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Abstract: A fully connected deep neural network (FCDN) clear-sky mask (CSM) algorithm 

(FCDN_CSM) was developed to assist the FCDN-based Community Radiative Transfer Model 

(FCDN_CRTM) to reproduce the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radi-

ances in five thermal emission M (TEB/M) bands. The model design was referenced and enhanced 

from its earlier version (version 1), and was trained and tested in the global ocean clear-sky domain 

using six dispersion days’ data from 2019 to 2020 as inputs and a modified NOAA Advanced Clear-

Sky Processor over Ocean (ACSPO) CSM product as reference labels. The improved FCDN_CSM 

(version 2) was further enhanced by including daytime data, which was not collected in version 1. 

The trained model was then employed to predict VIIRS CSM over multiple days in 2020 as an accu-

racy and stability check. The results were validated against the biases between the sensor observa-

tions and CRTM calculations (O-M). The objectives were to (1) enhance FCDN_CSM performance 

to include daytime analysis, and improve model stability, accuracy, and efficiency; and (2) further 

understand the model performance based on a combination of the statistics and physical interpre-

tation. According to the analyses of the F-score, the prediction result showed ~96% and ~97% accu-

racy for day and night, respectively. The type Cloud was the most accurate, followed by Clear-Sky. 

The O-M mean biases are comparable to the ACSPO CSM for all bands, both day and night. The 

standard deviations (STD) were slightly degraded in long wave IRs (M14, M15, and M16), mainly 

due to contamination by a 3% misclassification of the type Cloud, which may require the model to 

be further fine-tuned to improve prediction accuracy in the future. However, the consistent O-M 

means and STDs persist throughout the prediction period, suggesting that FCDN_CSM version 2 is 

robust and does not have significant overfitting. Given its high F-scores, spatial and long-term sta-

bility for both day and night, high efficiency, and acceptable O-M means and STDs, FCDN_CSM 

version 2 is deemed to be ready for use in the FCDN_CRTM. 

Keywords: fully connected “Deep” neural network (FCDN); clear-sky mask (CSM); community ra-

diative transfer model (CRTM); deep learning; machine learning; artificial neural network (ANN); 

the visible infrared imaging radiometer suite (VIIRS); Advanced Clear-Sky Processor over Ocean 

(ACSPO) 

 

1. Introduction 

A clear-sky mask (CSM) identifies each sensor pixel within a coverage region as clear 

or cloudy. It is an important capability for many downstream level-2 products, such as 

sea surface temperature (SST) [1] and land surface temperature (LST) [2] sensors. In addi-

tion, it is often used to improve the accuracy of sensor radiometric biases [3–6] and to 

assist in data assimilation for numeric weather prediction (NWP) models [7], where the 
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reference or first guess data are commonly generated by the Community Radiative Trans-

fer Model (CRTM) [8,9] at the National Oceanic and Atmospheric Administration 

(NOAA). The high resolution CSM [10] was developed by NOAA, following the availa-

bility of new generation sensors, such as the Visible Infrared Imaging Radiometer Suite 

(VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) or other satellites 

in the Joint Polar Satellite System (JPSS), and the advanced baseline imager (ABI) onboard 

the geostationary operational environmental satellite-R (GOES-R). Furthermore, the 

NOAA Advanced Clear-Sky Processor over Oceans (ACSPO) CSM [1,3–6] was developed 

for ocean clear-sky applications and has been well validated for more than a decade. All 

of these CSM algorithms are based on the radiative characteristics of various cloud for-

mations, and use multiple empirical thresholds together with multiple tests under various 

spatial and temporal conditions combined with sensor measurements to achieve cloud 

and clear-sky identification [1,10–12]. The physical-based CSM algorithm has been devel-

oped and validated for over 20 years since the earliest CSM product based on the NOAA 

Advanced Very High Resolution Radiometer (AVHRR)—Clouds from AVHRR-Phase I 

(CLAVR-1) [13] was released, and has been comprehensively applied in remote sensing, 

atmosphere, and climate research. However, the complicated physical-based CSM algo-

rithms are computationally consuming and the empirical thresholds are very dependent 

on the specific sensor to be utilized, resulting in the need to re-test and re-design for each 

new sensor [14,15].  

With the evolution of artificial intelligence (AI), the approach used in artificial neural 

networks (ANN) has gradually become a popular algorithm and is applied in most scien-

tific and technical fields, including atmosphere and ocean remote sensing and climate re-

search [16–18]. NOAA’s AI scientists have explored using AI applications in several areas, 

such as satellite data calibration; forward operator simulation through the radiative trans-

fer model (RTM); physical inversion; data assimilation and data fusion; and post-forecast 

correction, including extreme weather events [19]. As stated in the NOAA AI Strategy, 

NOAA’s AI “will dramatically expand the application of AI in every NOAA mission area 

by improving the efficiency, effectiveness, and coordination of AI development and usage 

across the agency” [20]. 

Using a simple, statistical, nonlinear approximation instead of a complicated physi-

cal-based model in ANNs results in a more computationally efficient method to achieve a 

similar result to those of the physical-based model, without significant loss of accuracy 

[16–18]. In recent years these advantages have attracted an increasing number of remote 

sensing scientists to explore AI-based CSM algorithms [14,15,21] by designing various 

machine learning architectures, such as random forest (RF), support vector machine, 

ANN, and convolution neural network; training the models by using selected effective 

sensor measurements and geophysical conditions together with atmosphere and surface 

ancillary data; and predicting CSM with the well-trained model.  

