LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Instantaneous Free-Surface Profiles Obtained by LIDAR
3.2. Mean Free-Surface Elevations and Fluctuations Derived from LIDAR
3.3. Advanced Free-Surface Properties Derived from LIDAR
4. Discussion
4.1. Comparison with Point-Source In Situ Measurements
4.2. Factors Affecting LIDAR Data Quality in Air–Water Flows
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hager, W.H. Energy Dissipators and Hydraulic Jump; Kluwer Academic: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Chanson, H.; Carvalho, R. Hydraulic jumps and stilling basins. In Energy Dissipation in Hydraulic Structures; Chanson, H., Ed.; CRC Press: Leiden, The Netherlands, 2015; pp. 65–104. ISBN 9781315680293. [Google Scholar]
- Peterka, A.J. Hydraulic Design of Stilling Basin and Energy Dissipators; United States Department of the Interior, Bureau of Reclamation: Denver, CO, USA, 1978.
- Wang, H.; Murzyn, F.; Chanson, H. Interaction between free-surface, two-phase flow and total pressure in hydraulic jump. Exp. Therm. Fluid Sci. 2015, 64, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Montano, L.; Felder, S. Air-water flow properties in hydraulic jumps with fully and partially developed inflow conditions. J. Fluids Eng. 2021, 143, 101403. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Chanson, H. Turbulence and aeration in hydraulic jumps: Free-surface fluctuation and integral turbulent scale measurements. Environ. Fluid Mech. 2013, 13, 189–204. [Google Scholar] [CrossRef]
- Kramer, M.; Valero, D. Turbulence and self-similarity in highly aerated shear flows: The stable hydraulic jump. Int. J. Multiph. Flow 2020, 129, 103316. [Google Scholar] [CrossRef]
- Montano, L.; Felder, S. An experimental study of air-water flows in hydraulic jumps on flat slopes. J. Hydraul. Res. 2020, 58, 767–777. [Google Scholar] [CrossRef]
- Beirami, M.K.; Chamani, M.R. Hydraulic jump in sloping channels: Roller length and energy loss. Can. J. Civ. Eng. 2010, 37, 535–543. [Google Scholar] [CrossRef]
- Toso, J.W.; Bowers, E. Extreme pressure in hydraulic jump stilling basins. J. Hydraul. Eng. 1989, 114, 829–843. [Google Scholar] [CrossRef]
- Fiorotto, V.; Rinaldo, A. Turbulent pressure fluctuations under hydraulic jumps. J. Hydraul. Res. 1992, 30, 499–520. [Google Scholar] [CrossRef]
- Stojnic, I.; Pfister, M.; Matos, J.; Schleiss, A.J. Effect of 30-degree sloping smooth and stepped chute approach flow on the performance of a classical stilling basin. J. Hydraul. Eng. 2020, 147, 04020097. [Google Scholar] [CrossRef]
- Li, R.; Splinter, K.D.; Felder, S. Aligning free surface properties in time-varying hydraulic jumps. Exp. Therm. Fluid Sci. 2021, 126, 110392. [Google Scholar] [CrossRef]
- Allis, M.J.; Peirson, W.L.; Banner, M.L. Application of LiDAR as a measurement tool for waves. Proc. Int. Offshore Polar Eng. Conf. 2011, 8, 373–379. [Google Scholar]
- Kramer, M.; Chanson, H.; Felder, S. Can we improve the non-intrusive characterization of high-velocity air–water flows? Application of LIDAR technology to stepped spillways. J. Hydraul. Res. 2020, 58, 350–362. [Google Scholar] [CrossRef]
- Mossa, M. On the oscillating characteristics of hydraulic jumps. J. Hydraul. Res. 1999, 37, 541–558. [Google Scholar] [CrossRef]
- Mouaze, D.; Murzyn, F.; Chaplin, J.R. Free surface length scale estimation in hydraulic jumps. J. Fluids Eng. Trans. ASME 2005, 127, 1191–1193. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.T.; Katasros, K.B.; Weissman, M.A. Dynamic response of thin-wire wave gauges. J. Geophys. Res. 1982, 87, 5686–5698. [Google Scholar] [CrossRef]
- Cochard, S.; Ancey, C. Tracking the free surface of time-dependent flows: Image processing for the dam-break problem. Exp. Fluids 2008, 44, 59–71. [Google Scholar] [CrossRef]
- Pavlovčič, U.; Rak, G.; Hočevar, M.; Jezeršek, M. Ranging of Turbulent Water Surfaces Using a Laser Triangulation Principle in a Laboratory Environment. J. Hydraul. Eng. 2020, 146, 04020052. [Google Scholar] [CrossRef]
- Tsubaki, R.; Fujita, I. Stereoscopic measurement of a fluctuating free surface with discontinuities. Meas. Sci. Technol. 2005, 16, 1894–1902. [Google Scholar] [CrossRef]
