Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Data Collection and Processing
2.1.1. Test Sites and Sampling Design
- Eighteen parcels (7 × winter wheat, 4 × spring barley, 5 × winter rapeseed, 1 × alfalfa, 1 × sugar beet, 1 × corn) including 188 reference points in 2017.
- Twenty-one parcels (3 × winter wheat, 2 × spring barley, 6 × alfalfa, 4 × sugar beet, 4 × corn) including 244 reference points in 2018.
2.1.2. Measurements of Crop Leaf Biochemical Traits
2.1.3. Measurements of Crop Structural Traits
2.1.4. Measurements of Leaf and Canopy Spectra
2.2. Radiative Transfer
2.2.1. PROSAIL Model Parametrization
2.2.2. Design and Creation of Look-Up Tables
2.3. Crop Biophysical Parameters Retrieval
2.3.1. Image Processing
2.3.2. Biophysical Parameters Retrieval Approach
3. Results
3.1. In Situ Crop Biochemical, Structural and Spectral Properties
3.1.1. In Situ Data Collection
3.1.2. Quality of Sentinel-2 Atmospheric Correction
3.2. Modeling Crop-Specific Reflectance in the Radiative Transfer Model
3.2.1. Crop-Specific Parametrization of the PROSAIL Radiative Transfer Model
2. 20 μg/cm2 ≤ LCC < 40 μg/cm2: LWCmax = 0.04 cm
3. LCC >= 40 μg/cm2: LWCmax = 0.07 cm
3.2.2. Crop Quantitative Product Inversion and Validation
3.3. Practical Examples and Designing of Crop Management Zones
4. Discussion
4.1. Sentinel-2 Images for the Determination of Crop Biophysics
4.2. In Situ Data Collection
4.3. Satellite-Based Crop Biophysics Validation
4.4. Discussion of the Results Relative to the Literature
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Crop | Dataset | Variable | LCC [µg/cm2] | LWC [cm] | SLW [g/cm2] | LAI |
---|---|---|---|---|---|---|
Winter cereals (winter wheat) | calibration n = 84 | MIN | 2.2 | 0.0005 | 0.0003 | 0.8 |
MEAN | 42.2 | 0.0155 | 0.0044 | 3.9 | ||
MAX | 55.0 | 0.0288 | 0.0072 | 6.0 | ||
STD | 10.9 | 0.0072 | 0.0017 | 1.3 | ||
validation n = 96 | MIN | 2.2 | 0.0007 | 0.0010 | 0.3 | |
MEAN | 41.8 | 0.0161 | 0.0047 | 3.5 | ||
MAX | 59.4 | 0.0360 | 0.0223 | 6.3 | ||
STD | 11.6 | 0.0071 | 0.0027 | 1.7 | ||
Spring cereals (spring barley) | calibration n = 31 | MIN | 2.7 | 0.0017 | 0.0005 | 0.3 |
MEAN | 32.0 | 0.0095 | 0.0031 | 4.2 | ||
MAX | 48.1 | 0.0153 | 0.0059 | 6.8 | ||
STD | 9.7 | 0.0035 | 0.0019 | 1.8 | ||
validation n = 29 | MIN | 4.1 | 0.0016 | 0.0004 | 0.2 | |
MEAN | 34.3 | 0.0102 | 0.0032 | 4.2 | ||
MAX | 53.4 | 0.0162 | 0.0069 | 7.7 | ||
STD | 8.3 | 0.0037 | 0.0017 | 2.0 | ||
Winter rapeseed | calibration n = 56 | MIN | 26.1 | 0.0037 | 0.0003 | 0.4 |
MEAN | 42.7 | 0.0324 | 0.0057 | 3.4 | ||
MAX | 55.3 | 0.1423 | 0.0280 | 8.5 | ||
STD | 6.5 | 0.0188 | 0.0043 | 2.6 | ||
validation n = 51 | MIN | 26.3 | 0.0022 | 0.0006 | 0.7 | |
MEAN | 41.6 | 0.0301 | 0.0056 | 3.7 | ||
MAX | 54.3 | 0.0501 | 0.0098 | 8.6 | ||
STD | 7.2 | 0.0118 | 0.0029 | 2.1 | ||
Fodder crops (alfalfa) | calibration n = 29 | MIN | 24.0 | 0.0011 | 0.0037 | 0.1 |
MEAN | 31.5 | 0.0038 | 0.0053 | 2.7 | ||
MAX | 39.0 | 0.0117 | 0.0076 | 7.2 | ||
STD | 3.8 | 0.0031 | 0.0008 | 2.4 | ||
validation n = 28 | MIN | 23.4 | 0.0010 | 0.0035 | 0.1 | |