A fully connected deep neural network (FCDN) algorithm applied for VIIRS clear-

sky mask (FCDN_CSM) [14] was developed that efficiently identifies clear-sky pixels for 

real-time monitoring of the VIIRS observation minus CRTM simulation (O-M) biases for 

five thermal emission M bands. The monitoring of O-M biases is a key component of the 

Integrated Calibration/Validation System (ICVS, https://www.star.nesdis.noaa.gov/icvs) 

established by the NOAA Center for Satellite Applications and Research (STAR), which 

uses an updated ACSPO CSM as clear-sky identification [22]. Hereafter, this FCDN_CSM 

will be referred to as version 1 (v1). The FCDN_CSM v1 was trained by ten continuous 

days of S-NPP VIIRS measurements, together with atmosphere and surface ancillary data 

as model inputs, which are extracted from the European Centre for Medium-Range 

Weather Forecasts (ECMWF, https://www.ecmwf.int) and Canadian Meteorology Centre 

(CMC) SST product (https://podaac.jpl.nasa.gov/dataset/CMC0.1deg-CMC-L4-GLOB-

v3.0). The corresponding ACSPO CSM data was used as reference labels. The result 

showed that the FCDN_CSM not only has super efficiency, high prediction accuracies 

(97% for Cloud, 93% for Clear-Sky, and more than 80% for other types), and comparable 
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O-M mean biases and standard deviation (STDs) with ACSPO, but also has sensor migra-

tion capability, whereby the model trained by S-NPP data can be directly used to predict 

NOAA-20 CSM without significant accuracy loss.  

In addition, a FCDN algorithm with the Community Radiative Transfer Model 

(FCDN_CRTM) is being developed to explore the efficiency and accuracy of reproducing 

the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radiances in five TEB/M 

bands [23], which require a fast, accurate, and stable CSM to improve its efficiency. There-

fore, in this paper, we report on further enhancements to FCDN_CSM that improve the 

model’s stability and also include daytime data analysis. The objectives were to develop 

a fast and robust FCDN-CSM model that is ready for the FCDN_CRTM to predict clear-

sky radiances, and to better understand model performance based on a combination of 

the statistics and physical interpretation. This newly developed model is hereafter re-

ferred to as FCDN_CSM version 2 (v2). Section 2 discusses the methodology of this re-

search. A summary of FCDN_CSM v1 is provided and then we discuss v2 in detail, to-

gether with data preprocessing. Section 3 then demonstrates model validation by F-Score; 

VIIRS O-M biases with clear-sky identification; and long-term performance. Thereafter, 

Section 4 discusses potential improvements to the model prediction, and Section 5 pro-

vides the conclusion. 

2. Methodology 

In this section, we first summarize the FCDN_CSM v1 and then discuss v2 architec-

ture and data preprocessing in detail. 

2.1. Summary of FCDN_CSM Version 1 

FCDN_CSM v1 was designed as a simple FCDN-based architecture, including two 

hidden layers with 40 × 90 neurons. Instead of a complexed combination of the time, space, 

and spectral measurements in the physical-based model, the FCDN_CSM v1 only includes 

11 simple input features: (1) three VIIRS measurements—M12, M15, and M16 brightness 

temperatures (BT), and two geophysical parameters—satellite zenith angle (SZA) and so-

lar zenith angle (SOZA), which are from VIIRS sensor data record (SDR) products; (2) 

three atmosphere parameters—total water vapor contents (CWV), integrated from the wa-

ter vapor profiles of ECMWF [3], and surface air temperature (SAT) and surface water 

vapor contents (SWV), extracted from the surface layer of the ECMWF temperature and 

water vapor profiles; (3) two surface parameters—the regression SST (REG_SST) derived 

from the M12, M15, and M16 BTs with the SST coefficients trained by the NOAA SST team 

[4], and the reference SST (REF_SST) from CMC 0.1° daily SST analysis; and (4) a SST 

spatial variance (SSV) to represent CSM spatial variability, which was calculated by a 3 × 

3 moving window for each pixel. The updated ACSPO CSM data was used as reference 

labels, which ACSPO version 2.4 updated to allow the CRTM simulation to be conducted 

at the pixel level instead of in the coarse grid, thus significantly improving the VIIRS O-

M biases [22]. Four CSM types (Clear-Sky for BT (CS_BT), Probably Clear-Sky (PCS), 

Cloud, and Clear-Sky for SST (CS_SST)) constitute the output layer, where CS_BT repre-

sents the clear-sky pixels that passed both SST and BT tests, and CS_SST represents the 

CS pixels that passed the SST test but did not pass the BT test [1]. A cross-entropy loss was 

used as the cost function of the model. As described in the previous section, although the 

model was relatively simple, the validation result showed high prediction accuracies after 

the model was well-trained using selected VIIIRS SDR data and other ancillary data for 

ten continuous days. Furthermore, the FCDN_CSM used three atmosphere parameters 

from ECMWF as model inputs to replace three CRTM BTs in M12, M15, and M16, render-

ing CSM prediction significantly more efficient than the ACSPO. Therefore, FCDN_CSM 

is manifestly a better choice as clear-sky identification for the FCDN_CRTM. 

Although the FCDN_CSM v1 could well predict the CSM for several days immedi-

ately following the training data period, as can be imagined using ten continuous days 

VIIIRS SDR data, the model input cannot cover atmospheric and surface state variations 
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for all seasons, which include diurnal and seasonal cycles, and possible climate extremes. 

An offline analysis showed that the model prediction accuracy was significantly degraded 

beyond three weeks of the acquisition of the training data period. Thus, the stability of the 

model must be improved for the FCDN_CRTM study and also for long-term monitoring 

of the VIIRS O-M biases. 

2.2. FCDN Clear-Sky Mask Review and Enhancement 

To further improve the robustness of the FCDN_CSM model and enhance its use for 

more general remote sensing applications, we retrained the model using VIIRS data from 

six dispersion days: March 10, May 5, August 1, October 12, and November 6, 2019, and 

January 24, 2020, providing there is at least one day’s data in each of four seasons. Because 

the size of the PCS and CS_SST pixels is about one order of magnitude smaller than the 

Cloud and CS_BT, to make the model more intuitive, we combined PCS and CS_SST as 

one type in the FCDN_CSM v2, defined as Transition, to indicate that the pixel is in tran-

sition between CS and Cloud. In addition, we renamed type CS_BT as CS, because the 

CS_BT is the exact CS type we needed to use to identify clear-sky pixels for the VIIRS O-

M biases monitoring and for the FCDN_CRTM prediction.  

