
Remote Sens. 2014, 6, 10888-10912; doi:10.3390/rs61110888 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Review 

The Potential and Uptake of Remote Sensing in Insurance: 
A Review 

Jan de Leeuw 1,*, Anton Vrieling 2, Apurba Shee 3, Clement Atzberger 4, Kiros M. Hadgu 5, 

Chandrashekhar M. Biradar 6, Humphrey Keah 7 and Calum Turvey 8 

1 World Agroforestry Center (ICRAF), Eastern and Southern African Region, P.O. Box 30677-00100 

Nairobi, Kenya; E-Mail: j.leeuw@cgiar.org  
2 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 

217 7500 AE Enschede, The Netherlands; E-Mail: a.vrieling@utwente.nl 
3 International Livestock Research Institute (ILRI), P.O. Box 30709-00100 Nairobi, Kenya;  

E-Mail: a.shee@cgiar.org 
4 Institute of Surveying, Remote Sensing & Land Information (IVFL), University of Natural 

Resources and Life Sciences (BOKU), Peter Jordanstrasse 82, 1190 Vienna, Austria;  

E-Mail: clement.atzberger@boku.ac.at  
5 World Agroforestry Center (ICRAF), Eastern and Southern African Region, P.O. Box 5689 Addis 

Ababa, Ethiopia; E-Mail: k.hadgu@cgiar.org 
6 International Center for Agricultural Research in Dry Areas (ICARDA), P.O. Box 950764 Amman, 

Jordan; E-Mail: c.biradar@cgiar.org 
7 World Agroforestry Center (ICRAF), P.O. Box 30677-00100 Nairobi, Kenya; E-Mail: 

h.keah@cgiar.org 
8 Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY 

14853-7801, USA; E-Mail: cgt6@cornell.edu 

* Author to whom correspondence should be addressed; E-Mail: j.leeuw@cgiar.org;  

Tel.: +254-737-223-157. 

External Editors: Bingfang Wu and Prasad S. Thenkabail 

Received: 25 May 2014; in revised form: 28 October 2014 / Accepted: 28 October 2014 /  

Published: 7 November 2014 

 

Abstract: Global insurance markets are vast and diverse, and may offer many opportunities 

for remote sensing. To date, however, few operational applications of remote sensing for 

insurance exist. Papers claiming potential application of remote sensing typically stress the 

technical possibilities, without considering its contribution to customer value for the insured 
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or to the profitability of the insurance industry. Based on a systematic search of available 

literature, this review investigates the potential and actual support of remote sensing to the 

insurance industry. The review reveals that research on remote sensing in classical  

claim-based insurance described in the literature revolve around crop damage and flood and 

fire risk assessment. Surprisingly, the use of remote sensing in claim-based insurance 

appears to be instigated by government rather than the insurance industry. In contrast, 

insurance companies are offering various index insurance products that are based on remote 

sensing. For example, remotely sensed index insurance for rangelands and livestock are 

operational, while various applications in crop index insurance are being considered or under 

development. The paper discusses these differences and concludes that there is particular 

scope for application of remote sensing by the insurance industry in index insurance because 

(1) indices can be constructed that correlate well with what is insured; (2) these indices can 

be delivered at low cost; and (3) it opens up new markets that are not served by claim-based 

insurance. The paper finally suggests that limited adoption of remote sensing in insurance 

results from a lack of mutual understanding and calls for greater cooperation between the 

insurance industry and the remote sensing community. 

Keywords: insurance; remote sensing; index insurance; agriculture; flood risk management 

 

1. Introduction 

Remote sensing has the potential to support the insurance industry. This suggestion has been repeated 

since 1975 when Towery described the potential of aerial photography and remote sensing in crop hail 

damage assessment [1,2]. The remote sensing literature offers numerous other examples proposing earth 

observation techniques to support insurance, for example in assessment of damage from fire [3], hail [4], 

and drought [5]. The insurance industry represents a large market of USD 4.3 trillion or 6.4 percent of 

global GDP [6], while worldwide agricultural insurance markets have a collective premium pool worth 

€12.5 billion [7]. Because of the size of these markets insurance may constitute an important application 

field for remote sensing. So far, however, operational applications of remote sensing in the insurance 

industry appear to be few, notwithstanding the size of the market and the potential and recent progress 

of the technology. 

Why does the insurance industry have reservations about adopting remote sensing? The insurance 

industry is among the most information intensive of all service enterprises [8] so at first glance the 

detailed information from remote sensing would appear to be attractive to insurance companies. Yet,  

a 2008 review of the value-added from spatial information ranked the insurance sector among the lowest 

intensity users in Australia [9]. The same study suggested that the insurance sector had potential for 

increased use of spatial information, particularly in better risk assessment. 

The discrepancy between the perceived potential and the actual uptake by the industry is probably  

the result of over-optimistic assumptions by the remote sensing community regarding the industry’s 

readiness to adopt the information that remote sensing could provide. One factor hindering the uptake 

of remote sensing might be its appropriateness for the purpose, because of the indirect relation  
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between remote sensing information and the insured damage as well as the limited duration of available 

time series. However, the adoption of a new technology by an industry depends not only on the 

appropriateness of the technique to support business processes, but also on its impact on customer value 

and the industry’s productivity and profitability. Proper assessment of the potential of remote sensing in 

insurance therefore requires consideration of the technology from the perspective of the industry’s 

business processes and profitability. 

In this paper, we review relevant literature on remote sensing and insurance to investigate the potential 

and actual use of earth observation in support of the insurance industry. The review is based on a search 

of the literature that was accessible in Scopus (Elsevier) using the keywords “Remote Sensing AND 

Insurance” and searching the title, abstract, keywords and references (date of access 24 March 2014). 

The retrieved publications were further examined to select those publications with applications of remote 

sensing in insurance as their core subject matter. This sample was complemented with additional 

professional reports found on the web or referred to in the peer-reviewed literature. The assembled 

compilation of relevant literature reveals that papers on the application of remote sensing in insurance 

have for long been dominated by examples in classical claim-based insurance in agriculture and flood 

and fire risk management, while a smaller but rapidly growing number of papers describe its potential 

in so-called index insurance in agriculture. This paper reviews the actual and potential contribution of 

remotely sensed information in support of conventional claim-based insurance and index insurance. 

The remainder of the paper is structured as follows. Section two provides an introduction about the 

basic working principles of insurance. The use and potential of remote sensing in classical (claim-based) 

insurance is presented in section three. Section four reviews the application of remote sensing in index 

insurance. Section five discusses the findings of the reviews while section six provides concluding 

comments and recommendations. 