MEAN | 31.6 | 0.0036 | 0.0051 | 2.8 | ||
MAX | 37.3 | 0.0111 | 0.0069 | 10.2 | ||
STD | 3.6 | 0.0029 | 0.0008 | 2.6 | ||
Sugar beetroot | calibration n = 26 | MIN | 25.3 | 0.0047 | 0.0021 | 0.9 |
MEAN | 32.2 | 0.0112 | 0.0057 | 4.4 | ||
MAX | 53.7 | 0.0353 | 0.0076 | 6.7 | ||
STD | 5.1 | 0.0077 | 0.0012 | 1.7 | ||
validation n = 36 | MIN | 25.7 | 0.0033 | 0.0019 | 0.9 | |
MEAN | 32.0 | 0.0118 | 0.0058 | 4.6 | ||
MAX | 55.0 | 0.0285 | 0.0082 | 6.6 | ||
STD | 4.9 | 0.0062 | 0.0012 | 1.5 | ||
Corn | calibration n = 27 | MIN | 33.9 | 0.0012 | 0.0041 | 0.7 |
MEAN | 50.4 | 0.0084 | 0.0058 | 3.6 | ||
MAX | 60.2 | 0.0144 | 0.0125 | 5.8 | ||
STD | 6.8 | 0.0053 | 0.0016 | 1.4 | ||
validation n = 44 | MIN | 31.0 | 0.0019 | 0.0008 | 0.7 | |
MEAN | 49.2 | 0.0035 | 0.0057 | 3.4 | ||
MAX | 59.4 | 0.0119 | 0.0079 | 5.8 | ||
STD | 6.9 | 0.0024 | 0.0012 | 1.4 |
References
- Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications; Oxford University Press: Oxford, UK, 2010; 353p. [Google Scholar]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Holman, F.H.; Riche, A.B.; Michalski, A.; Castle, M.; Wooster, M.J.; Hawkesford, M.J. High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Banerjee, K.; Krishnan, P.; Mridha, N. Application of thermal imaging of wheat crop canopy to estimate leaf area index under different moisture stress conditions. Biosyst. Eng. 2018, 166, 13–27. [Google Scholar] [CrossRef]
- Pineda, M.; Barón, M.; Pérez-Bueno, M.L. Thermal imaging for plant stress detection and phenotyping. Remote Sens. 2021, 13, 68. [Google Scholar] [CrossRef]
- Harfenmeister, K.; Spengler, D.; Weltzien, C. Analyzing temporal and spatial characteristics of crop parameters using Sentinel-1 backscatter data. Remote Sens. 2019, 11, 1569. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.E.; Peña, J.M.; Jayamohan, J.; Jérusalem, A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. 2018, 14, 20170660. [Google Scholar] [CrossRef] [PubMed]
- Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [Google Scholar] [CrossRef]
- Johnson, M.D.; Hsieh, W.W.; Cannon, A.J.; Davidson, A.; Bédard, F. Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agric. For. Meteorol. 2016, 218–219, 74–84. [Google Scholar] [CrossRef]
- Garbulsky, M.F.; Peñuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies. A review and meta-analysis. Remote Sens. Environ. 2011, 115, 281–297. [Google Scholar] [CrossRef]
- de Leeuw, J.; Vrieling, A.; Shee, A.; Atzberger, C.; Hadgu, K.M.; Biradar, C.M.; Keah, H.; Turvey, C. The potential and uptake of remote sensing in insurance: A review. Remote Sens. 2014, 6, 10888–10912. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Prasad, R.; Shriver, J.; Zhuang, Q. Crop model- and satellite imagery-based recommendation tool for variable rate N fertilizer application for the US Corn system. Precis. Agric. 2017, 18, 779–800. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Nasa ERTS Symp. 1973, 351, 309–313. [Google Scholar]
- Oregon® 300|Garmin Support. Available online: https://support.garmin.com/en-US/?partNumber=010-00697-01&tab=manuals (accessed on 13 October 2020).