The input features in FCDN_CSM v2 were kept almost the same as v1, except that 

the solar zenith angle was removed, because it is not used for nighttime clear-sky identi-

fication [1]. Although v1 was only designed for nighttime, in this study, v2 was designed 

for both day and night. Because the cloud and clear-sky radiometric characteristics differ 

between day and night [1,10,11], several changes in input features were needed. First, due 

to daytime solar reflection contamination, the M12 BTs could not be used. As a substitute, 

the reflectances of two visible bands (M5 and M7) were used as model inputs. Second, the 

reflectance changes in visible bands in sun-glint areas are rapid, which may affect the CS 

identification. Therefore, a glint-angle spatial variance (GSV) calculated from a 10 × 10 

moving window around each pixel was used as a daytime input feature to assist the CS 

identification in the glint area. According to the daytime analysis in [24], we assumed the 

glint region is an area where the glint angles are less than 40°. Furthermore, the ACSPO 

CSM was still used to provide reference labels because we did not include land analysis 

in this study. Finally, because the FCDN_CSM used the updated ACSPO V2.4 as reference 

labels, it thus followed ACSPO and used a 90° solar zenith angle as day/night boundary 

condition [4]. Note that the ultimate goal of the FCDN_CSM is to assist validation of the 

congruence between the FCDN_CRTM prediction and the CRTM simulation, where the 

significantly more uniformly distributed ocean is the first choice for this application, ra-

ther than land. The land has diverse structures, for which the CRTM simulations are more 

complicated than those of the ocean, and an accurate global land emissivity model is 

needed [25,26]. Indeed, including global land analysis in FCDN_CSM is vital for land re-

mote sensing applications, and will undoubtedly be implemented in the future using the 

NOAA enterprise cloud mask (ECM) as references [27]. The input features for day and 

night are listed in Table 1, and a summary of the VIIRS bands used in this study is listed 

in Table 2 to help understand the wavelength and spectral range for each band. 
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Table 1. Summary of input features and output clear-sky mask (CSM) types in the fully connected deep neural network 

CSM (FCDN_CSM) v2. 

 Day Night 

Common Input 

Features 

Satellite Zenith Angle (SZA), Column Water Vapor Contents (CWV), Surface Air Temperature 

(SAT), Surface Water Vapor contents (SWV), M15 BT, M16 BT, Regression SST (REG_SST), 

Reference SST (REF_SST), SST Spatial Variance (SSV) 

Input Features Only 

for Day or Night 

M12 BT M5 albedo 

 M7 albedo 

 Glint-angle spatial variance (GSV) 

 Solar Zenith Angle (SOZA) 

Output CSM Types Clear-Sky, Transition, Cloud 

Table 2. Summary of the VIIRS bands used in the FCDN_CSM v2. 

Band Number Wavelength (µm) Spectral Range (µm) Primary Uses 

M5 0.672 0.662–0.682 Day 

M7 0.865 0.846–0.885 Day 

M12 3.70 3.660–3.840 Night 

M15 10.763 10.263–11.263 Day and Night 

M16 12.013 11.538–12.488 Day and Night 

Because the input data cover all seasons and more features are used for daytime, a 

more complex FCDN model is required to achieve adequate learning of the CSM texture 

during the model training. Based on the multiple experiments, we finally selected an ar-

chitecture including three hidden layers with 32 × 64 × 16 neurons for both night and day, 

together with a rectified linear unit (ReLU) as an activation function for each hidden layer. 

In addition, a regularization was introduced in the loss function (cost function) to avoid 

model overfitting [28]. The equation of the cost function is slightly different from that of 

v1: 

�(��, �) =
1

�
�(−ylog�� + (1 − �)log (1 − ��))

�

���

+ � �‖��
�‖

�

���

 (1)

As described in version 1, y represents reference labels from three ACSPO CSM types 

shown in Table 1. �� represents the prediction results. N is the size of the mini batch. The 

symbol � refers to the regularization coefficient, which is called hyperparameter in typi-

cal deep learning architecture. It is used to decide how much to penalize the flexibility of 

our model. As the value of λ rises, it reduces the value of the weights and thus reduces the 

variance of � − ŷ. To a point, this increase in λ is beneficial because, by reducing the vari-

ance, we avoid overfitting, without losing important properties in the data. However, be-

yond a certain value, the model begins to lose important properties, giving rise to bias and 

thus underfitting. Therefore, the value of λ should be carefully selected [28]. In this study, 

we selected λ to be 0.0001. 

2.3. FCDN_CSM Preprocessing and Training 

The VIIRS SDR data, together with the ECMWF and 0.1° daily CMC SST, were se-

lected for data preprocessing. During data preprocessing, the ECMWF and CMC gridding 

data were interpolated with time and space to match the VIIRS pixel. Then, the CWV, 

SAT, and SWV were calculated from the ECMWF atmosphere profiles. The regression 

SSTs were retrieved from the VIIRS M12, M15, and M16 BTs and the SST coefficients gen-

erated by the NOAA STAR SST team [1]. The SSV is calculated from the SST variance with 

a 3 × 3 moving window. As with SSV, the GSV is calculated from a 10 × 10 moving window 

around each pixel. All input data were generated after screening out the land, snow, and 
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ice pixels, using the 1 km land mask product from the United States Geological Survey 

(USGS) (https://lpdaac.usgs.gov/products/gfsad1kcmv001/), and sea ice fraction from the 

CSM SST product. Although ice and snow can also be trained and predicted by AI models 

[15], we experienced more than 10% misidentification for this portion, which would sig-

nificantly affect later FCDN_CRTM prediction accuracy. Therefore, in this study, we used 

the CMC ice data instead of direct prediction.  