- Mironov, A.S.; Yurovskaya, M.V.; Dulov, V.A.; Hauser, D.; Guérin, C.A. Statistical characterization of short wind waves from stereo images of the sea surface. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Bung, D.B.; Crookston, B.M.; Valero, D. Turbulent free-surface monitoring with an RGB-D sensor: The hydraulic jump case. J. Hydraul. Res. 2020. [Google Scholar] [CrossRef]
- Kramer, M.; Felder, S. Remote Sensing of Aerated Flows at Large Dams: Proof of Concept. Remote Sens. 2021, 13, 2836. [Google Scholar] [CrossRef]
- Leandro, J.; Carvalho, R.; Chachereau, Y.; Chanson, H. Estimating void fraction in a hydraulic jump by measurements of pixel intensity. Exp. Fluids 2012, 52, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Montano, L.; Li, R.; Felder, S. Continuous measurements of time-varying free-surface profiles in aerated hydraulic jumps with a LIDAR. Exp. Therm. Fluid Sci. 2018, 93, 379–397. [Google Scholar] [CrossRef]
- Amann, M.-C.; Bosch, T.; Lescure, M.; Myllylae, R.; Rioux, M. Laser ranging: A critical review of usual techniques for distance measurement. Opt. Eng. 2001, 40, 10. [Google Scholar] [CrossRef]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning Principles and Processing; CRC press: Boca Raton, FL, USA, 2008; ISBN 9781498772273. [Google Scholar]
- Wolcott, R.W.; Eustice, R.M. Visual localization within LIDAR maps for automated urban driving. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 176–183. [Google Scholar]
- Asvadi, A.; Garrote, L.; Premebida, C.; Peixoto, P.; Nunes, J.U. Multimodal vehicle detection: Fusing 3D-LIDAR and color camera data. Pattern Recognit. Lett. 2018, 115, 20–29. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Verstraeten, G.; Vanacker, V.; Nyssen, J.; Moeyersons, J.; van Beek, L.P.H.; Vandekerckhove, L. Use of LIDAR-derived images for mapping old landslides under forest. Earth Surf. Process. Landf. 2007, 32, 754–769. [Google Scholar] [CrossRef]
- White, R.A.; Dietterick, B.C.; Mastin, T.; Strohman, R. Forest roads mapped using LiDAR in steep forested terrain. Remote Sens. 2010, 2, 1120–1141. [Google Scholar] [CrossRef] [Green Version]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Fernald, F.G.; Herman, B.M.; Reagan, J.A. Determination of Aerosol Height Distributions by Lidar. J. Appl. Meteorol. 1972, 11, 482–489. [Google Scholar] [CrossRef] [Green Version]
- Weitkamp, C. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer: New York, NY, USA, 2005. [Google Scholar]
- Schumann, G.; Matgen, P.; Cutler, M.E.J.; Black, A.; Hoffmann, L.; Pfister, L. Comparison of remotely sensed water stages from LiDAR, topographic contours and SRTM. ISPRS J. Photogramm. Remote Sens. 2008, 63, 283–296. [Google Scholar] [CrossRef]
- Hilldale, R.C.; Raff, D. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surf. Process. Landf. 2008, 33, 773–783. [Google Scholar] [CrossRef]
- McKean, J.; Nagel, D.; Tonina, D.; Bailey, P.; Wright, C.W.; Bohn, C.; Nayegandhi, A. Remote sensing of channels and riparian zones with a narrow-beam aquatic-terrestrial LIDAR. Remote Sens. 2009, 1, 1065–1096. [Google Scholar] [CrossRef] [Green Version]
- Hickman, G.D.; Hogg, J.E. Application of an airborne pulsed laser for near shore bathymetric measurements. Remote Sens. Environ. 1969, 1, 47–58. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Sallenger, A.H.; List, J.H.; Holman, R.A. Estimation of shoreline position and change using airborne topographic lidar data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Middleton, J.H.; Cooke, C.G.; Kearney, E.T.; Mumford, P.J.; Mole, M.A.; Nippard, G.J.; Rizos, C.; Splinter, K.D.; Turner, I.L. Resolution and accuracy of an airborne scanning laser system for beach surveys. J. Atmos. Ocean. Technol. 2013, 30, 2452–2464. [Google Scholar] [CrossRef]
- Blenkinsopp, C.E.; Mole, M.A.; Turner, I.L.; Peirson, W.L. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR. Coast. Eng. 2010, 57, 1059–1065. [Google Scholar] [CrossRef]