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef]
- Webb, N.; Nicholl, C.; Wood, J.; Potter, E. SunScan Manual Version 3.3; Delta-T Devices Ltd.: Cambridge, UK, 2016; pp. 1–82. [Google Scholar]
- Weiss, M.; Baret, F. Can_Eye V6.4.91 User Manual; INRA: Paris, France, 2017; p. 56. [Google Scholar]
- ASD FieldSpec® 4 Hi-Res: Espectroradiómetro de Alta Resolución|Malvern Panalytical. Available online: https://www.malvernpanalytical.com/es/products/product-range/asd-range/fieldspec-range/fieldspec4-hi-res-high-resolution-spectroradiometer?creative=315830988458&keyword=&matchtype=b&network=g&device=c&gclid=EAIaIQobChMInNybno746gIVx4TVCh3XaABcEAAYASAAEgIa (accessed on 13 October 2020).
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: A review study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F.; Myneni, R.B.; Pragnère, A.; Knyazikhin, Y. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie 2000, 20, 3–22. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Nieto, H. GitHub-Hectornieto/pyPro4Sail: ProspectD and 4SAIL Radiative Transfer Models for Simulating the Transmission of Radiation in Leaves and Canopies. Available online: https://github.com/hectornieto/pyPro4Sail (accessed on 6 December 2017).
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf Optical Properties EXperiment 93 (LOPEX93); Report EUR 16095 EN; Joint Research Centre, European Commission Institute for Remote Sensing Applications: Luxembourg, 1994; p. 11. [Google Scholar]
- ESA Sentinel 2 Document Library-Sentinel-2 Spectral Response Functions (S2-SRF). Available online: https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses (accessed on 3 April 2021).
- Jacquemoud, S. Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra: Theoretical study. Remote Sens. Environ. 1993, 44, 281–292. [Google Scholar] [CrossRef]
- ESA Sen2Cor 2.2.5. Available online: https://step.esa.int/main/snap-supported-plugins/sen2cor/ (accessed on 30 July 2021).
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Raschka, S. Python Machine Learning: Unlock Deeper Insights into Machine Learning with This Vital Guide to Cutting-Edge Predictive Analytics; Packt Publishing Ltd.: Birmingham, UK, 2015; ISBN 9781783555130. [Google Scholar]
- Escobar-Gutiérrez, A.J.; Combe, L. Senescence in field-grown maize: From flowering to harvest. F. Crop. Res. 2012, 134, 47–58. [Google Scholar] [CrossRef]
- Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F.; Schepers, J.S. Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J. 2005, 97, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, P. Canopy vertical heterogeneity plays a critical role in reflectance simulation. Agric. For. Meteorol. 2013, 169, 111–121. [Google Scholar] [CrossRef]
- Pan, H.; Chen, Z.; Ren, J.; Li, H.; Wu, S. Modeling Winter Wheat Leaf Area Index and Canopy Water Content with Three Different Approaches Using Sentinel-2 Multispectral Instrument Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 482–492. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Chakraborty, D.; Sahoo, R.N. Inversion of radiative transfer model for retrieval of wheat biophysical parameters from broadband reflectance measurements. Inf. Process. Agric. 2016, 3, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Richter, K.; Atzberger, C.; Vuolo, F.; D’Urso, G. Evaluation of Sentinel-2 Spectral Sampling for Radiative Transfer Model Based LAI Estimation of Wheat, Sugar Beet, and Maize. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 458–464. [Google Scholar] [CrossRef]
