Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Multi-Spectral Data Acquisition via an Unmanned Aerial Vehicle (UAV)
2.2.2. Ground-Truth LAI Measurements for Apple Orchards
2.3. Remote-Sensing Method for LAI Estimation
2.3.1. Vegetation Indices
2.3.2. Support Vector Regression
2.3.3. Gradient-Boosting Decision Trees
2.4. Soil Interference Rejection in Remote-Sensing Images
2.5. Model Construction for the Apple Tree LAI Estimation
2.6. Model Evaluation
3. Results
3.1. Correlation Analysis
3.1.1. Correlation Analysis between the Apple LAI and Vegetation Indices
3.1.2. Data Autocorrelation Analysis
3.2. Model Performance Evaluation and Comparison
3.2.1. Analysis of Model Bias
3.2.2. Performance Analysis Based on Spatial Metrics
4. Discussion
- (1)
- The GBDT algorithm is used to judge the influence of several similar vegetation indices in the red and near-infrared bands, a fact that highlights the advantages of the algorithm. Still, there is room for accuracy improvement via further studies.
- (2)
- There are dependencies between the base learners in the GBDT algorithm, and hence, parallel calculations can be generally difficult to perform. This paper has not considered the parallelism among the base learners. In future research, we should focus on how to realize parallel operations (at least partially) to further improve the estimation efficiency.
5. Conclusions
- (1)
- The acquisition of large-scale remote-sensing images of apple orchards can be achieved using a multi-rotor UAV, the RedEdge multispectral camera, and its stabilized gimbal. The acquisition system enjoys several features including stability, easy maintenance and operation, data reliability, and accessibility.
- (2)
- All nine vegetation indices selected for this study have a strong correlation with the LAI. This is particularly true for the five indices of NDVI, GNDVI, RVI, EVI, and SAVI. Indeed, each of these five indices has a correlation coefficient greater than 0.5 at a confidence level of 0.01. This indicates a significant correlation between these five vegetation indices and the LAI.
- (3)
- The remote-sensing-based LAI estimation in apple trees can be combined with machine learning. In this case, the performance of the GBDT model is better than that of the SVR model. The GBDT model actually has strong noise immunity and generalization and is very suitable for remote-sensing estimation of the LAI for apple trees in different growth periods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. K-c and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.H.; Wang, H.Y.; Chen, C.; Xu, B.D.; Wu, S.L. Comparative Analysis of Chinese HJ-1 CCD, GF-1 WFV and ZY-3 MUX Sensor Data for Leaf Area Index Estimations for Maize. Remote Sens. 2018, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Wu, B.; Li, Q. Method for estimating crop leaf area index of China using remote sensing. Trans. Chin. Soc. Agric. Eng. 2007, 23, 160–167. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining leaf area index for non-Flat leaves. Agric. For. Meteorol. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Zhai, C.; Zhao, C.; Wang, N.; Long, J.; Wang, X.; Weckler, P.; Zhang, H. Research progress on precision control methods of air-assisted spraying in orchards. Trans. Chin. Soc. Agric. Eng. 2018, 34, 1–15. [Google Scholar] [CrossRef]