2. An Overview of Insurance 

Insurance is a financial instrument, which allows exposed individuals to pool resources to spread their 

risk. They do so by contributing premium to an insurance fund, which will indemnify those who suffer 

insured loss. This procedure reduces the risk for an individual by spreading his risk among the multiple 

fund contributors. Insurance can be designed to protect many types of individuals and assets against 

single or multiple perils and buffer insured parties against sudden and dramatic income or asset loss. 

2.1. Classification of Insurance 

Insurance varies based on a number of characteristics, two of which are particularly relevant for this 

review. The first is the geographical distribution of the shock causing the risk. Risks vary 

between idiosyncratic risk, the situation where an individual’s exposure does not concur with that of its 

neighbors and covariate or systemic risk where a single shock affects neighboring individuals at the 

same time [10]. Drought and floods can affect many people concurrently over larger areas and are thus 

examples of covariate risks. Covariate risk, by definition, captures the degree of correlation between a 

peril (event) and economic loss. It is the degree of co-variation between an event and a loss that 

determines an insurable event; not all droughts or floods result in economic loss, and not all losses are 

insurable. Insurance can be further differentiated according to the criterion used for indemnification. 
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Classical claim-based insurance pays an indemnity following a claim of loss by the insured customer. 

Index insurance in contrast indemnifies the insured customer based on an index related to such losses 

rather than the claimed loss. 

Table 1 provides a classification of insurance according to these two criteria. Classical claim-based 

insurance covers both idiosyncratic (Table 1, class a) and covariate risks (Table 1, class b). From  

a business perspective, idiosyncratic risk insurance is relatively easy to manage because the administration 

can be optimized to a regular and continuous flow of incoming claims. The management of covariate 

risk is a challenge to insurance companies in several ways. First, in case of a covariate shock, insurers 

are often at unpredictable moments confronted with a huge number of claims, thus stressing their ability 

to handle all claims properly. In such situations, it becomes a challenge to verify claims in time and 

particularly before verifiable signs of damage and loss have disappeared. Second, covariate shocks 

expose the insurer to the risky obligation of making massive indemnity payments that may exceed their 

solvability. Insurers mitigate this threat by dispersing their policyholders beyond the geographical 

distribution of covariate shocks, or transferring the risk to reinsurers who can absorb covariate shocks at 

local levels through a global spread of their portfolios. 

Table 1. Classification of insurance according to indemnification and distribution of risk. 

Indemnification 
Geographical Distribution of Risk 

Idiosyncratic Covariate 

Claim a b 

Index -- c 

Index insurance is appropriate to address covariate risk (Table 1, class c), but not idiosyncratic risk 

because it is the covariate nature of a hazard that allows the insurer to predict losses and determine 

indemnity payments for a large number of policyholders over a wide geographical area. Unlike classical 

insurance, it indemnifies policyholders on the basis of an index correlated with the insured losses. In 

fact, index insurance establishes a trigger point below or above which an indemnity payment is made. 

An example of such an index is rainfall during the growing season used in index-based crop insurance. 

The contract pays the same amount per unit premium to each policyholder within the spatial domain for 

which the index value is valid, regardless of the actual losses they face. Similar to classical insurance, 

the index insurer also needs to take precautions to spread their business risk imposed by covariate shocks 

among a wider group of policyholders or reinsurers. 

2.2. Advantages and Disadvantages of Claim and Index-Insurance 

The two insurance types have advantages and disadvantages. An advantage of index insurance is that 

it can potentially be delivered at lower cost. A significant barrier that hinders uptake of claim-based 

insurance is the high transaction cost for searching for prospective policyholders, negotiating and 

administering contracts, verifying losses and determining payouts. Index insurance eliminates the loss 

verification step, thereby mitigating a significant transaction cost. However, the administration, contract 

design, client search, premium collection, and claims disbursement processes remain labor- and  

cost-intensive in index insurance, which has additional initial cost related to the development of an index 
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that has good relation with insured losses and recurrent costs for the acquisition and processing 

information on the state of the index [11]. 

A second advantage of index insurance is that, because it pays an indemnity based on the reading of 

an index rather than individual losses or individual risk profiles, it eliminates much of the fraud, moral 

hazard and adverse selection, which are common in classical claim-based insurance. Moral hazard is the 

situation where a policyholder engages in risky behavior, increasing his actual risk profile beyond that 

originally considered by the insurer. Adverse selection is the situation where people exposed to higher 

risk seek insurance more frequently than those exposed to lower risk. This occurs when the insured has 

more information about his “risk profile” than the insurer, a case of information asymmetry. Raised 

premiums are a consequence of fraud, moral hazard and adverse selection. Index insurance avoids this, 

provided that an index is used that cannot be manipulated by the parties involved. A further advantage 

of index insurance is that payments based on a standardized and indisputable index also allow for a fast 

indemnity payment [12] that could be automated, further reducing transaction costs. 

Basis risk is a major disadvantage of index insurance. It is the situation where an individual 

experiences a loss without receiving payment or vice versa [13]. Basis risk is a direct result of the 

strength of the relation between the index that estimates the average loss by the insured group and the 

loss of insured assets by an individual. The weaker this relation the higher the basis risk. It is obvious 

that high basis risk undermines the willingness of potential clients to purchase insurance. It thus 

challenges insurance companies to design insurances such as to minimize basis risk. 

The described advantages can allow delivery of index insurance at lower cost than claim-based 

insurance. This makes index insurance potentially affordable in remote areas, and thus opens up markets 

for insurance in areas where it has not previously been offered. Examples of this are insurance for crops 

and livestock in drylands, where the insurer’s costs of writing individual insurance contracts and 

verifying individual claims would be prohibitive. 

Reduced cost also makes index insurance more affordable to smallholder farmers in the developing 

world. These smallholder farmers rely for their livelihoods, to a large extent, on their farm products 

while facing major risks that can profoundly affect their livelihoods, such as crop failure or loss of 

livestock during drought. Until recently insurance companies did not, or would not offer agricultural 

insurance products for smallholder farmers in the developing world because of the associated costs. 