- Dorigo, W.A. Improving the robustness of cotton status characterisation by radiative transfer model inversion of multi-angular CHRIS/PROBA data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 18–29. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Retrieval of Biophysical Crop Variables from Multi-Angular Canopy Spectroscopy. Remote Sens. 2017, 9, 726. [Google Scholar] [CrossRef] [Green Version]
- Croft, H.; Arabian, J.; Chen, J.M.; Shang, J.; Liu, J. Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precis. Agric. 2020, 21, 856–880. [Google Scholar] [CrossRef] [Green Version]
- Casas, A.; Riaño, D.; Ustin, S.L.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
LCC | CX | LWC | LAI | SA | SZ | OA | OZ | SKYL | |
---|---|---|---|---|---|---|---|---|---|
min | 0 | 0 | 0.0005 | 0 | 150 | 25 | - | 0 | 0.2 |
max | 80 | 8 | 0.07 | 8 (10) | 170 | 70 | - | 0 | 0.2 |
dist. | uniform | uniform | uniform | uniform | 5° step | 5° step | Fix | fix | fix |
SLW | N | LIDF_A | LIDF_B | HOTSPOT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min | max | dist. | fixed | min | max | dist. | minn | max | dist. | min | max | dist. | |
W. cereals | 0.0009 | 0.0197 | norm | 1.44 | −1 | 0 | emp. | −1 | 1 | emp. | 0.01 | 0.5 | emp |
S. cereals | 0.001 | 0.0138 | norm | 1.57 | −1 | 0 | emp. | −1 | 1 | emp. | 0.01 | 0.5 | emp |
O. rapeseed | 0.0005 | 0.01 | uniform | 1.78 | −1 | 1 | emp. | −1 | 1 | emp. | 0.5 | 0.5 | fix |
S. beetroot | 0.003 | 0.008 | norm | 1.67 | −1 | 0 | emp. | −1 | 1 | emp. | 0.1 | 0.5 | emp |
Alfalfa | 0.003 | 0.008 | norm | 1.53 | −1 | 1 | emp. | −1 | 1 | emp. | 0 | 0.5 | emp |
Corn | 0.003 | 0.008 | norm | 1.28 | −1 | 1 | emp. | −1 | 1 | emp | 0.2 | 0.5 | emp |
In-Situ Campaign Date | Reference Sentinel-2 Scene Acquisition Date | Reference Sentinel-2 Scene Sun Geometry (SZ, SA) |
---|---|---|
29–31 March 2017 | 1.4.2017 | 46.8°, 161.4° |
17–19 May 2017 | 14.5.2017 and 21.5.2017 | 32.2°, 163.7° and 31.2°, 158.4° |
19–21 June2017 | 20.6.2017 | 28.5°, 154.5° |
4–5 April 2018 | 6.4.2018 | 44.9°, 161.3° |
27–30 April 2018 | 26.4.2018 | 37.8°, 160.8° |
21 May2018 | 21.5.2018 | 31.2°, 158.5° |
20–21 June 2018 | 20.6.2018 | 28.5°, 154.5° |
26 July2018 | 28.7.2018 | 32.5°, 159.2° |
Crop | Variable | LCC (µg/cm2) | LWC (cm) | SLW (g/cm2) | LAI |
---|---|---|---|---|---|
Winter cereals (winter wheat) n = 180 | MIN | 2.24 | 0.0005 | 0.0003 | 0.31 |
MEAN | 42.06 | 0.0157 | 0.0045 | 3.68 | |
MAX | 59.35 | 0.0360 | 0.0223 | 6.31 | |
STD | 11.24 | 0.0072 | 0.0022 | 1.56 | |
Spring cereals (spring barley) n = 60 | MIN | 2.66 | 0.0016 | 0.0004 | 0.24 |
MEAN | 33.12 | 0.0098 | 0.0031 | 4.19 | |
MAX | 53.37 | 0.0162 | 0.0069 | 7.67 | |
STD | 9.11 | 0.0036 | 0.0018 | 1.90 | |
Winter rapeseed n = 107 | MIN | 26.29 | 0.0022 | 0.0030 | 0.61 |
MEAN | 43.19 | 0.0330 | 0.0071 | 3.45 | |
MAX | 55.30 | 0.1423 | 0.0280 | 8.62 | |
STD | 6.68 | 0.0174 | 0.0030 | 2.23 | |