Roughly 40 million samples were accumulated after data preprocessing. The samples 

were further separated into training, validation, and testing data sets, at a ratio of 90:5:5. 

The sample data were randomly shuffled and normalized before being fed into the 

FCDN_CSM, and the number of iterations was extended to 2.4 million to make the cost 

function converge adequately. The trained model was also checked with the test data to 

ensure overfitting did not occur. Model training and testing were separated by day and 

night. The data preprocessing, training, and testing were similar to those of v1, and have 

been discussed in detail in [14]. The only difference is that the number of iterations during 

v2 training was more than that of v1 before reach the point that the model weights and 

biases were well-optimized, due to the more complex architecture in v2. Therefore, in the 

next section, we focus on model evaluation by the prediction data. 

3. Accuracy and Stability of the FCDN_CSM v2 

The well-trained FCDN_CSM v2 was used to predict six days of data between Feb-

ruary 21, 2020 and July 30, 2020. In this section, the prediction results were used to evalu-

ate the accuracy and stability of FCDN_CSM v2 using the statistical and physical analysis 

methods through the F-scores and O-M biases. 

3.1. Accuracies Assessment with F-Score 

The F-score is a measurement commonly used to evaluate the performance of binary 

or multi-classification problems [29,30]. It is the harmonic mean of the precision and recall, 

where the recall is the fraction of all actual positives that are predicted to be positive, and 

precision is the fraction of all positive predictions that are actual positives. The equations 

of the recall (R), precision (P), and F-score (Fβ) are listed as follows: 

� =
��

�� + ��
 (2)

� =
��

�� + ��
 (3)

�� =
(�� + 1) ∗ � ∗ �

� + ���
 (4)

where TP, FN, and FP denote true positive, false negative, and false positive, respectively, 

which are represented via a confusion matrix [29]. β is the weighting of R and P. Com-

monly, two different methods are used: macro averaging F-score (maF) and micro averag-

ing F-score (miF), as shown in Equations (5) and (6), respectively, to evaluate the overall 

performance of the multiple classifications [31]:  

��� =
2 ∗ ����. ����

���� + ����

 (5)

��� =
∑ ���

�
���

∑ ���
�
��� + ��

 (6)

where G represents the total number of classifiers. Pave and Rave are average recall and 

average precision, respectively, over all classifiers. 

Tables 3 and 4 show a summary of recall, precision, miF, and maF, and the corre-

sponding number of actual, correct, and predicted pixels for daytime and nighttime in 
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02/21/2020. The total numbers of pixels are consistent between daytime and nighttime for 

each CSM type. However, for each daytime or nighttime, the sample sizes of the three 

CSM types are quite different. The number of type Cloud is four and twelve times more 

than the CS and Transition, respectively. This imbalance among the classifiers signifi-

cantly affects their accuracies. For nighttime, the most accurate is type Cloud, where recall 

and precision reach 97.16% and 99.70%, respectively. Following Cloud, type CS also 

shows highly accurate recall (96.10%) and precision (93.01%). Type Transition is not as 

accurate, particularly for precision (72.26%), mainly due to its much smaller input. Indeed, 

because the type Transition constitutes the PCS and CS_SST, which are partly identified 

by spatial variability around each pixel [1,11], inadequate consideration of spatial variance 

in FCDN_CSM may be a cause of the low accuracy in the Transition. This issue is further 

discussed in Section 4. The averages of the miF and maF scores are 96.63% and 91.14%, 

respectively. In daytime, both recall and precision are very similar to those of nighttime 

for the type Cloud, slightly worse (2–3%) for CS, and further degraded for Transition. 

Because the daytime has a more challenging climate, including a pronounced diurnal and 

seasonal cycle and sun glint effect, it is expected that the daytime accuracies are slightly 

worse. Finally, as shown in Table 4, the overall miF and maF are 95.27% and 87.19%, re-

spectively, where maF is 4% (91.14–87.19%) smaller than that of nighttime. However, for 

the imbalanced classifiers, miF is better able to present the model performance accurately 

than maF [31], as the worse accuracy for the small portion in Transition does not signifi-

cantly affect the overall model performance. Therefore, both day and night can be consid-

ered to be high accuracies for the model performance according to the miF. Hereafter, maF 

will only be used as a reference to assist in the evaluation of the individual classifier accu-

racy, particularly for Transition. 

Table 3. Summary of evaluation of three CSM types in nighttime, 02/21/2020. 

 Input  Correct Prediction Recall (%) Precision (%) 

CS 6,309,189 6,063,150 6,518,594 96.10 93.01 

Transition 2,121,462 1,925,740 2,664,887 90.77 72.26 

Cloud 29,553,499 28,714,035 28,800,669 97.16 99.70 

Total/Average 37,984,150 36,702,925 37,984,150 94.68 88.32 

miF and maF (%)  96.63  91.14 

Table 4. Summary of evaluation of three CSM types in daytime, 02/21/2020. 