Instead, smallholder farmers traditionally reduce adverse effects of risks through transferring these  

risks within their community [14]. This is particularly effective in covering idiosyncratic risk, when the 

non-affected fraction of a community remains capable of covering and absorbing the losses of those 

affected. Traditional arrangements are less effective in insuring covariate risk. The ubiquity of damage 

and loss caused by covariate hazards erodes the ability of one community member to cover the loss of 

others. Traditional arrangements thus lack the desirable robustness to cover people against systemic risk 

imposed, for example, by drought or floods. Insurers capable of spreading risk beyond the geographical 

region affected by the covariate shock may however insure against this risk. This insight spurred a recent 

interest in the possibility of index-based micro-insurance for smallholder farmers in the 

developing world. 
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2.3. Social Security Nets and Subsidies 

Thus far, insurance has been presented from a private enterprise perspective, focusing on the 

transactions between the insured and the private enterprise delivering the insurance product. In many 

countries, government plays an important regulatory and facilitating role; they provide legal frameworks 

within which the insurance industry operates and subsidizes various forms of insurance to keep them 

affordable. The latter is a common practice in agricultural insurance, which is subsidized or supported 

in other ways by governments in many developed countries to ensure sufficient uptake of the insurance 

product. The government support to agricultural insurances varies from virtually nil in Australia and 

Africa to 73% of all costs in the USA [15,16]. An important reason motivating governments to subsidize 

agricultural insurance is the realization that fully commercial insurance would be too expensive, 

resulting in limited adoption. Yet, many governments also subsidize agricultural insurance because of 

the importance of the agricultural sector from electoral, employment, food security and social security 

net perspectives. In the developing world where governments may not have the financial strength to 

prioritize subsidizing agricultural risk, donors supporting relief and development are increasingly 

interested in supporting the development of agricultural insurance. A proper perspective of the role of 

government and other parties supporting insurance is important to understand the latter parts of this 

paper where we will see that these parties play an important role in supporting the development of 

applications of remote sensing in insurance. 

3. Claim-Based Insurance and Remote Sensing 

3.1. Business Processes in Claim-Based Insurance 

The literature describes various examples of how earth observation and GIS might support the 

insurance industry in managing its business operations in claim-based insurance. Below we first describe 

claim based insurance in some more detail and next review the possibilities and actual use of 

remote sensing to contribute to insurance business processes related to risk assessment and the handling 

of claims. 

Figure 1 provides a scheme of the transactions and information flows in classical loss-based insurance 

and shows distinct groups of information flows. The first information flow (number 1) is between the 

insurer and the insurable population as a whole while the second and third information flows (number 2 

and 3) are between the insurer and the individual client. The first information flow relates to the risks to 

which the insurable population is exposed. To the insurer this is critical information because it allows 

for an estimation of the risk and the probability of future claims and payouts, and to set an insurance 

premium with sufficient margin. When introducing new products, an insurer develops and offers these 

products, with the premium based on an assessment (1a) of the frequency and severity of the insured 

risk and the expected average payout that would result from this peril. Thereafter insurance companies 

continuously re-evaluate their risk and re-adjust their premium based on the information accumulated 

while handling claims and making payouts (1b). This process brings their risk assessment from one 

pertaining to the potentially insurable population to the risk for the exposure units insured by the insurer. 

The second flow of information relates to the interaction between the insurer and the clients. 

Information is exchanged (number 2) between the client and insurer, allowing the client to assess the 
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product and the insurer to assess (underwrite) the risks of that particular client. Further information  

is exchanged (number 3) when the insured makes his claims seeking indemnity for insured damage. 

Figure 1. Business processes (blue) including financial transactions ($) and information 

flows (numbered) between insurers and their clients in claim-based insurance. 

 

3.2.1. Underwriting of Risk 

Retrospective Underwriting  

Traditionally, insurers establish premiums while assessing risk based on claims made in the past.  

This retrospective underwriting works well for insurance products that have been in the market long 

enough to develop a historic record of claims and payments. This approach does not work in case of new 

products for new populations, for which such historic records are absent. In such cases insurers use other 

sources of information, such as in situ measurements of the hazard rather than the claims, to underwrite 

their risk. 

However, accurate in situ monitoring of hazard-related variables is costly, and thus it has been 

suggested that remote sensing has a potential for more cost effective risk assessment [17]. The 

underlying idea is that satellite imagery allows analysis of the historical recurrence of a hazard when the 

record from other sources captures the exposure insufficiently. For example, in areas where a historic 

record of drought recurrence is missing, rainfall estimates from satellites could potentially be used to 

construct a historic drought record. However, data mining of remotely sensed archives to retrospectively 

underwrite insurance risk is not straightforward. For the example mentioned, remote sensing rainfall 

records have their intrinsic errors [18] and in addition the rainfall estimates need to be translated to 

agricultural and economic losses. Utilizing remote sensing systems to reconstruct a reliable record on 

hail damage or vegetation production anomalies would pose similar problems. For this reason, it is 

perhaps not surprising that we did not find any references to feasibility studies or operational applications 

of remote sensing in the underwriting of risk in claim-based insurance. In contrast, historical remote 

sensing records are the basis of the underwriting of risk in index insurance as described in Section 4.2. 

INSURABLE POPULATION – exposure units

Risk
INSURED – Policyholder

Policy insured risk Damage

INSURER

Assess risk

Develop product

Offer product Handle claims

Pay indemnity

1a 2 $ 3 $

1b
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Geographic Stratification of Risk Exposure 

Risk is not uniformly distributed among the insured, and insurers vary insurance premiums 

accordingly. An example is a life insurance premium, which varies with age and individual mortality 

enhancing behavior like smoking. The risk of exposure to hazards often varies geographically;  

for example, real estate in wooded peri-urban areas might be more frequently affected by fire than 

property downtown and flood risks are higher in coastal or flood plain areas than in well-drained uplands. 

Insurance companies use this spatial variation in exposure to differentiate their insurance rates 

geographically. To do so they may use their historical record of claims and payments made. They may 

also opt to use geo-spatial data related to the hazard to identify areas with increased risk to justify  

a higher premium. 

The geographical underwriting of risk has in fact been studied and operationalized in flood risk 

insurance. Several publications describe the potential and use of remote sensing in establishing a spatial 

stratification of flood risk [19,20]. Flood damage in Europe accounts for 75 percent of all insurance 

payments attributable to natural disasters [21]. For example, the 2002 flood damage in Central and 

Eastern Europe led to claims of several billion Euros [20] and insurers increasingly use geo-spatial 

information to assess flood risk in order to realistically price their insurance products. While detailed 

local hydrological models supply such information for smaller areas, it has been argued that insurers 

require models at regional and national scale rather than sophisticated models for small areas and that 

detailed information on the elevation of the terrain is generally the component with the highest 

uncertainty in the flood risk models [20]. 