- Wu, S.; Deng, W.; Wu, G. Research on LAI Detection in Precision Pesticide Application. J. Agric. Mech. Res. 2017, 39, 262–268. [Google Scholar] [CrossRef]
- Wu, W.B. Ground Measurements of Leaf Area Index of Fruit Trees. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2007. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muoz-Marí, J.; Clevers, J.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS-J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Z.; Liu, F.; Liu, W.; Yang, X. The Research Progress of Leaf Area Index Estimation from the Hemispherical Photograph. Sci. Technol. Eng. 2018, 18, 156–162. [Google Scholar] [CrossRef]
- López-Calderón, M.J.; Estrada-Ávalos, J.; Rodríguez-Moreno, V.M.; Mauricio-Ruvalcaba, J.E.; Martínez-Sifuentes, A.R.; Delgado-Ramírez, G.; Miguel-Valle, E. Estimation of Total Nitrogen Content in Forage Maize (Zea mays L.) Using Spectral Indices: Analysis by Random Forest. Agriculture 2020, 10, 451. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yang, J.; Liu, X.G.; Du, L.; Shi, S.; Sun, J.; Chen, B.W. Estimation of Multi-Species Leaf Area Index Based on Chinese GF-1 Satellite Data Using Look-Up Table and Gaussian Process Regression Methods. Sensors 2020, 20, 2460. [Google Scholar] [CrossRef]
- Franklin, S.E.; Lavigne, M.B.; Deuling, M.J.; Wulder, M.A.; Hunt, E.R., Jr. Estimation of forest Leaf Area Index using remote sensing and GIS data for modelling net primary production. Int. J. Remote Sens. 1997, 18, 3459–3471. [Google Scholar] [CrossRef]
- Rahman, M.F.F.; Fan, S.; Zhang, Y.; Chen, L. A Comparative Study on Application of Unmanned Aerial Vehicle Systems in Agriculture. Agriculture 2021, 11, 22. [Google Scholar] [CrossRef]
- Xun, L.; Wang, P.; Li, L.; Wang, L.; Kong, Q. Identifying crop planting areas using Fourier-transformed feature of time series MODIS leaf area index and sparse-representation-based classification in the North China Plain. Int. J. Remote Sens. 2018, 40, 2034–2052. [Google Scholar] [CrossRef]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Z.; Cao, Q.; Liang, Y.; Krienke, B.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Use of an Active Canopy Sensor Mounted on an Unmanned Aerial Vehicle to Monitor the Growth and Nitrogen Status of Winter Wheat. Remote Sens. 2020, 12, 3684. [Google Scholar] [CrossRef]
- Mathews, A.J.; Jensen, J.L.R. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sens. 2013, 5, 2164–2183. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.-H.; Wu, L.-P. Application of UAV Remote Sensing Technology in modern mine surveying. World Nonferrous Met. 2018, 13, 23–24. [Google Scholar] [CrossRef]
- Qi, G.; Zhao, G.; Xi, X. Soil Salinity Estimation of Winter Wheat Areas Based on Satellite-Unmanned Aerial Vehicle-Ground Collaborative System in Coastal of the Yellow River Delta. Sensors 2020, 20, 6521. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, J.; Shang, J.; Liu, J.; Huang, J.; Qiao, Y.; Qian, B.; Jing, Q.; Dong, T.; Yu, L. Generating Time-Series LAI Estimates of Maize Using Combined Methods Based on Multispectral UAV Observations and WOFOST Model. Sensors 2020, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Na, W.; Wolf, J.; Fu-Suo, Z.; Systems, P.P.; Sciences, D.O.P.; University, W.; Resources, C.F.; Security, E.F.; University, C.A. Towards sustainable intensification of apple production in China—Yield gaps and nutrient use effi ciency in apple farming systems. J. Integr. Agric. 2016, 15, 716–725. [Google Scholar]
