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Abstract: In hydraulic engineering, stilling basin design is traditionally carried out using physical
models, conducting visual flow observations as well as point-source measurements of pressure,
flow depth, and velocity at locations of design relevance. Point measurements often fail to capture
the strongly varying three-dimensionality of the flows within the stilling basin that are important
for the best possible design of the structure. This study introduced fixed scanning 2D LIDAR
technology for laboratory-scale physical hydraulic modelling of stilling basins. The free-surface
motions were successfully captured along both longitudinal and transverse directions, providing a
detailed free-surface map. LIDAR-derived free-surface elevations were compared with typical point-
source measurements using air–water conductivity probes, showing that the elevations measured
with LIDAR consistently corresponded to locations of strongest air–water flow interactions at local
void fractions of approximately 50%. The comparison of LIDAR-derived free-surface elevations with
static and dynamic pressure sensors confirmed differences between the two measurement devices in
the most energetic parts of the jump roller. The present study demonstrates that LIDAR technology
can play an important role in physical hydraulic modelling, enabling design improvement through
detailed free-surface characterization of complex air–water flow motions beyond the current practice
of point measurements and visual flow observations.

Keywords: remote sensing; hydraulic jump; physical modelling; air–water flows; free surface;
hydraulic structure; super-cavitating blocks; hydrodynamic pressure

1. Introduction

In hydraulic engineering, both the interfacial aeration processes, which increase the
flow depth and reduce drag, as well as the internal dynamic pressures and forces, are im-
portant for the safe design of hydraulic structures including stilling basins [1–3]. Physical
hydraulic modelling plays a key role in understanding these processes and is used to test
and optimize hydraulic structure design before prototype construction. Energy dissipation
in stilling basins occurs via hydraulic jumps, which have been extensively researched in
prismatic horizontal channels in terms of flow aeration, e.g., [4,5], velocities and turbu-
lence [6,7], energy dissipation efficiency, e.g., [8,9], and pressures [10–12]. The design of
stilling basins with baffle elements has been much less fundamentally researched despite
their common use in engineering practice. While standard stilling basin designs exist [3],
often these have site- and dam-specific modifications to the baffle elements in the stilling
basin that require testing in laboratory-scale physical models.

Point-source measurement devices, such as static or dynamic pressure tappings, free-
surface acoustic displacement sensors, or velocity measurement devices are often used
at select locations to measure specific flow properties within stilling basin models. The
challenges associated with relying on point-source measurements is that the flows inside
the stilling basin are highly variable in both time and space (Figure 1). Therefore, in order
to capture the full complexity of the air–water flows, many instruments or numerous repeat
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experimental tests are needed [13]. Considering the limitations of current best practice in
physical hydraulic modelling, remote sensing technology provides new opportunities that
to date remain largely underexploited in this field of research.
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upstream of the jump toe Fr1 = 6.7, and Reynolds number Re = 1.9 × 105: (a) stilling basin without super-cavitating blocks;
(b) stilling basin with super-cavitating blocks.

Remote sensing of hydraulic engineering phenomena is non-intrusive and therefore
does not interfere with the flow motions being measured [14,15]. Remote sensing ap-
proaches in laboratory scale hydraulic engineering applications comprise a high-speed
video camera viewing from the sidewall, e.g., [7,16,17], a digital camera assisted with
external laser light projection on the free surface, e.g., [18–20], and stereoscopic camera
systems [21–23] that have all been used to provide information about free-surface eleva-
tions and velocity fields. Recent top-view remote sensing with video cameras has provided
proof of concept of free-surface velocimetry in flows across flow conveyance structures at
laboratory and prototype scale [24]. However, accurate optical flow measurements require
complicated calibration and advanced image processing algorithms to convert 2D images
into 3D real-world coordinates [20,22] and may be influenced by sidewall effects [7,25] and
the complex nature of the flows [24]. Alternatively, remote sensing technology that directly
measures the distance to an object can also provide information about the time-varying
free-surface flow properties. Herein, LIDAR appears to be a promising remote sensing
technology due to its simplicity in scanning large transects from a single point continuously
and with high spatial and temporal resolutions [13,26].