In reality flood risk may vary over relatively short horizontal distance and a vertical gradient of a few 

decimeters may make the difference between safe areas and those areas exposed to risk. Not considering 

this fine scale variability in the underwriting might under- or over-estimate the risk, with significant 

consequences to the insurer and the insured customer or asset. Insurance companies are thus facing a 

challenge to improve the vertical accuracy of the geo-spatial models, which they are using in 

underwriting the risk of flooding. In the UK use of airborne laser altimetry data as an input into flood 

risk modeling allowed assessing of risk and calculating insurance premiums at much finer resolution 

(postcode basis, approx. 15 households) than risk models used by the insurance industry, which had 

spatial units with over 2000 households [22]. Based on this, it was advised to acquire laser altimetry data 

for urban areas susceptible to storm surges. 

The examples above are feasibility studies. The Flood Insurance Rate Maps (FIRMs) produced  

by FEMA, the Federal Emergency Management Authority in Southern USA are an example of an 

operational utilization of remote sensing in stratification of flood risk exposure [19,23]. The FIRMs, 

which are used to assess flood risk, are based on remotely-sensed LiDAR (Light Detection And Ranging) 

data measuring terrain elevation with 15 cm vertical accuracy. The underwriting by insurance companies 

is based on this, with higher premiums in more flood-prone areas. The actual premium may be adjusted, 

depending on preventive action and best management practices taken by communities to avoid 

flood damage.  
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3.2.2. Handling of Claims 

Damage Assessment 

A second commonly proposed application of earth observation in claim-based insurance is related to 

the handling of claims. Ideally, the insurer would attempt to check every claim and verify the damage 

personally or obtain an independent damage assessment. In many cases, this is not possible. For example 

with claims of minor monetary value, the costs of on-site damage assessment may become too high. 

Insurers thus do not investigate each claim, but seek to balance customer satisfaction, handling expenses 

and leakage from insurance fraud. For this, they often use automated statistical procedures, identifying 

outliers from the normal pattern of claims, to identify suspicious cases for further investigation. 

Earth observation imagery offers an alternative possibility to verify whether a claimant has been 

affected by an insured risk and to investigate suspicious claims. This possibility emerges from the  

well-established potential of remote sensing to detect damage on vegetation and crops by drought, fire, 

hail, frost and pests and diseases. Similarly, there is a rich literature describing applications of remote 

sensing in assessing damage to man-made objects and infrastructure. 

Contrasting conclusions have been reported regarding the feasibility of remote sensing to support the 

insurance industry in crop hail damage assessment. Peters et al. [24] evaluated the suitability of airborne 

multispectral imagery to assess the effect of artificially induced hail damage in corn and soy-bean and 

of a Landsat TM image to assess true hailstorm effects on croplands. They considered the 30 m 

broadband imagery adequate for preliminary post storm hail damage assessment and 5 m resolution 

imagery adequate to confirm hail damage and consequently were confident that remote sensing would 

assess hail damage faster and more accurately than traditional field based verification. In contrast, 

coarser resolution MERIS (MEdium Resolution Imaging Spectrometer) data did not reliably estimate 

the area of crop damage, a finding which was based on imagery acquired a few days before and after a 

hail storm and field-based damage assessments of the Agriculture Financial Service Cooperation in 

Alberta, Canada [25]. Apan et al. [26] expressed further reservation while arguing that, although RS has 

potential to delineate areas of reduced biomass, it remains difficult to attribute such losses to hail damage 

as other confounding factors may have caused the biomass reduction. These two latter papers suggested 

that remote sensing could at best be deployed in a supportive and cost-saving role targeting areas for 

further field verification. However, the plausibility of attributing remotely-sensed evidence of crop 

damage to hail could possibly be enhanced by combining the optical remote sensing with verification of 

the hail event with polarimetric radar imagery [27]. 

The United States Department of Agriculture (USDA) Risk Management Agency (RMA) subsidizes 

the US crop insurance program, with insurance policies covering a liability of USD 55 billion in 2007 

being sold by 16 private insurance companies. The program initially included crop insurance that 

covered risk from drought and hail, but has broadened in scope over the years and now includes a broad 

array of damages and a wide variety of agricultural commodities. The system is, like any insurance 

system, not free of fraud. Utilization of data mining techniques of the remote sensing record to seek for 

anomalies and suspect cases resulted in a cost reduction of USD 450 million over a six-year period [28]. 

Remote sensing derived crop classification was used, for example, to verify whether farmers had planted 

the crop for which losses were claimed [29]. 
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There seems to be ample scope for further use of remote sensing in crop damage assessment, as  

field-based assessment is costly. However, satellites with relatively long (>20 days) revisit times that 

carry optical sensors whose imaging capability is affected by clouds (e.g., Landsat) are not very suitable 

if assessment is required within a few days after a peril. Several new satellite missions exist that 

significantly reduce revisit times while mapping the Earth at very high spatial resolution (approx. 1 m). 

For example, the German Rapid Eye AG developed a series of five satellites that can cover any area on 

earth once per day, and aims with this potential for more timely delivery to service the crop insurance 

industry among others [30]. Competitors like Digital Globe (WorldView-2 satellite with 8 spectral 

bands) and SPOT IMAGE (Pleiades satellite) offer the same revisit frequency. Similarly, SarMap is 

developing applications of radar imagery, unaffected by cloud cover and acquired at a spatial resolution 

of approx. 20 m as an input in a crop damage insurance system [31]. A common problem of the 

mentioned new missions relates to the fact that imagery is usually only acquired through tasking and not 

regularly, such as by Landsat and other 10–30 m resolution sensors. Hence, suitable imagery depicting 

the situation before the damage event may not be available. In this respect, the increase of public-domain 

high resolution optical and radar imagery with short revisit times such as the European Sentinel-1 and -2 

missions are highly welcome, as they will monitor the Earth surface continuously. The first Sentinel-1 

satellite was launched in April 2014 and the first Sentinel-2 will be launched towards the end of 2015. 

Apart from applications in crop insurance, remote sensing has also been explored for usage in forest 

fire damage assessment. Canaseva and Dagorne [32] suggested in 1985 that airborne color infrared 

remote sensing imagery could be used to delineate forest area affected by fire for insurance purposes. 

Since that time, much development has taken place in the remote sensing based assessment of active 

fires, fire intensities, and burned areas [33], and various coarse-resolution operational products  

exist [34]. The suggestion of operational use of airborne multi-spectral imagery in assessment of fire 

damage by the Safire Insurance Company in South Africa [35] was however not confirmed when 

requesting the company for further information and confirmation of its operational use. 