 Input  Correct Prediction Recall (%) Precision (%) 

CS 6,623,885 6,106,453 6,782,545 92.19 90.03 

Transition 2,283,160 1,832,188 2,802,059 80.25 65.39 

Cloud 27,933,110 27,157,602 27,255,551 97.22 99.64 

Total/Average 36,840,155 35,096,243 36,840,155 90.00 85.02 

miF and maF (%)  95.27  87.19 

Figure 1 shows the global distribution of the ACSPO CSM and the FCDN_CSM pre-

diction on 02/21/2020. The global distributions are quite consistent between the ACSPO 

CSM and the FCDN_CSM for both day and night, regardless of the latitude, coastal area, 

and sun glint area, which could involve rapid atmospheric and geophysical condition 

changes. Both CSMs are also consistent with the day true-color images and night images 

for VIIRS monitored on the ICVS web page. Note that the FCDN_CSM mainly focuses on 

clear-sky identification for improving the FCDN_CRTM performance. This is slightly dif-

ferent from cloud mask products, such as the VIIRS cloud mask (VCM) [10,11], which 

mainly analyzes cloud types and cloud radiometric characteristics. Therefore, the analyses 

of different cloud types are out of scope of this paper. With the exception of the F-score 

analyses in this section, we further validated the FCDN_CSM accuracy and stability by 
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evaluating global O-M mean and standard deviations, and compared them with ACSPO 

CSM, as discussed in the next subsection.  

  

  

Figure 1. Global distribution of CSM types Advanced Clear-Sky Processor over Ocean (ACSPO) (actual) and FCDN_CSM 

(predicted) on 02/21/2020, including Clear-Sky pixels (CS), cloud pixels (Cloud), and transition pixels between Clear-Sky 

and Cloud (Trans). 

3.2. Validation with O-M Biases 

An evaluation of the VIIRS radiometric biases with the O-M biases for TEB bands has 

been conducted in earlier research [3–6]. Similarly, we used the analysis method of the O-

M biases to evaluate ACSPO CSM [3], where the global O-M biases for TEB bands were 

calculated using the ACSPO CSM to identify clear-sky pixels, and the CSM was then eval-

uated by the O-M mean biases and STDs. As with the evaluation of ACSPO CSM, we also 

used O-M biases to evaluate FCDN_CSM accuracy and stability.  

Table 5 shows the global O-M statistics corresponding to Figure 1, using the two 

CSMs to identify clear-sky pixels. Due to solar reflection contamination, M12 was not used 

in the daytime analysis. The global O-M mean biases of the FCDN_CSM and ACSPO are 

comparable for all bands and both day and night, suggesting that the predicted CSM is 

unbiased with respect to ACSPO CSM. STDs are also close to those of the ACSPO, alt-

hough they are slightly worse for the three long wave IRs (LWIR): M14, M15, and M16. 

More detail about the accuracy of STD is provided below. Figures 2 and 3 further show 

global distribution and histograms of the O-M biases for VIIRS M14, M15, and M16 for 

day and night using the FCDN_CSM as a clear-sky identification. The global distributions 

are uniform and the O-M mean biases in most areas are close to zero for both day and 

night. All histograms are Gaussian distributed. The O-Ms in daytime are slightly warmer 

than at night, as expected, due to the pronounced daytime diurnal cycle, which was not 

taken into account in the CRTM simulation [3]. 

Table 5. Global O-M statistics for 02/21/2020 day and night in the bands M12–M16 with clear-sky identification using 

ACSPO CSM and FCDN_CSM. (µ: O-M mean; σ: O-M standard deviation; NCSP: the number of clear-sky pixels). 

 Nighttime Daytime 

 ACSPO FCDN_CSM ACSPO FCDN_CSM 

 µ σ µ σ µ σ µ σ 

M12 −0.0281 0.2900 −0.0405 0.3146 N/A N/A N/A N/A 

M13 −0.5805 0.2500 −0.5894 0.2640 −0.0808 0.4267 −0.0912 0.4265 

M14 −0.5246 0.3513 −0.5213 0.3835 −0.3156 0.3477 −0.3141 0.3808 
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M15 −0.3026 0.4006 −0.2933 0.4370 −0.0736 0.3688 −0.0690 0.4122 

M16 −0.3958 0.4760 −0.3812 0.5233 −0.1927 0.4232 −0.1841 0.4797 

NCSP 6,309,189 6,518,594 6,623,885 6,782,545 

  

  

  

Figure 2. Global distribution of the O-M biases on 02/21/2020 for VIIRS M14 (Top), M15 (middle), and M16 (bottom), using 

FCDN_CSM as clear-sky identification for both daytime (left) and nighttime (right). 
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Figure 3. Histograms of the O-M biases on 02/21/2020 for VIIRS M14 (top), M15 (middle), and M16 (bottom), using 

FCDN_CSM as clear-sky identification for both daytime (left) and nighttime (right). 

All global statistics and distribution of O-M biases are generally consistent with those 

of ACSPO CSM, with the exception of the STDs, which are slightly worse for LWIRs; these 

decreased from 0.032 K in M14 to 0.045 K in M16 in nighttime, and from 0.033 K in M14 

to 0.055 K in M16 in daytime. As shown in the table, one reason for the slight STD degra-

dation in LWIRs is because the number of clear-sky pixels predicted by the FCDN_CSM 

model ranges from 2.3% (day) to 3.3% (night) larger than that in the ACSPO CSM, which 

may attribute to residual cloud in the FCDN_CSM model. However, this is not the only 

case. Type Cloud generally occupies ~80% of the total pixels—about four times larger than 

type CS and more than ten times larger than type Transition. Although the Cloud predic-

tions were highly accurate, the 97% recall (Tables 3 and 4) means that there remains a 3% 

misidentification, which was distributed to CS or Transition, resulting in a slight degra-

dation in precision for type CS, and significant accuracy reduction for type Transition. As 

a result, ~9% and ~7% pixels were misjudged as CS for day and night, respectively, as 

shown in Tables 3 and 4. This clearly does not mean that all misjudgments in CS are real 

Cloud or PCS types. An offline analysis of a subset of the 3% misidentification in Cloud 

showed that the O-M biases were very close to zero, and more similar to CS than to Cloud. 

This indicates that the ACSPO CSM algorithm may be somewhat conservative, as dis-

cussed in [1], resulting in misjudgment of some CS pixels as Cloud in ACSPO, which was 

corrected by the FCDN_CSM prediction.  