Using the Time-Of-Flight principle [27,28], LIDAR has been used in a wide range of
research fields, such as object localization and detection systems in urban environments,
e.g., [29,30], geomorphological survey and topographic mapping, e.g., [31–33], as well as
precipitation and aerosol measurements in atmospheric research, e.g., [34,35]. Since the
late 1960s, airborne LIDAR has been commonly applied in water-related research for
terrestrial and bathymetric mapping, e.g., [36–41]. In recent years, industrial LIDARs have
successfully been used to track swash motions [42], map beach profiles [43,44], and measure
wave characteristics at laboratory scale, e.g., [14,45]. Specific to hydraulic engineering
applications, LIDAR has been recently introduced to study hydraulic jumps [26,46,47],
an open channel confluence [48], and spillway flows [15]. While these studies provided
new fundamental insights into complex air–water free-surface flows along the channel
centerline, opportunities for LIDAR technology within the context of improved design of
hydraulic infrastructure characterized by 3D flow motions have not been explored.

Herein, this study applied a 2D LIDAR scanner in a typical physical model of complex
hydraulic engineering flows to demonstrate 3D free-surface mapping as a new design tool
for physical hydraulic modeling of water infrastructure. Specifically, this study presented
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detailed measurements of time-varying free-surface features for two different stilling basins
with and without super-cavitating blocks. For the first time, strong free-surface motions in
both longitudinal and transverse directions were captured at high spatial and temporal
resolution in the stilling basins. Time-averaged 3D free-surface profile and 3D free-surface
fluctuations across the entire basin were reconstructed using the LIDAR measurements,
revealing the complex flow patterns. The high spatial and temporal resolution of the data
also provided opportunities to investigate a broad range of free-surface and hydraulic
jump-toe parameters. The LIDAR-derived free-surface was compared with air–water flow
measurements showing good agreement of LIDAR data with characteristic air–water flow
elevations, while the comparison with pressure measurements highlighted the impor-
tance of including detailed free-surface measurements in the hydraulic design process.
The present experimental study highlights new opportunities to use remote sensing tech-
nology in physical hydraulic modelling.

2. Materials and Methods

Laboratory experiments were conducted in a stilling basin model at the Water Research
Laboratory, UNSW Sydney (Figures 1 and 2). Unaerated supercritical flows down a smooth
spillway entered the stilling basin with width W = 1.54 m and length L = 1.47 m. The flow
was controlled using an ABB WaterMaster FEX100 electromagnetic flowmeter with an
accuracy of ±0.4% of the flow rate. In the stilling basin, dissipative and strongly aerated
hydraulic jumps occurred for discharges per unit width q = 0.13–0.19 m2/s and supercritical
inflow depth d1 = 0.027–0.044 m corresponding to inflow Froude numbers Fr1 = 6.7–9.4 and
Reynolds numbers Re = 1.3 × 105–1.9 × 105. Two stilling basin configurations were tested.
The first basin configuration had a horizontal floor and an end sill, and the hydraulic
jump was controlled by the tailwater level. For the second basin configuration, a series
of super-cavitating blocks (Figure 2b) were added, resulting in different flow patterns for
similar inflow conditions (see Figure 1a vs. Figure 1b).

A 2D LIDAR LMS511 manufactured by SICK was used to measure the time-varying
free-surface elevations in the stilling basin. The LIDAR emitted an infrared laser with a
wavelength of 905 nm scanning for 190◦ at each time step. Successful free-surface measure-
ments required that the emitted laser beam reflected at the air–water interface to return to
the LIDAR. In turbulent air–water flows, sprays, droplets, foam, entrained bubbles, and
free-surface roughness ensured an adequate amount of light reflected and received by
the LIDAR [13,26]. The LIDAR was mounted 1.26 m above the basin floor and sampled
at a frequency of 35 Hz and an angular resolution of 0.25◦. For this distance between
the instrument and the free-surface, the spot size of the LIDAR was less than 5 mm [13].
In the present experimental setup shown in Figure 2, the LIDAR was positioned at the start
of the basin (x/L = 0) for measurements of 7 longitudinal cross-sections (z/W = −0.36, −0.2,
−0.05, 0, 0.11, 0.26, 0.36) and at the centerline (z/W = 0) for measurements of 6 transverse
cross-sections (x/L = 0.03, 0.12, 0.26, 0.45, 0.58, 0.72). These cross-sections were determined
to compare with the bed pressure recorded using in situ sensors along the same cross-
sections. Under these scan conditions, the LIDAR measured approximately 200 locations
for the longitudinal cross-sections and 250 locations for the transverse cross-sections for
each rotational scan. As the angular resolution of LIDAR was fixed (0.25◦), the spatial
distance between two consecutive locations depended on the distance from the LIDAR to
the measured location, which varied with time due to free-surface motions. The scan-wise
spatial resolution was between 5 mm (at the start of the basin, ~x/L = 0) and 14 mm (at the
end of the basin, ~x/L = 1) for longitudinal measurements and between 4.5 mm (at the cen-
terline, ~z/W = 0) and 7.5 mm (at the sidewall, z/W = ±0.5) for transverse measurements.
The LIDAR recorded for 30 min along each cross-section for all tested flow conditions.
At 35 Hz, this resulted in approximately 63,000 data points at each of the 200 to 250 locations
per cross-section within a 30 min period capturing the free-surface motions and continuous
free-surface profiles.
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The LIDAR data were post-processed using self-developed software in MATLAB
as explained in Li et al. [13]. First, the recorded signal was converted to data points in
Cartesian coordinates. Afterwards, all data points below the inflow depth in the region
close to the jump toe were removed and replaced with NaNs. In a final step, the data
were interpolated onto a fixed x-axis grid based on the values of all recorded frames before
statistical analyses were conducted. Manual checking of instantaneous profiles indicated
very few outliers such that no additional filtering of the data was necessary [49].