- Phillips, M.S.; Blenkinsopp, C.E.; Splinter, K.D.; Harley, M.D.; Turner, I.L. Modes of Berm and Beachface Recovery Following Storm Reset: Observations Using a Continuously Scanning Lidar. J. Geophys. Res. Earth Surf. 2019, 124, 720–736. [Google Scholar] [CrossRef]
- O’Dea, A.; Brodie, K.L.; Hartzell, P. Continuous coastal monitoring with an automated terrestrial lidar scanner. J. Mar. Sci. Eng. 2019, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Blenkinsopp, C.E.; Turner, I.L.; Allis, M.J.; Peirson, W.L.; Garden, L.E. Application of LiDAR technology for measurement of time-varying free-surface profiles in a laboratory wave flume. Coast. Eng. 2012, 68, 1–5. [Google Scholar] [CrossRef]
- Montano, L.; Felder, S. LIDAR Observations of Free-Surface Time and Length Scales in Hydraulic Jumps. J. Hydraul. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Felder, S.; Montano, L.; Cui, H.; Peirson, W.; Kramer, M. Effect of inflow conditions on the free-surface properties of hydraulic jumps. J. Hydraul. Res. 2021. [Google Scholar] [CrossRef]
- Rak, G.; Steinman, F.; Hočevar, M.; Dular, M.; Jezeršek, M.; Pavlovčič, U. Laser ranging measurements of turbulent water surfaces. Eur. J. Mech. B/Fluids 2020, 81, 165–172. [Google Scholar] [CrossRef]
- Li, R.; Montano, L.; Splinter, K.; Felder, S. Opportunities of LIDAR measurements in air-water flows. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar] [CrossRef]
- Felder, S.; Pfister, M. Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows. Int. J. Multiph. Flow 2017, 90, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Felder, S.; Hohermuth, B.; Boes, R.M. High-velocity air-water flows downstream of sluice gates including selection of optimum phase-detection probe. Int. J. Multiph. Flow 2019, 116, 203–220. [Google Scholar] [CrossRef]
- Felder, S.; Chanson, H. Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters. Exp. Therm. Fluid Sci. 2015, 61, 66–78. [Google Scholar] [CrossRef]
- Wang, H.; Chanson, H. Air entrainment and turbulent fluctuations in hydraulic jumps. Urban Water J. 2015, 12, 502–518. [Google Scholar] [CrossRef] [Green Version]
- Montano, L.; Felder, S.; Cox, R.; Felder, S. Measuring internal forces in a hydraulic jump with a load cell. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar] [CrossRef]
- Murzyn, F.; Chanson, H. Free-surface fluctuations in hydraulic jumps: Experimental observations. Exp. Therm. Fluid Sci. 2009, 33, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.D.; Buytaert, W.; Sah, N. A Technical Evaluation of Lidar-Based Measurement of River Water Levels. Water Resour. Res. 2020, 56, e2019WR026810. [Google Scholar] [CrossRef] [Green Version]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Martins, K.; Bonneton, P.; Frappart, F.; Detandt, G.; Bonneton, N.; Blenkinsopp, C.E. High frequency field measurements of an undular bore using a 2D LiDAR scanner. Remote Sens. 2017, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Splinter, K.D.; Felder, S. Free-surface mapping of air-water flows in a stilling basin. In Proceedings of the 8th International Symposium on Hydraulic Structures, Santiago, Chile, 12–15 May 2020. [Google Scholar] [CrossRef]
- Hohermuth, B.; Boes, R.M.; Felder, S. High-Velocity Air-Water Flow Measurements in a Prototype Tunnel Chute–Scaling of Void Fraction and Interfacial Velocity. J. Hydraul. Eng. 2021, 147, 04021044. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Splinter, K.D.; Felder, S. LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example. Remote Sens. 2021, 13, 3599. https://doi.org/10.3390/rs13183599
Li R, Splinter KD, Felder S. LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example. Remote Sensing. 2021; 13(18):3599. https://doi.org/10.3390/rs13183599
Chicago/Turabian StyleLi, Rui, Kristen D. Splinter, and Stefan Felder. 2021. "LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example" Remote Sensing 13, no. 18: 3599. https://doi.org/10.3390/rs13183599
APA StyleLi, R., Splinter, K. D., & Felder, S. (2021). LIDAR Scanning as an Advanced Technology in Physical Hydraulic Modelling: The Stilling Basin Example. Remote Sensing, 13(18), 3599. https://doi.org/10.3390/rs13183599