Overall, some room still exists to improve FCDN_CSM in the future. Although one 

might think that increasing the amount of Transition and CS in the training data set would 

be a solution to improve the identification accuracies of the model, extensive experiments 

have been conducted and shown that this is not the case. As we discussed in the previous 

subsection, the root source of this cloud misidentification may be inadequate considera-

tion of the surrounding effects for each pixel in the current FCDN_CSM model, because 

Cloud and PCS are partly tested by the radiative variation of the surrounding pixels [1,11]. 

Further fine-tuning of the model is needed to improve the CSM identification accuracy, 
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particularly for the remaining 3% misidentification in the recall for type Cloud. Further 

discussion about this issue is provided in Section 4. 

Nevertheless, both recall and precision for CS are highly accurate (>90%) for both 

daytime and nighttime, and the largest degradation in STDs (~0.055 K) is still within the 

range of the FCDN_CRTM validation. Furthermore, similar to the case of v1 [14], using a 

NOAA internal Linux server with 100 G memory and 2.2 G multi-core CPUs and without 

GPU support, the FCDN-CSM v2 takes about 20 s to generate one day of CSM (about 0.6 

billion pixels), excluding the calculation of CWV and other atmosphere parameters, 

whereas the updated ACSPO v2.4 needs more than five hours to obtain the same CSM 

product. This high efficiency, together with the high accuracies in F-score and O-M biases, 

render the FCDN_CSM a better selection as the clear-sky identification for the 

FCDN_CRTM. 

3.3. Stability of the FCDN_CSM 

To check the stability of the FCDN_CSM, we used FCDN_CSM v2 to predict CSM 

and analyzed O-M biases for the other five dispersion days (03/16/2020, 04/15/2020, 

05/16/2020, 06/10/2020, and 07/30/2020), which comprise nearly one day per month se-

lected from March to July in 2020. Including 02/21/2020, a total of six days’ data were used 

to evaluate the stability of the FCDN_CSM. Note that all days’ selection was random. We 

did not apply any specific conditions to these days. Input, correct, and F1-score results for 

type CS, together with corresponding recall, precision, and overall miF, are listed in Tables 

6 and 7. The F1-score is Fβ-score when β is equal to one, giving the same weight to recall 

and precision. Note that while miF is used to check overall FCDM_CSM performance, the 

other parameters in the tables are only for type CS, as only CS is needed for the 

FCDN_CRTM validation. 

Table 6. Summary of the FCDN_CSM daytime predictions for six days’ data. 

 Input Correct Recall (%) Precision (%) F1-Score (%) miF (%) 

02/21/2020 6,623,885 6,106,453 92.18 90.03 91.09 95.27 

03/16/2020 6,648,601 6,152,427 92.54 90.06 91.28 94.83 

04/15/2020 6,325,957 5,802,787 91.72 89.62 90.66 95.08 

05/16/2020 6,321,889 5,823,135 92.11 90.18 91.13 94.75 

06/10/2020 5,860,868 5,356,848 91.40 89.25 90.32 95.05 

07/30/2020 6,066,212 5,484,928 90.41 89.82 90.11 95.45 

Table 7. Summary of the FCDN_CSM nighttime predictions for six days’ data. 

 Input Correct Recall (%) Precision (%) F1-Score (%) miF (%) 

02/21/2020 6,309,189 6,063,150 96.10 93.01 94.53 96.63 

03/16/2020 6,438,926 6,180,724 95.99 92.76 94.35 96.31 

04/15/2020 6,306,972 6,016,344 95.39 92.18 93.76 95.95 

05/16/2020 6,355,016 6,100,474 95.99 92.83 94.38 96.21 

06/10/2020 6,031,163 5,782,167 95.87 92.25 94.03 95.96 

07/30/2020 5,756,199 5,531,779 96.10 91.78 93.89 96.23 

Recall, precision, and F1-score are generally consistent for all five days (both daytime 

and nighttime). The typical values are 92%, 90%, and 91% for daytime and 96%, 92%, and 

94% for nighttime, respectively. All statistical values are comparable with the high accu-

racies of 02/21/2020, although there are minor degradations with the time in some param-

eters at the end of the analysis period. For instance, the maximum degradations are in 

daytime recall and nighttime precision, which decreased by ~2.1% and ~1.2% on 

07/30/2020—about half a year from the selected training data set. As expected, both recall 
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and precision for nighttime are 2–4% higher than those of daytime for every analysis pe-

riod, making the F1-score and the miF ~3% and ~1% higher. Furthermore, miF persists at 

~95% for day and ~96% for night, suggesting not only that the CS type has high prediction 

accuracy and stability, but also that Cloud has great accuracy, and both Cloud and Tran-

sition are quite stable in time. The global O-M distributions and corresponding histograms 

for the latter five days were similar to those of 02/21/2020—global distributions of the O-

M mean biases are uniform and close to zero, and the corresponding histograms are 

Gaussian distributed, as shown in Figures 2 and 3. Figure 4 shows the error bars of the 

VIIRS O-M biases for six dispersion days from February to July 2020 for daytime and 

nighttime, where the VIIRS clear-sky pixels were identified by FCDN_CSM v2. Two-line 

statistics values show the day-to-day means (DDM) and STDs (DDS) of the O-M mean 

biases and STDs for each corresponding band, as a check on the temporal and spatial var-

iability of the O-M biases. The dashed lines represent the DDMs for each band. The O-M 

mean biases are consistent with the corresponding DDM lines, with uncertainty within 

several thousandths of a Kelvin for both daytime and nighttime, and STD uncertainty is 

similar. This result suggests the O-M biases are generally stable over time. This high sta-

bility also indicates that there is no significant overfitting in the FCDN_CSM v2. 