To better understand the elevations the LIDAR measured, the LIDAR observations
were compared to characteristic air–water flow depths measured using state-of-the-art
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conductivity probes from WRL [50,51] along two longitudinal cross-sections (z/W = 0.11
and 0.26) for all flow conditions. Along each cross-section, at 6 horizontal locations, air–
water flow properties were measured across a vertical profile (14–36 vertical points) from
the channel bed to the free-surface. The conductivity probe was sampled at 20 kHz and
recorded for 180 s at each vertical point. The conductivity probe data were post-processed
to provide the vertical distributions of local time-averaged void fraction C and particle
count rate F at each location. The void fraction C allowed the determination of characteristic
flow depth y50 and y90 (i.e., elevations corresponding to C = 50% and 90%, respectively).
The particle count rate F allowed the determination of flow depth yFmax (i.e., the flow depth
corresponding to the maximum particle count rate in the recirculation region of a cross
section). The equivalent clear water flow depth h was calculated based upon the void
fraction C and y90 [52].

Twenty-one pressure transducers (Keller Series 25) were used to measure the dynamic
pressures at characteristic locations across the bed of the basin. The diameter of each
pressure sensor was 19.1 mm, and the accuracy reported by the manufacture was less than
±0.5% of the reading. The pressure transducers were individually calibrated in clear still
water. All pressure transducers were simultaneously sampled for 30 min with a sampling
frequency of 1 kHz. Pressures were also measured using 15 piezometer tappings within the
basin. The values of pressure head in all piezometers fluctuated strongly and the elevations
in a connected manometer board were visually observed for at least 60 s to observe an
average pressure head for each piezometer.

3. Results
3.1. Instantaneous Free-Surface Profiles Obtained by LIDAR

The LIDAR data recorded during these experiments highlight that the free-surface of
highly aerated turbulent flows varied rapidly with time throughout the basin (Figure 3).
In addition to the instantaneous profiles captured by the LIDAR, the mean elevations
dLIDAR as well as the 10th and 90th percentiles dLIDAR_10% and dLIDAR_90% over the full
sampling time (30 min) are presented in Figure 3. Fast and strong free-surface fluctuations
around the mean profile were observed by the LIDAR in both longitudinal (Figure 3a,b,e,f)
and transverse directions (Figure 3c,d,g,h). Notably, the LIDAR was able to capture the
distinct differences in flow patterns between the two stilling basin designs at high tem-
poral and spatial resolution. For example, in the stilling basin without super-cavitating
blocks (Figure 3a,b), longitudinal LIDAR measurements of the instantaneous free-surface
showed stronger fluctuations around the mean in the first half of the hydraulic jump
(x/L < 0.5) than in the stilling basin with super-cavitating blocks (Figure 3e,f). The LIDAR
also recorded clear evidence of flow bulking in the region around the super-cavitating
blocks (0.37 < x/L < 0.55) resulting in a sharp rise in the free-surface associated with an
upwards-directed jump roller (Figure 3e,f). In addition, the LIDAR was capable of captur-
ing the transverse variation of the instantaneous longitudinal flow patterns and temporal
variability in the jump toe position that was more evident in the stilling basin without
super-cavitating blocks (Figure 3a vs. Figure 3b) than with (Figure 3e vs. Figure 3f). The
instantaneous time and spatially varying free-surface motions captured by the LIDAR
along both longitudinal and transverse cross-sections can be observed in Supplementary
Videos S1–S4 for Fr1 = 8.7 without super-cavitating blocks and for Fr1 = 9.4 with blocks.