- Manninen, T.; Korhonen, L.; Voipio, P.; Lahtinen, P.J.R.S. Leaf Area Index (LAI) Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos. Remote Sens. 2009, 1, 1380–1394. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Andrés, V.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, B.; Song, K.; Wang, Z.; Liu, H.; Yang, F. Research and Analysis of the Correlation between Hyperspectral Vegetation Index and Leaf Area Index. Remote Sens. Technol. Appl. 2007, 22, 586–592. [Google Scholar] [CrossRef]
- Liang, D.; Guan, Q.; Huang, W.; Huang, L.; Yang, G. Remote sensing estimation of leaf area index based on support vector machine regression in winter wheat. Trans. Chin. Soc. Agric. Mach. 2013, 117–123. [Google Scholar] [CrossRef]
- Yu, B.; Shang, S. Multi-Year Mapping of Maize and Sunflower in Hetao Irrigation District of China with High Spatial and Temporal Resolution Vegetation Index Series. Remote Sens. 2017, 9, 855. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Wang, N.; Liu, Y.; Cheng, T.; Tian, Y.; Chen, Q.; Zhu, Y. Estimation of Wheat LAI at Middle to High Levels Using Unmanned Aerial Vehicle Narrowband Multispectral Imagery. Remote Sens. 2017, 9, 1304. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Ren, X.; Wang, Y.; Liu, B.; Guo, T. Comparing methods for estimating leaf area index by multi-angular remote sensing in winter wheat. Sci. Rep. 2020, 10, 13943. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, W.; Han, W.; Liu, Q.; Song, R.; Hou, G. Estimation of Summer Maize Leaf Area Index Based on Gradient Boosting Decision Tree Algorithm. Trans. Chin. Soc. Agric. Mach. 2019, 50, 251–259. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.Y.; Yang, Y.J.; Zeng, Q.; Zhanghao, Z.H.; Liu, J. Estimation of Forest Leaf Area Index Based on Random Forest Model and Remote Sensing Data. Trans. Chin. Soc. Agric. Mach. 2017, 48, 159–166. [Google Scholar]
- Srinet, R.; Nandy, S.; Patel, N.R. Estimating leaf area index and light extinction coefficient using Random Forest regression algorithm in a tropical moist deciduous forest, India. Ecol. Inform. 2019, 52, 94–102. [Google Scholar] [CrossRef]
- Qi, H.; Zhu, B.; Wu, Z.; Liang, Y.; Li, J.; Wang, L.; Chen, T.; Lan, Y.; Zhang, L. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images. Sensors 2020, 20, 6732. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Mark, N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Judith, E.D.P.D.; Deleo, J.M. Artificial neural networks. Cancer 2001, 91, 1615–1635. [Google Scholar]
- Yao, X. Evolving artificial neural networks. Proc. IEEE 1999, 87, 1423–1447. [Google Scholar]
- Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 2015, 521, 452. [Google Scholar] [CrossRef] [PubMed]
- Rumelhart, D.E. Learning Internal Representation by Back Propagation. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Son, J.; Jung, I.; Park, K.; Han, B. Tracking-by-Segmentation with Online Gradient Boosting Decision Tree; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Tian, D.; He, G.; Wu, J.; Chen, H.; Jiang, Y. An Accurate Eye Pupil Localization Approach Based on Adaptive Gradient Boosting Decision Tree; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Liu, Y.; Luo, X.; Yang, M. Research on Passenger Flow Prediction of Bus Line Based on Gradient Boosting Decision Tree; IEEE: Piscataway, NJ, USA, 2020. [Google Scholar]