Verification of Conditions in Insurance Contracts 

Another potential application of earth observation is in verifying whether claimants complied with 

specific conditions stipulated in the insurance contract. The presence of well-maintained firebreaks,  

for example, is a condition included in most forest fire insurance policies. Remote sensing might offer 

insurance companies the possibility to verify whether and how well firebreaks were maintained before 

the outbreak of a forest fire. The temporal resolution of the sensor and its ability to detect the condition 

of the firebreak would be critical in verifying compliance in this particular case. We were however, 

unable to find examples of the use of remote sensing in verifying compliance to contractual obligations. 

4. Index Insurance 

4.1. Development of Index Insurance 

Halcrow [36] introduced the concept of index insurance in 1949 when arguing that the Federal Crop 

Insurance in the United States should offer an insurance product based on the yield over a wider area to 

eliminate adverse selection among insured farmers. The idea of area-yield insurance was taken up  



Remote Sens. 2014, 6 10898 

 

 

in India where the Indian National Agricultural Insurance Scheme (NAIS) is an area yield insurance that 

is based on yield estimates made in so called insurance units covering hundreds to thousands of farmers. 

With 25 million insured farmers it is the largest agricultural insurance scheme in the world offering crop 

insurance to smallholder farmers that could otherwise not be insured [37]. In the United States of 

America (USA), the Group Risk Plan (GRP) uses yield at county level for calculating indemnities to 

insured farmers [38]. 

Around the same time the idea of weather-based index insurance was developed in  

Australia [39,40]. Weather index insurance differs from area-yield insurance in that it uses an index 

related to the yield rather than an estimate of the yield based on field measurement. Weather index 

insurance avoids the cost of estimating yield, but requires the availability of a historic record of weather 

and yield data to calibrate a model to design the insurance scheme. In the late 1990s the World Bank 

supported the piloting of index insurance in the developing world and since then there has been an increase 

of index insurance in developing countries [41]. Initially projects focused on weather-index-insurance 

based on rainfall, and recently IFAD [42] published a technical guide to support the development of 

weather-based index-insurance. Potentially, there is a much wider array of indicators including Richter 

values used in earthquake insurance in Mexico, reservoir levels used as an indicator for insurance for 

insufficient irrigation water supply in Mexico, area livestock mortality rates for livestock insurance in 

Mongolia and the El Niño Southern Oscillation (ENSO) index for flood insurance in Peru [43]. A recent 

publication of the EU Joint Research Centre provides a comprehensive overview of the challenges of 

index insurance in developing countries [44]. 

Vrieling et al. [45] suggested that the information underpinning index insurance requires four criteria, 

which are not always easy to meet. First, the information should be trustworthy and independently 

verifiable, i.e., derived from impartial data providers who use well-described data collection and 

processing methods. For weather-based index insurance that uses rain gauges the condition of impartiality 

is sometimes impractical in remote areas when farmers with interest in insurance also maintain the 

rainfall stations. Second, the index should correlate strongly with what is insured, such as livestock or 

crop losses. The weaker the relation between the index and the loss of insured assets, the higher the 

likelihood of households experiencing a loss without receiving payment or vice versa, a situation referred 

to as “basis risk” [13] described in Section 2.2.1. Basis risk is inherent to index insurance. It is a genuine 

problem because the strength of the correlations between the yield of agricultural commodities and 

indices is variable [41]. For instance, basis risk tends to increase with increasing distance between the 

location of the insured assets and where information for an index is gathered, a situation complicating 

weather index-insurance based on observations from weather stations in data scarce areas. The third 

condition is that the information required for the index can reliably be delivered into the future, at least 

for the duration of the insurance contract, and is available in near real-time, so that payments can be 

made in due time. The fourth condition is that the record of the index is sufficiently long to properly 

underwrite the risk and accurately price the insurance product. This can be conceived as a major 

limitation of index insurance based on remote sensing inputs, even if coarse resolution NDVI time series 

exist now for more than thirty years (starting with the launch of the first AVHRR in 1979). In addition, 

a number of initiatives exist to combine observations from various sensors to increase consistency 

between time series [45]. From the insurer point of view one may add as a fifth condition, i.e., that 

gathering of information should not be too expensive. 
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4.2. Remote Sensing in Index Insurance 

Remote sensing offers opportunities to address some of the above described requirements of index 

insurance. If data are pre-processed properly, sensors onboard satellites provide cost-effective, reliable 

and impartial information on a wide variety of vegetation and hydrological parameters at various spatial 

resolutions. Moreover, operational satellites have the potential to provide a continuous flow of information 

and the remote sensing community has developed image-processing routines to generate long-term 

datasets with stable characteristics over time. Many efforts currently exist to create consistent long-term 

records based on a variety of satellite-based input source, for example the European Space Agency’s 

Climate Change Initiative [46] and NASA’s Land Long Term Data Record [47]. The continuously 

extending duration of the remotely sensed record is going to increase its value as a historic record of the 

variability of natural processes and hence it’s utility in index insurance. 

Thanks to these advantages, it is not surprising that remote sensing indices have found their way into 

index insurance. One example of the application of remote sensing indices is in insurance that covers 

the risk of forage scarcity in rangelands, an application based on the well-established relation between 

rainfall, NDVI and forage scarcity. Strong correlations of NDVI and rangeland productivity have been 

documented for rangelands of central Australia [48], North America [49], the Middle East [50] 

and Africa [51–53]. 

Two separate applications of remotely sensed index-insurance have been developed based on this. 

The first is instigated by government in the United States where the USDA’s Risk Management Agency 

(RMA) offers pasture and rangeland insurance, which are based on rainfall and NDVI time series [54]. 

The insurance is designed to protect farmers against a decline in forage where the indemnity payments 

are determined based on deviation from normal of the combined NDVI and rainfall index. 

The second example is the Index-Based Livestock Insurance (IBLI) scheme that is offered by private 

insurance companies and insures Kenyan pastoralists against drought-related livestock mortality. The 

IBLI livestock insurance, which was developed by the International Livestock Research Institute (ILRI), 

uses an index based on seasonal and spatially-aggregated NDVI acquired from MODIS (Moderate 

Resolution Imaging Spectroradiometer) and statistically fitted (Figure 2A) with household-level 

livestock mortality data [55]. The insurance is offered twice a year, in the month before the onset of the 

long-rains (March–May) and the short-rains (October–December) respectively. A payout is made when 

the cumulative z-scored NDVI index (Figure 2B) falls below a threshold corresponding to a predicted 

livestock mortality of 15%. 