Similarly, the series of transverse LIDAR scans obtained during these experiments
provide, for the first time, detailed data of the cross-basin variation in free-surface elevations
as well as evidence of large free-surface motions and advection of free-surface waves. The
free-surface close to the jump toe (x/L = 0.26, Figure 3c) had stronger fluctuations close to
the centerline of the basin (z/W = 0) and there was clear asymmetry in the free-surface. In
contrast, less variability in free-surface elevations across the basin were observed towards
the end of the hydraulic jump (x/L = 0.72, Figure 3d). Similar results were found from the
data with super-cavitating blocks (Figure 3g,h).
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(f) longitudinal, Fr1 = 9.4, z/W = 0.11; (g) transverse, Fr1 = 9.4, x/L = 0.26; (h) transverse, Fr1 = 9.4, x/L = 0.72.

3.2. Mean Free-Surface Elevations and Fluctuations Derived from LIDAR

Information about the mean free-surface across the stilling basin as well as the tempo-
ral fluctuations is important in stilling basin design. The free-surface information ensures
symmetry in flows across the basin and provides information about the required sidewall
heights to make sure that the hydraulic jump is contained within the basin. Figure 4 shows
mean free-surface elevations dLIDAR/d1 and free-surface fluctuations dLIDAR’/d1 derived
from the LIDAR data for q = 0.19 m2/s and Fr1 = 6.7 in the basin without super-cavitating
blocks. Overall, the mean free-surface elevations were consistent with visual observations
of flow patterns (Figure 1). As expected, longitudinal mean free-surface elevations showed
monotonic increases along the basin and slight transverse variation (Figure 4a). While
these findings were overall consistent with previous observations of dLIDAR/d1 in the cen-
terline of classical hydraulic jumps [13,47], the present data provide a much more coherent
free-surface highlighting transverse variations in free-surface elevations. The transverse
mean free-surface elevations across the basin indicated a near symmetric flow pattern with
flow bulking (elevated water levels) along the centerline (Figure 4b). Sidewall effects were
evident with a slight increase in dLIDAR/d1 in the region z/W = −0.4 to −0.5 and 0.4 to 0.5.

Dimensionless free-surface fluctuations dLIDAR’/d1 in terms of standard deviations in
longitudinal (Figure 4d) and transverse (Figure 4e) directions, as well as the 3D interpo-
lation (Figure 4f), highlight the spatial complexity associated with the 3D flow captured
by the LIDAR. The distributions were similar to the fluctuations of classical hydraulic
jumps [26,47,53], with a positive trend of dLIDAR’/d1 in the longitudinal direction along
the hydraulic jump region followed by a continuous decrease to the end of the basin
(Figure 4d). Uniquely, the LIDAR captured the high fluctuations in the supercritical flow
region (0 < x/L < 0.1) due to water ejections upstream of the jump toe (e.g., z/W = −0.05).
The LIDAR also captured the clear transverse variation in dLIDAR’/d1 (Figure 4e) along the
basin length. For example, at x/L = 0.12, LIDAR measurements close to the centerline were
mostly in the supercritical flow region, resulting in lower dLIDAR’/d1. However, close to
the sidewalls, jump-toe oscillations were more dynamic, resulting in higher dLIDAR’/d1 to-
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wards both edges (z/W = +/−0.5). Two further downstream transects (x/L = 0.45 and 0.58)
showed similar distribution patterns across the width of the basin, with larger dLIDAR’/d1
between the centerline and sidewalls potentially linked with the interaction of strong flow
recirculation motions visually observed (Figure 1a).
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When super-cavitating blocks were included in the stilling basin, the jump toe was
shifted upstream to the spillway section. The hydraulic jump was more stable and as-
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sociated with a shorter and upwards-directed roller, leading to less flow aeration and a
strong boiling region. Distinct and strong longitudinal and transverse variation in the
mean free-surface elevations dLIDAR/d1 and fluctuations dLIDAR’/d1 were observed with
the LIDAR (Figure 5). The LIDAR measurements were consistent with visual observations
of flow patterns capturing jump toe locations on the sloped section and flow bulking above
the super-cavitating blocks (Figure 1b).
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The free-surface properties captured by the LIDAR were slightly asymmetric about
the centerline due to a small asymmetry in the placement of the super-cavitating blocks
(Figure 5). The longitudinal mean profile decreased in the impinging region (0 < x/L < 0.2) and
then rapidly increased linked with the upwards directed roller forced by the super-cavitating
blocks (Figure 5a). Higher mean free-surface elevations in the region 0.35 < x/L < 0.65 cor-
responded to the visual observation of flow boiling motions above the super-cavitating
blocks (Figure 1). The higher mean profile of z/W = −0.36 within this region (0.35 < x/L
< 0.65) was due to the super-cavitating blocks beneath this particular location (Figure 2).
Transverse variation in dLIDAR/d1 due to the super-cavitating blocks was also recorded
by the LIDAR (Figure 5b). The 3D free-surface mapping (Figure 5c) combined all longi-
tudinal and transverse measurements across the basin, providing a detailed image of the
free-surface characteristics. Localized flow bulking close to the center and sidewalls related
to the three-dimensional motions of the flow, sidewall effects, as well as the asymmetric
distribution of super-cavitating blocks, were also captured by the LIDAR.

