020 | M ** | M ** | M ** | S ** | M ** | S ** | N |
1954–2020 | N | M ** | S ** | S ** | M ** | N | N |
LULC | 1930–2020 | 1954–2020 | 1973–2020 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A2 | A3 | N2 | C1 | C2 | A2 | A3 | N2 | C1 | C2 | A2 | A3 | N2 | C1 | C2 | |
S | 100.0 | 100.0 | |||||||||||||
N | 83.5 | 74.7 | 97.9 | 98.7 | 100.0 | 85.5 | 72.6 | 98.5 | 97.9 | 100.0 | 99.0 | 83.6 | 100.0 | 99.8 | 100.0 |
A | 2.4 | 0.0 | 0.0 | 43.2 | 0.0 | 0.0 | |||||||||
M | 1.4 | 0.0 | 1.2 | 2.9 | 0.0 | 2.1 | 9.2 | 0.0 | 100.0 | ||||||
Q | 0.2 | 1.1 | 0.8 | ||||||||||||
T | 0.1 | 0.0 | 0.2 | 1.4 | 22.1 | 0.1 | 0.0 | 3.9 | 0.4 | 0.0 | |||||
I | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ||||||||||
U | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandarino, A.; Pepe, G.; Cevasco, A.; Brandolini, P. Quantitative Assessment of Riverbed Planform Adjustments, Channelization, and Associated Land Use/Land Cover Changes: The Ingauna Alluvial-Coastal Plain Case (Liguria, Italy). Remote Sens. 2021, 13, 3775. https://doi.org/10.3390/rs13183775
Mandarino A, Pepe G, Cevasco A, Brandolini P. Quantitative Assessment of Riverbed Planform Adjustments, Channelization, and Associated Land Use/Land Cover Changes: The Ingauna Alluvial-Coastal Plain Case (Liguria, Italy). Remote Sensing. 2021; 13(18):3775. https://doi.org/10.3390/rs13183775
Chicago/Turabian StyleMandarino, Andrea, Giacomo Pepe, Andrea Cevasco, and Pierluigi Brandolini. 2021. "Quantitative Assessment of Riverbed Planform Adjustments, Channelization, and Associated Land Use/Land Cover Changes: The Ingauna Alluvial-Coastal Plain Case (Liguria, Italy)" Remote Sensing 13, no. 18: 3775. https://doi.org/10.3390/rs13183775
APA StyleMandarino, A., Pepe, G., Cevasco, A., & Brandolini, P. (2021). Quantitative Assessment of Riverbed Planform Adjustments, Channelization, and Associated Land Use/Land Cover Changes: The Ingauna Alluvial-Coastal Plain Case (Liguria, Italy). Remote Sensing, 13(18), 3775. https://doi.org/10.3390/rs13183775