Support from international donors allows the insurance to be offered at 30%–40% below full market 

price. During the pilot phase the insurance was designed based on the interest and demand among 

pastoral livestock keepers. The insurance was first introduced in Marsabit District in northern Kenya in 

2011, where below normal dry conditions during the 2011 long rainy season triggered a first payout in 

October 2011. 

Figure 3 illustrates the dry conditions during the long rains for 2011 (Figure 3A) with respect to the 

previous-year good long rains (Figure 3B) by displaying the NDVI at the moment when green vegetation 

cover is normally close to maximum (1–10 May). While Figure 3 does not display the seasonally 

aggregated index used (as in Figure 2, i.e., seasonal z-scoring of each image, followed by spatial and 

temporal aggregation), it illustrates how NDVI time series capture the inter-annual differences in 



Remote Sens. 2014, 6 10900 

 

 

vegetation conditions. Following the introduction of IBLI in Marsabit ILRI has implemented similar 

index insurance schemes in southern Ethiopia and other districts in northern Kenya. 

Figure 2. (A) Relation between the cumulative z-scored NDVI index and livestock mortality 

used in design of IBLI livestock insurance and (B) Variation of the cumulative  

z-scored NDVI index over an eleven-year period for Laisamis division in Marsabit district (see 

Figure 3). 

(A) (B) 

Figure 3. MODIS NDVI during the first decade of May during a good (2010, A) and a poor 

long rainy season (2011, B) in Marsabit District (now Marsabit County). The black lines 

show the boundaries of the six divisions that are contained in Marsabit District. The southern 

division Laisamis corresponds to Figure 2. 

 

We are not aware of operational use of remotely sensed indices in crop insurance, but several studies 

have been carried out to explore the potential of such indices in crop insurance. Rao [56] reports on 

research of the Indian Insurance Company looking into the feasibility of NDVI based index insurance 
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for crops, while options for remotely sensed index insurance have also been reviewed for wheat in 

Kazakhstan [57] and Syria [58]. Pantakar [59] described a pilot study in Chhattisgarh and Andhra 

Pradesh states in India where a composite index insurance product based on NDVI and rainfall was 

designed and offered to farmers. Analysis of the relation between a rainfall index and an NDVI index 

with historical maize and cotton crop yield data from nine districts in Zimbabwe [60] led to the 

conclusion that NDVI was a better indicator because it exhibited higher correlations with yield than the 

rainfall index. Turvey and McLaurin [61] examined the potential of NDVI as an index in crop insurance. 

They reported that the relationship between NDVI, precipitation, extreme heat and crop yields is highly 

variable and location-specific, and consequently concluded that application of NDVI to index insurance 

product design requires site-specific calibration. 

Besides index insurance based on remotely sensed vegetation productivity indices (e.g., NDVI), there 

is also potential for insurance based on remote sensing rainfall indices [14]. Johnson [62] describes that 

the automated weather stations, which form the backbone of the Kilimo Salama weather index insurance 

offered to over 150,000 farmers in Kenya and Uganda are too expensive to maintain, and this is the 

reason why research has been initiated to investigate the possibility of satellite rainfall estimates. 

Because rainfall has high spatial variability, particularly for short temporal time-scales, dense station 

networks are needed to generate an effective spatial representation of the rain field. When such networks 

are nonexistent or do not reliably deliver data, satellite data can partly fill this gap. These data consist of 

thermal infrared observations, mostly from geostationary satellites, and active and passive microwave 

observations from polar-orbiting satellites. Many satellite rainfall products exist that merge rainfall 

retrievals from various remote sensing sources [63]. Because quality of the rainfall products varies 

depending on climatic region, local calibration with ground-based rainfall measurements may be required 

to improve the estimates [64]. Nonetheless, satellite rainfall estimates provide a good alternative to 

interpolated station data, and large international efforts such as the Global Precipitation Measurement 

(GPM) mission will improve their accuracy further [18]. 

The above-mentioned remotely sensed index insurance programs deliver micro-insurance products 

that target and benefit individual households. Recently, there has been increasing interest in meso- and 

macro- level insurance products. Those products do not target individual farmers. They target relief 

agencies and regional and national governments that have an interest in financially supporting farmers 

affected by disasters. For example, in Argentina and Uruguay feasibility studies have been undertaken 

for meso-insurance based on NDVI index tracking pasture productivity [65,66] designed to cover loss 

of livestock. This meso-insurance would, when implemented, allow the government to make timely 

payouts to support livestock owners to maintain their herds in the event of severe drought. 

5. Discussion 

5.1. Adoption of Remote Sensing in Insurance 

This review revealed an apparent contrast between the claimed potential of remote sensing in support 

of insurance, and the actual adoption of remote sensing by the insurance industry. Forty years of technical 

literature describing the potential of remote sensing is not backed by evidence for significant uptake by 

the insurance industry of remote sensing in classical claim-based insurance. In fact, we found reference 
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in the literature of application of remote sensing in claim-based insurance by the government but not by 

the insurance industry (Table 2). The adoption of remote sensing in claim-based insurance by 

government, which is surprising at first sight, is understandable when one realizes that both examples 

were from the United States where the government provides significant support to the insurance industry. 

In the case of flood risk management, government facilitates the insurance industry with information 

that allows better underwriting of flood risk. In the case of crop insurance, the application of remote 

sensing stems from the concern of government to control fraud in agricultural insurances, which when 

left uncontrolled inflates government expenditure on subsidies. 

Table 2. Summary of papers describing operational application of remote sensing supporting 

the delivery of operational insurance products. 

Type of 

Insurance 

Insurance 

Application  
Description Reference 

Claim  
Crop damage 

assessment 

USDA (United States Department of Agriculture) Risk 

Management Agency using medium resolution remote sensing 

imagery to verify cases suspect of fraud  

[28,29] 

 
Flood risk 

stratification 

Insurers using Flood Insurance Rate Maps produced by USA 

Federal Emergency Management Authority 
[19,23] 

Index 
Rangeland 

productivity 

USDA using rainfall and NDVI data to offer pasture and rangeland 

insurance  
[54] 

 Livestock loss 
Insurers in Kenya using a composite NDVI index as a backbone of 

index based livestock insurance 
[55] 

These observations raise the question: why is the private industry reluctant to adopt remote sensing 

in claim-based insurance? One reason could be that insurers do not publicize the use of remote sensing, 

because sharing of this information would lead to understanding of the procedures used to verify 

compliance to contractual obligations, which might stimulate the development of approaches to avert 

detection. However, the use of such undisclosed information would contradict insurance contracts, 

which have verification and transparency at their basis. Further, even when applied discretely the use of 

remote sensing would be revealed sooner or later through the use of remotely sensing in court cases.  