As expected, the free-surface fluctuations (dLIDAR’/d1) in longitudinal and trans-
verse directions were also distinctly different between the two stilling basin designs. The
maximum free-surface fluctuations occurred upstream and close to the start of the super-
cavitating blocks (0.2 < x/L < 0.4) and were linked with the intense upwards directed roller
motions that resulted in eruption of large vortices at the free-surface. In the region up-
stream of the super-cavitating blocks (x/L = 0.12 and 0.26), values of dLIDAR’/d1 were higher
between the centerline and sidewalls where strong recirculation was visually observed.
In contrast, in the flow boiling region above the super-cavitating blocks (x/L = 0.45 and
0.58) dLIDAR’/d1 was higher close to the centerline and sidewalls (Figure 5e). Downstream
of the flow boiling region (x/L = 0.6–1), dLIDAR’/d1 was more uniform across the width of
the basin.

3.3. Advanced Free-Surface Properties Derived from LIDAR

The detailed observations as presented in Figures 4 and 5 provide information about
the flow paths inside the stilling basin and point to locations of intense free-surface motions,
large-scale vortical flow structures, and associated pressure fluctuations. Further analysis
of the LIDAR data can provide the characteristic frequencies of the free-surface motions
that provide further insights on the frequencies of the internal flow motions [54].

While free-surface frequencies can also be measured with point measurement devices
as reported for the centerline of classical hydraulic jumps, e.g., [53,55], the LIDAR provided
a much greater number of locations for the frequency analysis in the stilling basin. In line
with previously reported frequencies, the present free-surface frequency analysis showed
characteristic frequencies between 0.2 and 2.5 Hz. The detailed spatial representation
revealed the strong variations of characteristic frequencies across the stilling basin that are
linked with three-dimensional flow motions. Figure 6a shows representative Fast Fourier
Transform (FFT) analysis at two locations (z/W = 0.23 and 0.4) at the same longitudinal
distance from the start of the basin (x/L = 0.45). Figure 6a (left) shows a distinct peak
in the frequency spectrum indicating a dominant frequency of approximately 1.5 Hz at
z/W = 0.23. Two peaks were observed in the FFT analysis at a location close to the sidewalls
(z/W = 0.4, Figure 6a (right)) with the first frequency of 0.35 Hz and the second frequency
of approximately 1.8 Hz. These were also observed in the pressure sensor data. The
smaller frequency between 0.3 and 0.5 Hz consistently observed near the sidewalls is
hypothesized to be linked with the flow recirculation motions due to the presence of the
sidewalls themselves (Figure 1).

Additionally, the detailed free-surface maps of mean free-surface elevations and fluctu-
ations provide important information on the stability of the energy dissipator for different
flow conditions. A stable energy dissipator meant no “sweeping out” of high-energy flows
into the river downstream of the stilling basin that could result in scour. As part of this
stability assessment, it was important to identify the location of the jump toe, which was
ideally positioned at the start of the stilling basin. As the LIDAR provided continuous
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and quasi-synchronous measurements with high spatial resolution along the stilling basin,
instantaneous jump toe positions could be extracted from the seven longitudinal free-
surface profiles at each time step. Dimensionless standard deviations of jump toe motions
xtoe’/d1 are shown in Figure 6b. The results of jump toe fluctuations are shown in Figure 6b
for stilling basins with and without super-cavitating blocks. Large three-dimensional flow
recirculation motions in the hydraulic jumps without blocks (Figure 1) resulted in stronger
transverse variations of jump toe oscillations across the width of the basin (green vs. black
dots in Figure 6b). For similar inflow Froude numbers, the jump toe of hydraulic jumps
with super-cavitating blocks had lower standard deviations than for the hydraulic jumps
associated with no blocks. This finding shows that the super-cavitating blocks stabilized
the hydraulic jump within the stilling basin as intended. For the same stilling basin con-
figuration, hydraulic jumps with a larger Froude number had stronger jump toe motions,
which was consistent with previous investigations in classical hydraulic jumps [46].
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Fr1 = 6.7, and Re = 1.9 × 105 without super-cavitating blocks at x/L = 0.45 and z/W = 0.23 (left), z/W = 0.4 (right);
(b) standard deviations of jump toe locations (xtoe’/d1).

