A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metadata Extraction
2.2. Data Extraction
2.3. Methodological Approach
3. Results and Discussion
3.1. Metadata Results
3.2. Extracted Data Results
3.2.1. Ecological/Management Stressor
3.2.2. Ecological Attributes and Ecological Indicators
3.2.3. Remote Sensing (RS) and GIS Attributes
3.3. Additional Analysis Results
3.4. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Criterion | Details | Source |
---|---|---|
Assesses integrative ecosystem health | Vigor, organization, resilience | [65] |
Describes the status of an ecosystem | Decline of nutrient pools, primary productivity, species diversity | [25,65,66] |
Reflects function and structure of an ecosystem | Species composition, distribution, abundance, tolerance, adaptability, efficiency across different scales | [11,65,66,67,68] |
Represents sustainability of human-coupled ecosystems | Biophysical and social-economic ecosystem services | [11,25,65,68] |
Representative of the ecosystem and interpretable | Sensitive to stresses, strong scientific basis, quantifiable, expected responses to stress, corresponds to broad geographic extends, historical record available | [11,12,16,25,26,65,66,67,68] |
Related to management goals | Easy to apply, cost-effective, integrative (summarizing many indicators), nondestructive to the ecosystem, potential for measurement continuity, not redundant, timely, retrospective, used by other monitoring programs, comprehensible, applicable to policy and management goals | [16,25,26,66,67,68] |
Ecosystem Type | Forest | Grassland | ||
---|---|---|---|---|
RS type | ||||
Multispectral | 45.3% | Multispectral | 52.8% | |
LiDAR | 17.3% | Hyperspectral | 22.2% | |
Hyperspectral | 13.3% | UAV/Aerial | 12.5% | |
UAV/Aerial | 13.3% | Radar | 6.9% | |
Radar | 10.7% | LiDAR | 5.6% | |
Top 10 RS sensors | ||||
Landsat | 20.9% | Landsat | 23.1% | |
MODIS | 10.1% | MODIS | 17.9% | |
LiDAR | 10.1% | Hyperspectral | 12.6% | |
Aerial | 6.2% | Aerial | 5.3% | |
AVHRR | 5.4% | AVHRR | 5.3% | |
SPOT | 4.7% | Sentinel | 5.3% | |
SAR | 3.9% | AVIRIS | 4.2% | |
AVIRIS | 3.1% | LiDAR | 4.2% | |
Hyperspectral | 3.1% | Digital Multispectral Imagery | 2.1% | |
EnMAP | 2.30% | Hyperion | 2.1% | |
Top 5 resolutions (m) | ||||
30 | 21.7% | 30 | 30.0% | |
1000 | 17.4% | 250 | 12.0% | |
10 | 3.6% | 10 | 10.0% | |
20 | 3.6% | 1000 | 3.6% | |
1 | 3.6% | 25 | 3.6% | |
Top 10 VIs | ||||
NDVI | 28.3% | NDVI | 31.0% | |
NBR | 12.1% | NBR | 6.9% | |
Tasseled Cap | 9.1% | SAVI | 6.9% | |
EVI | 4.0% | Tasseled Cap | 6.9% | |
SAVI | 4.0% | EVI | 5.2% |
Satellite Sensors | Independent Variable | Derived Ecosystem Health Indicator | Ecosystem Used | Field Measurements | Modeling Method | Example Study |
---|---|---|---|---|---|---|
TerraSAR-X COSMO-SkyMed SPOT Landsat | NDVI, LAI, FAPAR, FCOVER | Soil moisture content | Grassland | Soil moisture, soil roughness, LAI, FAPAR, FCOVER, biomass, vegetation water content, vegetation height, | Multi-layer perceptron neutral networks | El Hajj et al. [88] |
LiDAR | DTW | Forest | Soil bulk density and chemicals, gravimetric water content, soil pH | Linear mixed-effect model | Sewell et al. [89] | |
AirSAR AVIRIS Landsat | LTCG, Radar Cvv, Lhv, NDVI, EVI, PRI | Bare ground cover | Grassland | Canopy percentages | Break points and linear interpolation | Huang et al. [75] |
RADAR ERS-1 JERS Landsat | Forest | Training sites’ GPS location for vegetation classification | Maximum likelihood classification | Ranson et al. [90] | ||
ASTER | SAVI | Variation of erosion | Grassland | Vegetation height, vegetation cover, surface roughness length | Supervised maximum-likelihood classification | Reiche et al. [91] |
Satellite Sensors | Independent Variable | Derived Ecosystem Health Indicator | Ecosystem Used | Field Measurements | Modeling Method | Example Study |
---|---|---|---|---|---|---|
Sentinel-2 | SR, NDVI, EVI, RCI, NDVIn, PVIn, GSAVIn, MSAVIn, NDVIngreen, EVIn, EVI2n, MTVI1n, NDII7n, NDVIre2n, NDVIre3n | Grazing capacity and stocking rate | Grassland | Dried aboveground biomass | Resource Selection Functions and Multiple linear regression | Doan [69] |