- Han, W.; Peng, X.; Zhang, L.; Niu, Y. Summer Maize Yield Estimation Based on Vegetation Index Derived from Multi-temporal UAV Remote Sensing. Trans. Chin. Soc. Agric. Mach. 2020, 51, 148–155. [Google Scholar] [CrossRef]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biometrical journal. Biometrische Zeitschrift. 2019, 61, 860–872. [Google Scholar]
- Ozer, D.J. Correlation and the coefficient of determination. Psychol. Bull. 1985, 97, 307–315. [Google Scholar] [CrossRef]
- Koch, J.; Demirel, M.C.; Stisen, S. The SPAtial EFficiency metric (SPAEF): Multiple-component evaluation of spatial patterns for optimization of hydrological models. Geosci. Model. Dev. 2018, 11, 1873–1886. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Yin, T.; Dissegna, A. An assessment study of three indirect methods for estimating leaf area density and leaf area index of individual trees. Agric. For. Meteorol. 2020, 292, 108101. [Google Scholar] [CrossRef]
Varieties | Age of Tree (Year) | Tree Height (m) | Spacing Between Trees (m) | Row Spacing (m) |
---|---|---|---|---|
Fuji | 10 | 2.8 | 0.5 | 1.1 |
Golden Delicious | 12 | 2.8 | 0.5 | 1.2 |
Ruixue | 8 | 2.4 | 0.3 | 2.0 |
Band Number | Band Name | Central Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|
B1 | Blue | 475 | 20 |
B2 | Green | 560 | 20 |
B3 | Red | 668 | 10 |
B4 | NIR | 840 | 40 |
B5 | Red edge | 717 | 10 |
Date | Weather | Sample Size | Speed of Flight (m/s) | Flying Altitude(m/s) | Course Overlap (%) | Lateral Overlap (%) |
---|---|---|---|---|---|---|
20 June 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
28 June 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
6 July 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
18 July 2020 | Sunny | 145 | 3 | 70 | 90 | 80 |
29 July 2020 | Sunny | 140 | 3 | 70 | 90 | 80 |
7 August 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
15 August 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
23 August 2020 | Sunny | 150 | 3 | 70 | 90 | 80 |
Growth Stage | Sample Size | Maximum | Minimum | Mean Value | Standard Deviation |
---|---|---|---|---|---|
Fruit Expansion Stage | 450 | 4.36 | 2.00 | 3.17 | 0.933 |
Leaf Differentiation Stage | 431 | 4.15 | 2.07 | 3.09 | 0.968 |
Shoot-Stopping Stage | 319 | 4.16 | 2.04 | 3.10 | 0.954 |
Vegetation Index | Full Name | Related Bands | Formula | References |
---|---|---|---|---|
NDVI | Normalized Difference Vegetation Index | B4, B3 | [36,37] | |
GNDVI | Green Normalized Difference Vegetation Index | B2, B4 | [38] | |
RVI | Ratio Vegetation Index | B4, B3 | [39] | |
EVI | Enhanced Vegetation Index | B4, B3, B1 | [40] | |
SAVI | Soil Adjusted Vegetation Index | B4, B3 | [41] | |
DVI | Difference Vegetation Index | B4, B3 | [37,42] | |
IPVI | Infrared Percentage Vegetation Index | B4, B3 | [43] | |
WDVI | Weighted Difference Vegetation Index | B4, B3 | [44] | |
GARI | Green Vegetation Atmospheric Resistant Index | B4, B3, B2, B1 | [45] |
Zone A | Zone B | Zone C | Total | |
---|---|---|---|---|
Fruit expansion stage | 150 | 150 | 150 | 450 |
Leaf differentiation stage | 150 | 145 | 140 | 435 |