4. Discussion

LIDAR measurements with high spatial and temporal resolution provide new oppor-
tunities to investigate complex flow patterns in hydraulic engineering design. The LIDAR
successfully captured the 3D spatial and temporal variability of the hydraulic jump motions
represented by the aerated free-surface across two stilling basin designs. Compared to
traditional in-situ instrumentation, the additional temporal and spatial resolution of the
LIDAR data provides the opportunity for much more detailed understanding of the flow
motions compared to the classical point-source measurement approaches. In the following
section, several key points are discussed that must be considered when employing LIDAR
technology in physical hydraulic modelling.

4.1. Comparison with Point-Source In Situ Measurements

As LIDAR is a relatively new technology being applied to air–water flows across
hydraulic structures, the data were compared against intrusive conductivity probe (CP)
air-water flow measurements for the same flow conditions. Figure 7 shows the distributions
of void fraction C and particle count rate F at two example locations (x/L = 0.34, 0.58)
in the basin with and without blocks. The plots of C and F for the stilling basin without
super-cavitating blocks (Figure 7a) showed distributions typically observed in classical
hydraulic jumps [4,5]. The characteristic void fraction profiles showed a local maximum
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in the shear region, and a local minimum in C at the boundary of shear and recirculation
regions, followed by an increase in C up to the free-surface. The corresponding F distribu-
tions showed two characteristic peaks in the shear and recirculation regions, respectively
(Figure 7a). The distributions of C and F in the stilling basin with super-cavitating blocks
differed, exhibiting an overall reduced entrainment of air and a much less pronounced
shear region (Figure 7b). The profiles of C showed very little aeration in most of the flows,
while C increased in the recirculation region up to the free-surface. The particle count
rate showed distinct peaks in the shear and recirculation regions albeit with a much more
pronounced peak in the recirculation region (Figure 7b). The observed distributions of C
and F for the two stilling basin types confirmed the differences in the roller formation and
free-surface properties as documented with the LIDAR.
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Figure 7. Distributions of void fraction C and particle count rate F at x/L = 0.34 and 0.58: (a) without super-cavitating
blocks, q = 0.15 m2/s, Fr1 = 8.7, Re = 1.5 × 105; (b) with blocks, q = 0.19 m2/s, Fr1 = 6.7, Re = 1.9 × 105.

Based upon the C and F data, the characteristic air–water flow depths y50, y90, yFmax,
and the equivalent clear water flow depth h were calculated. The characteristic elevations
y90 and yFmax are indicated with arrows in Figure 7 for clarification. It can be seen that y50
was close to the elevation with maximum particle count rate in the recirculation region
yFmax (Figure 7).