Sentinel-2 Landsat RADAR | NBR, NDVI, LST | Seasonal timing of disturbance | Grassland | Species identification, species abundance, soil samples | Vegetation species response capacity model | Adagbasa et al. [92] |
Landsat MODIS | NBR | Forest | Decision tree analysis | Loboda et al. [93] | ||
Landsat | NDVI, NPV, MASD, FVC | Disturbance intensity | Grassland | Aboveground biomass | Artificial neural networks and ANOVA | Li et al. [82] |
MODIS Landsat | NBR, dNBR, RdNBR | Forest | Distributional statistics, Linear and Non-linear regression algorithms | Heward et al. [94] | ||
Landsat MODIS | Band 7/Band 5, NDVI, NBR, dNBR, RdNBR, Kauth Thomas brightness—greenness—wetness | Disturbance extent | Forest | Residual organic layer depth | Random forest algorithm | Barrett et al. [95] |
HyMAP Landsat | MSI, CRI1, GNDVI, ARI2, NDVI, NWI2, NSMI, GOSAVI, NPCI, TCARI, DI1 | Defoliation and tree mortality rate | Forest | Classification algorithms Naïve Bayes, Support Vector Machine, Decision tree analysis | Lausch et al. [21] |
Satellite Sensors | Independent Variable | Derived Ecosystem Health Indicator | Ecosystem Used | Field Measurements | Modeling Method | Example Study |
---|---|---|---|---|---|---|
MODIS | NDVI | Landscape diversity index | Grassland | Improved Costanza model | Suo et al. [96] | |
Digital Number values | Forest | Shannon Index, Simpson Index, Pielou evenness, Renyl Indices | Open-Source Program GRASS-GIS | Rocchini et al. [46] | ||
Landsat Indian Remote Sensing satellite | Number of patches | Forest | Patch analysis | Pattison et al. [68] | ||
Mean patch size | ||||||
Linear forest clearings density | ||||||
Edge density | ||||||
Percent of land occupied/unoccupied by linear forest clearings (LFCs) | ||||||
AVHRR | NDVI | Winter snow coverage | Grassland | Least-squares method | Wang & Qiao [86] |
References
- UN FAO Global Land Cover—SHARE (GLC-SHARE). Land & Water. Available online: http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036355/ (accessed on 31 May 2021).
- Ninan, K.N.; Inoue, M. Valuing Forest Ecosystem Services: What We Know and What We Don’t. Ecol. Econ. 2013, 93, 137–149. [Google Scholar] [CrossRef]
- Lamarque, P.; Tappeiner, U.; Turner, C.; Steinbacher, M.; Bardgett, R.D.; Szukics, U.; Schermer, M.; Lavorel, S. Stakeholder Perceptions of Grassland Ecosystem Services in Relation to Knowledge on Soil Fertility and Biodiversity. Reg. Environ. Chang. 2011, 11, 791–804. [Google Scholar] [CrossRef]
- Grantham, H.S.; Duncan, A.; Evans, T.D.; Jones, K.R.; Beyer, H.L.; Schuster, R.; Walston, J.; Ray, J.C.; Robinson, J.G.; Callow, M.; et al. Anthropogenic Modification of Forests Means Only 40% of Remaining Forests Have High Ecosystem Integrity. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gang, C.; Zhou, W.; Chen, Y.; Wang, Z.; Sun, Z.; Li, J.; Qi, J.; Odeh, I. Quantitative Assessment of the Contributions of Climate Change and Human Activities on Global Grassland Degradation. Environ. Earth Sci. 2014, 72, 4273–4282. [Google Scholar] [CrossRef]
- National Research Council. Rangeland Health: New Methods to Classify, Inventory, and Monitor Rangelands; National Academy Press: Washington, DC, USA, 1994; ISBN 0-309-04879-6. [Google Scholar]
- Dale, V.H.; Beyeler, S.C. Challenges in the Development and Use of Ecological Indicators. Ecol. Indic. 2001, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Wurtzebach, Z.; Schultz, C. Measuring Ecological Integrity: History, Practical Applications, and Research Opportunities. BioScience 2016, 66, 446–457. [Google Scholar] [CrossRef] [Green Version]
- Fancy, S.G.; Gross, J.E.; Carter, S.L. Monitoring the Condition of Natural Resources in US National Parks. Environ. Monit. Assess. 2009, 151, 161–174. [Google Scholar] [CrossRef]
- Faber-Langendoen, D. Monitoring Ecological Resources within U.S. National Parks: Developing “Vital Signs” of Ecological Integrity for the Northeast Temperate Network; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 42, pp. 614–622.