 

Figure 4. The error bars of the Visible Infrared Imaging Radiometer Suite (VIIRS) O-M biases for 

six dispersion days from February to July, 2020 for day (upper) and night (bottom). The VIIRS 

clear-sky pixels were identified by FCDN_CSM. Two-line statistics values present the day-to-day 

means (DDM) and STDs (DDS) of the O-M means and STDs for each corresponding band ordered 

from M13 to M16 for daytime and from M12 to M16 for nighttime. The dashed lines represent the 

DDMs for each band. 
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4. Discussion 

Due to the high prediction accuracies, efficiency, and stability, at the time of writing, 

the FCDN_CSM v2 has been successfully used for the FCDN_CRTM as clear-sky identifi-

cation to predict VIIRS clear-sky radiances for five TEB/M bands. The result was docu-

mented in the companion paper—Part 2 and previously published [23]. In addition, we 

were also exploring possible means to improve the model, which is discussed in this sec-

tion.  

As discussed in the previous section, the slightly worse accuracy in type Transition, 

mainly resulting from a 3% misidentification from type Cloud, appears to be partly due 

to the inadequate consideration of spatial variance in FCDN_CSM, because Cloud and 

PCS are partly tested by the variation in the surrounding pixels [1,11]. This raises ques-

tions about how to verify this hypothesis, and whether any potential improvement can be 

made to the FCDN_CSM prediction accuracy. Because the FCDN_CSM architecture is rel-

atively simple, and has only 13 and 10 input features for daytime and nighttime mode, 

and multiple experiments have been conducted to tune the number of layers and neurons 

and other hyperparameters during the model training and testing, it is unlikely that the 

model’s accuracy can be further improved by continued tuning of the model. Recall that 

in FCDN_CSM v1, we conducted a sensitivity analysis about the selection of important 

features and successfully improved the model’s efficiency without significant loss of ac-

curacy [15]. Thus, the selection of features may still have the potential to provide a means 

to improve FCDN_CSM prediction accuracy and verify our hypothesis above. Therefore, 

in this section, we tested a new feature—a root mean square (RMS) of BT difference, which 

represents spatial radiative variability in FCDN_CSM, in addition to the individual BTs 

as the model inputs. The BT difference between M15 and M16 (T15–16) was used for day-

time, and the BT difference between M12 and M16 (T12–16) for nighttime. As is well-known, 

T12–16 and T15–16 are comprehensively used in the cloud mask algorithm to assist in the clas-

sification of CS and semitransparent clouds, by exploiting radiative properties of clouds 

in the thermal IR spectral range [1,11,12]. Both T12–16 RMS (RMS12–16) and T15–16 RMS (RMS15–

16) were calculated from a 40 × 40 moving window around each pixel. We retrained the 

model using the same six days’ data as described in Section 2, but added RMS12–16 for 

nighttime and RMS15–16 for daytime as a new feature. Figure 5 shows the changes to the 

cost functions during the model training with comparison to the cases without the new 

feature, which have the same number of input features as the FCDN_CSM v2 listed in 

Table 1. It is clear that, in the daytime, the cost functions for the case with the RMS15–16 are 

larger in the first 200,000 iterations. However, after the model was trained adequately, the 

cost functions became smaller than those without the RMS, and the cost further declined 

at the end of the training. For nighttime, the cost function for the case with the RMS12–16 is 

persistently smaller than that without the RMS and the amplitude is significantly larger 

than that of the daytime. Both cost reductions suggest that the model biases could be fur-

ther reduced by adding the RMS12–16 and RMS15–16, and the reduction in nighttime is more 

pronounced than that in daytime.  
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Figure 5. The changes in cost function for day (upper) and night (bottom) during FCDN_CSM 

training with and without the RMS12–16 or RMS15–16 as a new feature. 

Table 8 shows recall (R) and precision (P) for three CSM types in test data between 

the cases of with and without RMS12–16 and RMS15–16, for both daytime and nighttime. The 

miF and maF are also provided. The precisions of the type Cloud are more than 99.6% for 

all cases and are consistent between the cases with and without the new feature. However, 

for the cases with the new feature, the recall of type Cloud increases 0.45% (97.91—97.46%) 

in daytime and 1.18% (98.18–97.00%) in nighttime. Thus, the misidentification in Cloud is 

reduced from 3% to 2.5% and 1.82% for daytime and nighttime, respectively, which re-

duces the Cloud contamination to the other two types, and thus improves the recall and 

precision for both CS and Transition, particularly for nighttime. The precision of Transi-

tion and CS increases from 72.04% and 92.94% to 78.17% and 95.51%, respectively. As a 

result, miF for the cases with the new feature increases by 0.43% for daytime and 1% for 

nighttime, and maF increases by 1% for day and 2% for night. The O-M mean biases and 

STDs in each case are listed in Table 9. As expected, the means are comparable between 

the cases with and without the new feature, but the STDs are improved for all bands, 

especially for the nighttime M16, where the STDs were reduced by 0.04 K. Overall, selec-

tion of features is a potential means to improve the model accuracy. Because the 

FCDN_CSM v2 has been used for FCDN_CRTM to predict clear-sky radiances for VIIRS 

TEB/M bands and the related results have been published [23], and currently the evalua-

tion of this new feature did not reach full maturity, we decided to add the RMS feature to 

the next version of FCDN_CSM (v3), rather than to v2, and the accuracies and stabilities 

for both ocean and land will be re-evaluated. 

Table 8. Prediction accuracies for test data using FCDN_CSM v2 or FCDN_CSM v2 plus new RMS 

feature as Clear-Scheme 2. RMS: FCDN_CSM v2 plus new RMS feature). 