The characteristic air–water flow elevations were compared with average elevations
recorded with the LIDAR at the same locations. Figure 8 shows this comparison for typical
data along the stilling basin with and without super-cavitating blocks. In Figure 8a,b,
the mean LIDAR elevations dLIDAR/d1 are shown as continuous lines and the 10th and
90th percentiles dLIDAR_10% and dLIDAR_90% are added to show the temporal and spatial
variability of the free-surface motions. Figure 8c shows the relative difference between the
free-surface elevations measured with LIDAR and characteristic flow depths measured
with the conductivity probe. Independent of the stilling basin design and flow conditions,
there was close agreement of dLIDAR with y50 (average difference of 3%) and yFmax (average
difference of 2%), indicating that the LIDAR beam was most likely reflected at a depth with
the most intense air–water flow interactions. The 90th percentile of LIDAR measurements
(dLIDAR_90%) compared well with y90, showing an average difference of 3.5%. These findings
are significant since they suggest that LIDAR can remotely measure characteristic air–water
flow depth in stilling basins and hydraulic jumps. While the LIDAR was consistently able
to measure the dynamic flow motions of the jump roller and toe, the comparison with the
air–water flow elevations was limited by the conductivity probe’s abilities to consistently
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measure air–water flow properties in the first quarter of the jump roller, characterized
by intense jump toe motions and extensive water ejections. This resulted in some larger
differences between dLIDAR and equivalent clear water flow depth h in this part of the
hydraulic jump without blocks, while there was close agreement in the latter part of the
roller (Figure 8a).
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measured with dynamic pressure sensors (PT) and piezometers (Pz) as well as characteristic air–water flow elevations
measured with the conductivity probe (CP): (a) without super-cavitating blocks; q = 0.15 m2/s, Fr1 = 8.7, Re = 1.5 × 105,
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The pressure head observations with the dynamic pressure sensors (PT) and piezo-
metric tappings (Pz) are also shown in Figure 8a,b. For the stilling basin without super-
cavitating blocks, the dynamic pressure data were substantially larger in the region just
downstream of the spillway section linked with the downwards-directed force from the
vertical motion on the spillway as well as the downwards impinging motion of the jump
roller (Figure 8a). For x/L > 0.3, there was close agreement of pressure data with the LIDAR
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elevations, indicating that the pressure distributions were close to hydrostatic pressures.
In contrast, for the stilling basin with super-cavitating blocks (Figure 8b), the pressures
varied substantially more, with high pressure values linked with the more vertical roller
motions (0 < x/L < 0.2) and the impingement of the flows onto the super-cavitating blocks
(x/L ≈ 0.3). In the area of the blocks, the pressures were lower than the surface elevations,
while the pressure heads agreed with the free-surface elevations downstream (x/L > 0.6).

For both stilling basin designs, the peak frequencies measured by the pressure sensors
were sometimes higher (up to 4 Hz) than those derived from the LIDAR. This was due to the
pressure sensors recording the high-frequency internal vertical motions associated with the
jump roller. These findings show that detailed free-surface elevation data, as provided by
the LIDAR, as well as internal dynamic pressure data, are essential for providing a complete
understanding of both the free-surface motions as well as the internal dynamics of the flow
properties in stilling basin design. In areas not dominated by strong vertical fluctuations,
such as in classical hydraulic jumps within stilling basins without baffle features, LIDAR
data can provide information about the mean pressure heads (x/L > 0.25). Longitudinal
trends in the standard deviations of pressures (p’/d1) and free-surface elevations derived
from the LIDAR (dLIDAR’/d1) were similar in the first half of the roller.

4.2. Factors Affecting LIDAR Data Quality in Air–Water Flows

Several factors can affect LIDAR measurements in aerated free-surface flows. The
characteristics of light sources (i.e., wavelength and divergence) as well as the algorithm
cannot be altered in industrial LIDARs, such as the one used in this study, and to date
no LIDAR has been specifically designed for air–water free-surface measurements [48].
Aerated free-surface features including droplets, entrained air, and free-surface roughness
also affect free-surface elevations measured with the LIDAR. These free-surface features
increase the diffuse and near-diffuse reflection of light at the water surface [13,14,48,56],
which increases the possibility of light reflection back to the LIDAR. Therefore, a challenge
in using LIDAR in free-surface flows with insufficient aeration and surface roughness is
that the LIDAR signal does not reflect off the free-surface as well. It may still be applicable
to measure the time-averaged surface of steady flows if data are collected for sufficient
time, but the characterization of dynamic free-surface motions may not be possible.

The LIDAR measured full cross-sections of free-surface data from a single position
resulting in different incident angles of the light beam between 0◦ and 54◦. More oblique
angles, as well as distances further from the LIDAR source, may result in larger and
elongated footprints [57]. The larger footprint may also capture higher free-surface features
such as water droplets and ejections as the LIDAR measures the position with the strongest
reflected signal [57,58]. As detailed above, the LMS511 LIDAR used in this study had
scan-wise spatial resolution between 4.5 and 14 mm depending on the distance from the
source. In highly variable flows, with a fragmented free-surface as shown here, this may
also bias the free-surface position far from the LIDAR as only the first return signal is
recorded and analyzed. Li et al. [49] suggested LIDAR positions upstream of the jump
toe to reduce signal penetration through the free-surface into air–water flows. Comparing
measurements at the intersection points of longitudinal and transverse cross-sections, the
free-surface elevation was slightly higher (2.6% on average) with a LIDAR position further
away from the measurement point. The largest difference occurred at the intersection
between the most downstream transverse cross-section (i.e., x/L = 0.72) and the centerline
as the smaller incident angle between the LIDAR beam of the longitudinal measurements
and the free-surface resulted in slightly higher free-surface elevations with a difference of
up to 8% [59]. Separate LIDAR measurements of a flat surface with length of 12 m revealed
slightly higher surface elevations (<0.1%) with smaller incident angles between the LIDAR
beam and the surface. Therefore, it is believed that the observed difference between the
transverse and longitudinal free-surface measurements was related to the free-surface
features of the aerated flows such as ejected droplets, free-surface waves, and temporal
and spatial variation in aeration. The detailed effects of LIDAR perspectives on air–water
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flow free-surface measurements can be further investigated with larger measurement field,
and this is recommended for future research.