We are not aware of the widespread use of remote sensing in the settling of disputes between  

insurers and insured customers and thus consider that private enterprises’ uptake of remote sensing in 

claim-based insurance is low. 

An alternative reason to explain this lack of adoption is that most proposed applications of remote 

sensing in classical insurance aim to automate the industry’s existing business processes, for example, 

the assessment of damage or the underwriting of risk. One of the lessons learned from the introduction 

of information technology in the second half of the 20th century is the limited success of automation of 

existing business processes, which has been attributed by Hammer [67] to the fact that such effort 

frequently does not add value to the industry and its customers. Hammer went on to argue that information 

technology has much greater potential to add value when obliterating rather than automating existing 

business processes. 

Eliminating existing business processes is exactly what remotely sensed indices and other indices  

are doing in index insurance. Impartial indices allow insurers to avoid the handling and verification of 
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claims and the costs imposed by fraud, moral hazard and adverse selection. Potentially, this would allow 

the industry to enlarge its market while delivering products at lower costs than claim-based insurance 

and in areas where classical insurance products could not be delivered. 

Our review revealed several applications of remotely sensed indices in drought insurance aiming at 

rangelands and livestock, while several groups are exploring or developing proof of concept to cover the 

impact of drought on annual cereal crops. Exploring the potential of remote sensing index insurance for 

non–cereal annual crops like peanuts and cotton seems interesting. For the latter an ex-ante assessment 

of the feasibility for weather station based index insurance has recently been published [68]. Potentially 

index insurance could also be applied to perennial crops. For example, Lou et al. [69] describe an 

application of thermal remote sensing in monitoring frost damage to tea, and mention index insurance 

for tea frost damage as a possible application. 

5.2. Economics and Financial Sustainability of Remote Sensing Applications in Insurance 

The above argument that there are better opportunities for index insurance is based on the assumption 

that index insurance would be less costly than claim based insurance. While this assumption appears 

plausible there are to our knowledge no studies assessing and comparing the costs and benefits associated 

to the use of remote sensing in claim-based and index insurance. An interesting question would be to 

investigate the effect of adoption of remote sensing on the cost benefits of the insurance product. There 

appears to be specific potential for value of information approaches [70], which have only recently been 

explored in the geo-spatial sciences [71]. The costs to consider in such assessment and comparison 

include the cost of acquisition and processing of imagery, as well as the cost of developing and 

calibrating indices that relate the remote sensing imagery to the insured agricultural loss. The design of 

index insurance may be costly when sophisticated modeling is required for establishing relationships 

with the underlying loss, such as for example, Woodard et al. [72], who developed spatial models in an 

NDVI-based insurance framework to reduce design-related basis risk. Insurers will generally recover 

these development costs with additional loading, which is a non-recoverable cost to the insured. Benefits 

from remote sensing information in insurance to consider in cost benefit analysis include; (1) making 

insurance affordable to low income households; (2) reducing fraud, moral hazard and adverse selection; 

(3) eliminating the burden of costly verification of claims on-the-ground and (4) enabling faster and 

cheaper payouts to the insured. Another benefit is that remotely sensed index insurance can provide 

insurance to farmers in remote areas that conventional crop or livestock insurance cannot serve. 

Developing formal insurance markets to help manage weather-related risks faced by crop and livestock 

producers, if applied correctly comes with broader welfare benefits. For example, NDVI based index 

based livestock insurance in Kenya provides a 36% reduction in distress livestock sales and a 25% 

reduction in food shortage induced avoidance of meals among pastoralists [73].  

Further, the promise of remote sensing in insurance industries depends largely on the financial 

sustainability of markets for various insurance products. Our research revealed a strong dependence of 

remote sensing applications in insurance on financial support from government or donors. For example, 

the uptake of index-insurance by the insurance industry was supported by government in case of the 

USDA pasture and rangeland insurance in the USA and by development donors in case of the Index 

Based Livestock Insurance (IBLI) in Kenya. In both cases the insurance premium is kept low with this 



Remote Sens. 2014, 6 10904 

 

 

support, and markets and adoption of agricultural insurance are likely to reduce or disappear without 

such financial support. 

In developing countries, where many index insurance initiatives emerge, it remains to be seen how 

sustainable the market for such products will be. This is partly due to the strong dependence on support 

from development donors, which might be an ephemeral source of funding in the longer run. Given this, 

there is a need for a dialogue on the role of government in supporting agricultural insurances in the 

developing world. Moreover, some suggest that farmer demand for insurance products could be low, as 

rich farmers are able to self-insure, and the poorest farmers that could best benefit from insurance may 

not be able to afford it [74]. For that reason, new initiatives are developed that incorporate the insurance 

with a credit scheme, where farmers receive a credit before the season, with the pay-back depending on 

the index-value of that season. For example, Shee and Turvey [75] reviewed the possibility to combine 

credit and insurance and applied this concept to loans for insuring pulse crops in India. Hence, the market 

sustainability for insurance using remote sensing will also depend on how the insurance is embedded in 

credit facilities that meet farmers’ needs. 

5.3. Challenges for Remote Sensing in Index Insurance 

Notwithstanding the positive outlook for remotely sensed index insurance, we foresee a number of 

challenges because of technical factors constraining the uptake of remote sensing. The first is data 

continuity. The need for a steady flow of data that can be relied upon by the insurance industry might 

limit the widespread development of remote sensing based index insurance. This is because current  

low-resolution satellite imagery systems do not guarantee continuation of data delivery. For example, 

the discontinuation of the AVHRR 16 in January 2010 forced the IBLI (Index Based Livestock 

Insurance) team at ILRI to shift to MODIS. It is clear that regular recurrence of such calamities 

undermines the potential of remote sensing to serve the insurance industry, and it would be good to 

consider developing mechanisms to ensure more reliable data delivery in case the insurance industry 

would mainstream remotely sensed index insurance. Fortunately, the need for data continuity is 

recognized by the remote sensing community, as well as by space agencies. With current and approved 

missions such as the Sentinel 2 and 3, Proba-V and Suomi-NPP [76], data continuity is currently assured 

well beyond 2020. In addition, a number of initiatives exist to combine observations from various sensors 

to create long-term consistent time series [45–47]. 