 Daytime Nighttime 

 FCDN_CSM v2  v2 + RMS15–16 FCDN_CSM v2 v2 + RMS12–16 

 R (%) P (%) R (%) P (%) R (%) P (%) R (%) P (%) 

CS 92.06 90.58 91.46 91.90 95.97 92.94 95.99 95.51 

Transition 80.75 67.36 83.66 68.69 89.93 72.04 91.34 78.17 

Cloud 97.46 99.60 97.91 99.72 97.00 99.64 98.18 99.60 

Total/Average 90.09 85.85 90.82 86.76 94.30 88.20 95.17 91.09 

miF (%) 95.37 95.80 96.40 97.40 

maF(%) 87.91 88.74 91.15 93.09 
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Table 9. The O-M mean biases and STDs for test data for VIIRS bands M12–M16 using 

FCDN_CSM v2 or FCDN_CSM v2 plus new RMS feature as clear-sky identification (µ: O-M mean; 

σ: O-M standard deviation; v2+RMS: FCDN_CSM v2 plus new RMS feature). 

 Daytime Nighttime 

 FCDN_CSM v2  v2 + RMS15–16 FCDN_CSM v2 v2 + RMS12–16 

 µ σ µ σ µ σ µ Σ 

M12 N/A N/A N/A N/A −0.0270 0.3042 −0.0263 0.2942 

M13 −0.1091 0.4649 −0.1059 0.4594 −0.5779 0.2671 −0.5834 0.2660 

M14 −0.3597 0.3901 −0.3549 0.3800 −0.5549 0.4008 −0.5617 0.3870 

M15 −0.1083 0.4226 −0.1035 0.4116 −0.3242 0.4574 −0.3260 0.4318 

M16 −0.2285 0.4867 −0.2228 0.4753 −0.4210 0.5512 −0.4179 0.5149 

In addition to prediction accuracy, long-term stability is also a critical factor of the 

FCDN_CSM performance that needs to be carefully evaluated. At the time of writing, the 

selected prediction data were only accumulated until 07/30/2020, which covered half a 

year from the end of the selected training data period. During the whole evaluation pe-

riod, the FCDN_CSM v2 showed long-term stability for both O-M mean biases and STDs, 

and obviously outperforms v1, for which a period of stability of only several weeks ap-

peared. Although further validation of the model stability is needed by accumulating re-

cent or future data, the degradations in daytime recall and nighttime precision in 

07/30/2020 (Tables 6 and 7) imply that the stability of the FCDN_CSM v2 may degrade for 

a more extended prediction period. Therefore, it is still necessary to consider potential 

means to improve future model stability. The discussion below aims to achieve this pur-

pose. First, time and location, which were not included in the FCDN_CSM v2, may be two 

potential features to improve long term stability. Second, we noted that the addition of 

the new RMS feature can improve prediction accuracies. It is also possible to improve the 

stability by further checking the stability using the other five days’ data. Third, using more 

data for training may be another means to improve model stability. In addition, the model 

architecture can still be fine-tuned to further avoid model overfitting. Finally, similar to 

the case of FCDN_CRTM, retraining the model periodically is also a substitute method to 

maintain long-term stability of the model. 

One advantage of the FCDN_CSM is migration capability, that is, the NOAA-20 

VIIRS CSM will be predicted directly using the well-trained FCDN_CSM v2 by S-NPP 

data. This advantage has been demonstrated in detail in the FCDN_CSM v1 [14]. Because 

the design, data preprocessing, training, and testing for v2 are quite similar to those for 

v1, the migration advantage could be applied to v2. Indeed, further quantitative valida-

tion is needed to check the prediction accuracies and stability for NOAA-20, and we will 

re-evaluate the migration advantage quantitatively in the next version. 

5. Conclusions 

An earlier-developed FCDN_CSM was reviewed and enhanced to improve its stabil-

ity, in addition to its accuracy and efficiency. This enhanced model is referred to as 

FCDN_CSM v2. In addition, daytime analysis was included in v2. The objective was to 

develop a fast and robust FCDN_CSM for CS identification for the FCDN_CRTM model. 

Six dispersion days of data, covering all seasons, were selected as the model inputs to 

improve model stability. Because the input data covers all seasons and more features are 

used for daytime, the model architecture was redesigned to include three hidden layers 

with 32 × 64 × 16 neurons for both nighttime and daytime to be trained adequately. The 

input features were extracted from the VIIRS SDR data, in conjunction with ECMWF and 

CMC SST. The well-trained model was then used to predict six dispersion days’ data in 

2020 as an accuracy and stability check. 

Based on the analyses of the F-score, which is commonly used to evaluate the perfor-

mance of classification problems, of the three CSM types predicted in the FCDN_CSM v2, 

type Cloud was the most accurate, showing ~97% recall and more than 99% precision for 
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both daytime and nighttime. This was followed by the type Clear-Sky, which showed 

~96% recall and ~93% precision in the nighttime, and was ~3% worse in the daytime. The 

high prediction accuracies persisted in all prediction days, with the exception of slight 

degradations (~2.1% daytime recall and ~1.2% nighttime precision) for the last prediction 

day, which lay about half a year from the time of the training data. The O-M mean biases 

are comparable with the ACSPO CSM for all bands, as are the STDs of the short-wave IRs 

(M12 and M13); whereas the standard deviations (STD) were slightly degraded in long 

wave IRs (M14, M15 and M16), indicating that residual cloud or outliers may have existed 

in the FCDN_CSM. Thus, further fine-tuning to improve the O-M biases may be required 

in the future. An improvement for the model was discussed, which uses an RMS of the BT 

difference as a new input feature to represent the spatial radiative variability around each 

pixel. Overall, the consistent O-M means and STDs for whole prediction periods proved 

that the FCDN_CSM v2 is robust and does not have significant overfitting. Combined 

with the excellent F-scores, stability, high efficiency, and allowable STDs, the FCDN_CSM 

version 2 has been successfully used for the FCDN_CRTM to predict VIIRS clear-sky ra-

diances for five TEB/M bands [23]. Our future work will extend the FCDN_CSM function-

alities to include land analysis. 
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