Turbidity of water is another factor that might influence LIDAR measurements. Partic-
ulate matter in the water can increase diffuse reflectivity of the free surface [14,45]. Previous
studies using LIDAR in free-surface measurements of non-aerated water have added partic-
ulate matter such as clay minerals to increase reflectivity of the water surface [14,45]. In this
study, water from a natural source (a nearby freshwater lake) was used and contained a
small amount of organics and particulate matter that may have aided in the reflectivity of
the surface.

To date, measurements of free-surface flows at large scale prototype structures have
been challenging with respect to the deployment of instrumentation in flows with high
Reynolds numbers due to violent flow motions and health and safety considerations [51,60].
Despite first advances in remote sensing at full scale dams [24], further opportunities for
remote sensing technology exist to provide missing prototype data. Flows in prototype
hydraulic structures are often highly aerated with strong free-surface fluctuations, and
particles in the water might also increase the light reflection at the free-surface, which
suggests that LIDAR is a promising remote sensing tool for future research and monitoring
of large scale hydraulic structures.

5. Conclusions and Future Directions

This study used a 2D LIDAR as an advanced remote sensing tool, to record free-
surface information in physical hydraulic modeling. Free-surface motions across 2 distinct
stilling basin designs were recorded with a frequency of 35 Hz and angular resolutions of
0.25◦ in both longitudinal and transverse directions. Distinct free-surface elevations and
fluctuations presented in a 3D view were consistent with visual observations revealing
highly complex patterns of flow recirculation, surface boiling, and flow bulking across
the stilling basins. Comparing LIDAR to traditional in situ measurements reveals that the
mean free-surface elevations recorded by the LIDAR were close to the elevation with 50%
void fraction as measured by an air–water conductivity probe and that the 90% percentile
of the LIDAR elevations is in close agreement with y90. This suggests that LIDAR can be
used as a reliable engineering tool in physical hydraulic modelling to remotely measure
accurate free-surface elevations that are on average within 2–3% of characteristic air–water
flow depths.

LIDAR elevations were also compared with pressure tappings and dynamic pressure
sensors throughout the stilling basins. Large differences in pressure heads and free-surface
elevations were observed in the stilling basin with super-cavitating blocks, indicating the
need to properly document both internal pressures as well as the free-surface to fully
understand the flow motions and dissipative processes.

Considering the significant extra information the LIDAR provides, including instanta-
neous spatial variations in free-surface properties as well as 3D free-surface maps, remote
sensing with LIDAR technology represents a promising physical modelling tool for more
detailed and advanced design of energy dissipators. The results highlight that remote
sensing techniques, such as LIDAR, offer improved spatial and temporal resolution over
traditional in situ point-source measurements typically used in hydraulic research. With
the rapidly expanding suite of 2D and 3D LIDARs, as well as 3D LIDAR cameras currently
being developed, there is significant future potential in hydraulic research applications to
capture highly detailed free-surface measurements of complex air–water flows at laboratory
and prototype scale.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/rs13183599/s1, Video S1: Raw LIDAR signal along a longitudinal cross-section in the stilling basin
without super-cavitating blocks: q = 0.15 m2/s, Fr1 = 8.7, Re = 1.5 × 105, z/W = 0.11; Video S2: Raw
LIDAR signal along a transverse cross-section in the stilling basin without super-cavitating blocks:
q = 0.15 m2/s, Fr1 = 8.7, Re = 1.5 × 105, x/L = 0.45; Video S3: Raw LIDAR signal along a longitudinal
cross-section in the stilling basin with super-cavitating blocks: q = 0.13 m2/s, Fr1 = 9.4, Re = 1.3 × 105,

https://www.mdpi.com/article/10.3390/rs13183599/s1
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z/W = −0.36; Video S4: Raw LIDAR signal along a transverse cross-section in the stilling basin with
super-cavitating blocks: q = 0.13 m2/s, Fr1 = 9.4, Re = 1.3 × 105, x/L = 0.26.
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