Shoot-stopping stage | 100 | 100 | 100 | 300 |
Data Acquisition Time | Vegetation Index | Correlation Coefficient |
---|---|---|
Fruit Expansion Stage | NDVI | 0.849 |
GNDVI | 0.716 | |
RVI | 0.796 | |
EVI | 0.53 | |
SAVI | 0.802 | |
DVI | 0.426 | |
IPVI | 0.380 | |
WDVI | 0.556 | |
GARI | 0.409 | |
Leaf Differentiation Stage | NDVI | 0.779 |
GNDVI | 0.842 | |
RVI | 0.731 | |
EVI | 0.631 | |
SAVI | 0.625 | |
DVI | 0.429 | |
IPVI | 0.358 | |
WDVI | 0.453 | |
GARI | 0.422 | |
Shoot-Stopping Stage | NDVI | 0.836 |
GNDVI | 0.596 | |
RVI | 0.639 | |
EVI | 0.555 | |
SAVI | 0.653 | |
DVI | 0.392 | |
IPVI | 0.462 | |
WDVI | 0.483 | |
GARI | 0.399 |
Variables | Fruit Expansion Stage | Leaf Differentiation Stage | Shoot-Stopping Stage | |||
---|---|---|---|---|---|---|
Moran’s I | p-Value | Moran’s I | p-Value | Moran’s I | p-Value | |
LAI | 0.4818 | 0.005 | 0.4214 | 0.008 | 0.3952 | 0.005 |
NDVI | 0.5211 | 0.011 | 0.5146 | 0.012 | 0.4263 | 0.011 |
GNDVI | 0.3215 | 0.016 | 0.3654 | 0.025 | 0.5244 | 0.021 |
RVI | 0.2148 | 0.025 | 0.3125 | 0.033 | 0.2411 | 0.026 |
EVI | 0.2979 | 0.032 | 0.1956 | 0.036 | 0.2006 | 0.034 |
SAVI | 0.3642 | 0.029 | 0.4066 | 0.031 | 0.3199 | 0.028 |
DVI | 0.1956 | 0.021 | 0.2541 | 0.036 | 0.3295 | 0.031 |
IPVI | 0.2642 | 0.033 | 0.2649 | 0.046 | 0.2354 | 0.047 |
WDVI | 0.3321 | 0.035 | 0.3652 | 0.049 | 0.3463 | 0.040 |
GARI | 0.2008 | 0.042 | 0.2555 | 0.037 | 0.4235 | 0.038 |
Evaluation Indicators | Fruit Expansion Stage | Leaf Differentiation Stage | Shoot-Stopping Stage | |||
---|---|---|---|---|---|---|
GBDT | SVR | GBDT | SVR | GBDT | SVR | |
R2 | 0.781 | 0.667 | 0.774 | 0.645 | 0.846 | 0.701 |
RMSD | 0.339 | 0.443 | 0.379 | 0.454 | 0.356 | 0.431 |
Parameters | Fruit Expansion Stage | Leaf Differentiation Stage | Shoot-Stopping Stage | |||
---|---|---|---|---|---|---|
GBDT | SVR | GBDT | SVR | GBDT | SVR | |
a | 0.51 | 0.39 | 0.82 | 0.59 | 0.62 | 0.25 |
Significant difference between a and 0 (p-value) | 0.277 | 0.215 | 0.356 | 0.265 | 0.296 | 0.231 |
b | 0.86 | 1.04 | 0.82 | 0.81 | 0.81 | 0.94 |
Significant difference between b and 1 (p-value) | 0.557 | 0.512 | 0.462 | 0.486 | 0.413 | 0.321 |
Evaluation Indicators | Fruit Expansion Stage | Leaf Differentiation Stage | Shoot-Stopping Stage | |||
---|---|---|---|---|---|---|
SVR | GBDT | SVR | GBDT | SVR | GBDT | |
SPAEF | 0.22 | 0.48 | 0.31 | 0.57 | 0.29 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Guo, P.; Liu, H.; Fan, P.; Zeng, P.; Liu, X.; Feng, C.; Wang, W.; Yang, F. Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing. Remote Sens. 2021, 13, 3263. https://doi.org/10.3390/rs13163263
Liu Z, Guo P, Liu H, Fan P, Zeng P, Liu X, Feng C, Wang W, Yang F. Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing. Remote Sensing. 2021; 13(16):3263. https://doi.org/10.3390/rs13163263
Chicago/Turabian StyleLiu, Zhijie, Pengju Guo, Heng Liu, Pan Fan, Pengzong Zeng, Xiangyang Liu, Ce Feng, Wang Wang, and Fuzeng Yang. 2021. "Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing" Remote Sensing 13, no. 16: 3263. https://doi.org/10.3390/rs13163263
APA StyleLiu, Z., Guo, P., Liu, H., Fan, P., Zeng, P., Liu, X., Feng, C., Wang, W., & Yang, F. (2021). Gradient Boosting Estimation of the Leaf Area Index of Apple Orchards in UAV Remote Sensing. Remote Sensing, 13(16), 3263. https://doi.org/10.3390/rs13163263