Fodder crops (alfalfa) n = 57 | MIN | 23.43 | 0.0010 | 0.0035 | 0.09 |
MEAN | 31.59 | 0.0037 | 0.0052 | 2.78 | |
MAX | 39.02 | 0.0117 | 0.0076 | 10.16 | |
STD | 3.70 | 0.0030 | 0.0008 | 2.48 | |
Sugar beetroot n = 62 | MIN | 25.30 | 0.0033 | 0.0019 | 0.86 |
MEAN | 32.20 | 0.0168 | 0.0058 | 4.33 | |
MAX | 54.95 | 0.0353 | 0.0082 | 6.72 | |
STD | 5.36 | 0.0087 | 0.0012 | 1.66 | |
Corn n = 71 | MIN | 30.99 | 0.0012 | 0.0007 | 0.70 |
MEAN | 49.13 | 0.0083 | 0.0056 | 3.46 | |
MAX | 60.15 | 0.0144 | 0.0079 | 5.78 | |
STD | 7.00 | 0.0051 | 0.0013 | 1.32 |
Crop | LAI | LCC | LWC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (cm/cm) | rRMSE (%) | r | R2 | RMSE (µg/cm2) | rRMSE (%) | r | R2 | RMSE (cm) | rRMSE (%) | r | R2 | |
Winter cereals | 1.13 | 33 | 0.83 | 0.69 | 9.59 | 22 | 0.41 | 0.17 | 0.0105 | 65 | −0.23 | 0.05 |
Spring cereals | 1.62 | 39 | 0.73 | 0.53 | 10.90 | 32 | 0.06 | 0.00 | 0.0142 | 140 | 0.27 | 0.07 |
Winter rapeseed | 0.95 | 31 | 0.88 | 0.77 | 8.20 | 19 | 0.66 | 0.43 | 0.0156 | 50 | −0.28 | 0.08 |
Fodder crops | 1.50 | 53 | 0.85 | 0.73 | 10.98 | 35 | −0.28 | 0.08 | 0.0146 | 403 | 0.51 | 0.26 |
Sugar beetroot | 1.13 | 25 | 0.92 | 0.84 | 11.52 | 36 | 0.04 | 0.00 | 0.0104 | 54 | 0.51 | 0.26 |
Corn | 1.72 | 51 | 0.72 | 0.52 | 7.78 | 16 | 0.69 | 0.48 | 0.0105 | 107 | 0.4 | 0.16 |
All crops | 1.32 | 37 | 0.80 | 0.63 | 9.88 | 25 | 0.47 | 0.22 | 0.0124 | 78 | 0.33 | 0.11 |
Field Campaign | LAI | LCC | LWC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (cm/cm) | rRMSE (%) | r | R2 | RMSE (µg/cm2) | rRMSE (%) | r | R2 | RMSE (cm) | rRMSE (%) | r | R2 | |
A (Mar 2017) | 1.08 | 46 | 0.6 | 0.36 | 6.05 | 14 | 0.42 | 0.18 | 0.0123 | 40 | 0.55 | 0.3 |
B (May 2017) | 1.33 | 26 | 0.52 | 0.27 | 9.49 | 25 | 0.81 | 0.65 | 0.0129 | 95 | −0.07 | 0.01 |
C (Jun 2017) | 1.82 | 36 | 0.3 | 0.09 | 15.6 | 40 | 0.47 | 0.22 | 0.0104 | 68 | 0.7 | 0.48 |
D (Apr 2018) | 0.91 | 116 | 0.89 | 0.79 | 7.32 | 20 | 0.62 | 0.39 | 1.09 | 85 | 0.85 | 0.72 |
E (Apr 2018) | 0.57 | 19 | 0.98 | 0.96 | 7.98 | 20 | 0.64 | 0.41 | 0.0146 | 166 | 0.35 | 0.12 |
F (May 2018) | 0.79 | 21 | 0.95 | 0.90 | 10.66 | 32 | 0.56 | 0.31 | 0.0202 | 360 | −0.7 | 0.49 |
G (Jun 2018) | 1.44 | 35 | 0.82 | 0.68 | 10.78 | 25 | 0.37 | 0.14 | 0.0069 | 39 | 0.93 | 0.87 |
H (Jul 2018) | 1.62 | 43 | 0.85 | 0.72 | 6.77 | 17 | 0.72 | 0.52 | 0.0155 | 326 | 0.7 | 0.5 |
All campaigns | 1.32 | 37 | 0.80 | 0.63 | 9.88 | 25 | 0.47 | 0.22 | 0.0124 | 78 | 0.33 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomíček, J.; Mišurec, J.; Lukeš, P. Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sens. 2021, 13, 3659. https://doi.org/10.3390/rs13183659
Tomíček J, Mišurec J, Lukeš P. Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sensing. 2021; 13(18):3659. https://doi.org/10.3390/rs13183659
Chicago/Turabian StyleTomíček, Jiří, Jan Mišurec, and Petr Lukeš. 2021. "Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations" Remote Sensing 13, no. 18: 3659. https://doi.org/10.3390/rs13183659
APA StyleTomíček, J., Mišurec, J., & Lukeš, P. (2021). Prototyping a Generic Algorithm for Crop Parameter Retrieval across the Season Using Radiative Transfer Model Inversion and Sentinel-2 Satellite Observations. Remote Sensing, 13(18), 3659. https://doi.org/10.3390/rs13183659