A second challenge of index insurance relates to data quality. Indeed, as a direct result of the high 

altitude and low exposure time of earth observation sensors, the (raw) measurements obtained from 

satellite sensors are usually noisy. Noise in optical remote sensing systems stems mainly from undetected 

(sub-pixel) clouds and poor atmospheric conditions (e.g., haze). This further degrades the already low 

signal-to-noise ratio of currently employed large swath sensors. As observation conditions are highly 

variable in space and time, the effects are moreover space-time dependent [77]. Consequently, satellite 

observations often lack statistical stability prohibiting the conversion of data into usable probabilistic 

information. Non-stationary differences, if revealed in practice, would suggest that the measures are 

highly unstable for modeling (and pricing) purposes. This can be overcome in some contexts through a 

transformation of variables such as the cumulative NDVI metric used for the IBLI livestock  

insurance [55]. Yet, vegetation indices like NDVI are affected by factors such as soil humidity, and it 
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has been proposed [78] to use remote sensing products derived from radiative transfer techniques, such 

as FAPAR (Fraction of Absorbed Photosynthetically Active Radiation), which are less affected by such 

confounding factors. Nonetheless, should remote sensing and metrics such as NDVI or FAPAR become 

commonplace in the delivery of index insurance an extended effort into the continuous-time properties 

of the measure will become increasingly important. Only a few institutions around the world currently 

offer filtered and gap-filled NDVI time series going beyond very basic compositing techniques. 

A third issue relates to the spatial resolution of the earth observation data used. Whereas it is clear 

that claim-based insurance profits from very high spatial resolution to properly assess damage, for index 

insurance the dependence of spatial resolution is less clear. For example, with respect to drought 

insurance, areas affected are large such that with low-resolution data such strong impacts can be readily 

mapped from space. Indeed, a number of international organizations build since many years successfully 

on this principle (e.g., in food security early warning). A finer spatial resolution would not necessarily 

bring additional information if the (meteorological) impact acts at meso-scale or larger. Reliance on 

lower resolution imagery may however ignore spatial variation within a low-resolution pixel, which 

could be picked up using finer spatial resolution imagery. For example, if an index-based insurance is 

provided for agriculture, one could limit the analysis to those (fine resolution) pixels falling within 

cropland. However, extreme cases ignored (e.g., irrigated crops), in our experience meso- to large-scale 

meteorological anomalies are usually well retrieved through a number of (observational) scales. Indeed, 

from our point of view, data quality—and hence the quality of the data pre-processing—as well the 

available archive, seem of higher importance for index insurance than the spatial detail. One should also 

not forget that the available rain gauge data used in index insurance are generally representative for areas 

much larger than a low-resolution satellite pixel. 

The final and likely greatest challenge is whether the insurance scheme can effectively limit basis 

risk. A key requirement to achieve that is to have an index (or a set of complementary indices) that shows 

high correlation with the losses suffered by farmers or pastoralists. This challenge is composed of two 

main elements; index construction and calibration options. 

Regarding index construction, this review showed that several data could be used, including, but not 

limited to, satellite-derived vegetation indices (e.g., NDVI) and rainfall estimates. However, even when 

an initial choice for a data source has been made, a large variety of approaches can be deployed to use 

that data source. For example Funk et al. [79] provide an overview of studies that found different  

time-integrations of NDVI optimal to predict agricultural yields. Besides temporal integration, choices 

can also be made regarding the spatial integration of the data source. The spatial integration refers to the 

size of the aggregation units used, in many cases determined by how data on asset losses for calibration 

are aggregated. In addition, within a spatial unit, decisions can also be made to limit the spatial 

integration to areas covered by a land use of interest [80]. These choices are often crucial for the 

performance of the index vis-à-vis induced losses. For this reason, while existing insurance schemes like 

IBLI (Section 4.2) have provided insurance following one specific temporal and spatial integration [55], 

they are continuing efforts to improve this integration further with the purpose to reduce basis risk. We 

therefore suggest that the choice and optimization of spatio-temporal design parameters is an important 

area for further research, very likely resulting in region-dependent designs. 

Data on agricultural yields or livestock losses are needed for calibrating potential indices and to select 

an appropriate index (and its spatio-temporal integration) that reduces basis risk. The lack of reliable 
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crop statistics and long-term agricultural yield data in many developing countries is therefore a key 

constraint to the uptake of remote sensing in crop insurance. Equally, the lack of livestock loss data 

creates problems for livestock insurance. Although in some cases, logically relationships may be 

assumed between agricultural yields and reduced levels of an index like seasonal-integrated NDVI,  

the impossibility to effectively calibrate this index may result in poor performance of an insurance 

scheme. Particularly if this would result in no payout to farmers/pastoralists in seasons with high losses, 

this will have large negative effects on future insurance uptake. 

6. Conclusions and Recommendation 

The purpose of this paper was to review the state of the art in use of remote sensing in the insurance 

industry. While there are examples of insurance companies using remote sensing directly or in combination 

with other indices it remains a curiosity as to why remote sensing has not been adopted more widely by 

the insurance industry. The adoption of the technology in claim-based insurance is poor, an observation 

that we attribute to the limited impact of remote sensing techniques on the profitability of the industry. 

Our analysis suggests that index based insurance has a greater potential for uptake by the industry 

because the application of remote sensing in index insurance is an example of redesigning the way 

business is done. It allows for the development of insurance products in areas and to customers that could 

not be reached before. It thus allows the industry to develop new markets, which could not be serviced 

without remote sensing. Apart from this the technique also has potential to replace traditional agricultural 

insurances, because it might be provided at lower costs to the insured and subsidizing sponsors. Remote 

sensing also has potential to supply information to existing index insurances that currently use other 

information sources, such as rain gauges or area-averaged yield data, which could be an interesting 

market because markets for index insurances not using remote sensing are much larger than the current 

market for remotely sensed index insurance. For this reason—together with other advantages of index 

insurance—we expect a further growth of opportunities for remote sensing in index insurance. 

The discussion identified several issues that need to be addressed to promote the adoption of remote 

sensing in index insurance. These include the creation or continuation of an enabling environment 

willing to subsidize the insurance as well as solving several technical challenges in the field of remote 

sensing. Apart from this, the slow adoption of remote sensing in insurance is also the result of a mutual 

lack of understanding of the opportunities offered by the remote sensing community and the insurance 

industry. During this review we realized that although there have been a number of workshops that 

brought these communities together [44,81,82], there have been very few papers comprehensively 

reviewing the potential of remote sensing in insurance synthesizing the perspectives in both worlds.  

We anticipate that this paper assists to fill this gap and support those interested in promoting the adoption 

of remote sensing in insurance. In this respect, we call for the remote sensing community to consider 

collaborating more closely with economists, agro-meteorologists and insurers in order to more 

effectively approach the challenge of developing successful applications of remote sensing in insurance. 
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