- Unnasch, R.S.; Braun, D.P.; Comer, P.J.; Eckert, G.E. The Ecological Integrity Assessment Framework: A Framework for Assessing the Ecological Integrity of Biological and Ecological Resources of the National Park System; Report to the National Park Service; The National Park Service: Washington, DC, USA, 2008.
- Hansen, A.J.; Phillips, L. Trends in Vital Signs for Greater Yellowstone: Application of a Wildland Health Index. Ecosphere 2018, 9, e02380. [Google Scholar] [CrossRef] [Green Version]
- Saskatchewan PCAP Greencover Committee. Rangeland Health Assessment: Native Grassland and Forest; Prairie Conservation Action Plan: Regina, SK, Canada, 2008. [Google Scholar]
- Adams, B.W.; Ehlert, G.; Stone, C.; Alexander, M.; Lawrence, D.; Willoughby, M.; Moisey, D.; Hincz, C.; Burkinshaw, A.; Richman, J.; et al. Rangeland Health Assessment for Grassland, Forest and Tame Pasture; AEP, Rangeland Resource Stewardship Section: Edmonton, AB, Canada, 2016; ISBN 978-1-4601-2748-1. [Google Scholar]
- Willis, K.J.; Jeffers, E.S.; Tovar, C. What Makes a Terrestrial Ecosystem Resilient? Science 2018, 359, 988–989. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Alvarez, F.; Han, T.; Rogan, J.; Hawkes, B. Characterizing Boreal Forest Wildfire with Multi-Temporal Landsat and LIDAR Data. Remote. Sens. Environ. 2009, 113, 1540–1555. [Google Scholar] [CrossRef]
- Nasen, L.C.; Noble, B.F.; Johnstone, J.F. Environmental Effects of Oil and Gas Lease Sites in a Grassland Ecosystem. J. Environ. Manag. 2011, 92, 195–204. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, W.; Cheng, X.; Zhao, S. Ecosystem Health Assessment in Inner Mongolia Region Based on Remote Sensing and GIS. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1029–1034. [Google Scholar]
- Xiao, F.; Ouyang, H. Ecosystem Health and Its Evolution Indicator and Method. J. Nat. Resour. 2002, 2, 203–209. [Google Scholar]
- Zlinszky, A.; Heilmeier, H.; Balzter, H.; Czúcz, B.; Pfeifer, N. Remote Sensing and GIS for Habitat Quality Monitoring: New Approaches and Future Research. Remote Sens. 2015, 7, 7987–7994. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing-Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R., Jr.; Everitt, J.H.; Ritchie, J.C.; Moran, M.S.; Booth, D.T.; Anderson, G.L.; Clark, P.E.; Seyfried, M.S. Applications and Research Using Remote Sensing for Rangeland Management. Photogram. Eng. Remote Sens. 2003, 69, 675–693. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, D.; Guo, X. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives. Sensors 2014, 14, 21117–21139. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing-Part II—A Review of Approaches and Data Models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Shao, X.; Wu, M. A Review on Ecosystem Health Research: A Visualization Based on CiteSpace. Sustainability 2019, 11, 4908. [Google Scholar] [CrossRef] [Green Version]
- Dickens, C.; McCartney, M.; Tickner, D.; Harrison, I.J.; Pacheco, P.; Ndhlovu, B. Evaluating the Global State of Ecosystems and Natural Resources: Within and Beyond the SDGs. Sustainability 2020, 12, 7381. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933. [Google Scholar] [CrossRef]
- Pyke, D.A.; Herrick, J.E.; Shaver, P.; Pellant, M. Rangeland Health Attributes and Indicators for Qualitative Assessment. J. Range Manag. 2002, 55, 584–597. [Google Scholar] [CrossRef]
- Dyksterhuis, E.J. Condition and Management of Range Land Based on Quantitative Ecology. J. Range Manag. 1949, 2, 104–115. [Google Scholar] [CrossRef]
- Sheley, R.L.; James, J.J.; Vasquez, E.A.; Svejcar, T.J. Using Rangeland Health Assessment to Inform Successional Management. Invasive Plant Sci. Manag. 2011, 4, 356–366. [Google Scholar] [CrossRef]
- Parks Canada. Monitoring and Reporting Ecological Integrity in Canada’s National Parks-Volume 2: A Park-Level Guide to Establishing EI Monitoring. 2007. Available online: http://parkscanadahistory.com/publications/eim-guide-v2-e-2007.pdf (accessed on 10 November 2020).
- Environment and Climate Change Canada. Canadian Environmental Sustainability Indicators: Ecological Integrity of National Parks; Government of Canada: Gatineau, QC, Canada, 2019; ISBN 978-0-660-31303-0.
- U.S. Department of the Interior; Bureau of Land Management; National Science and Technology Center. Interpreting Indicators of Rangeland Health: Version 4; Branch of Publishing Services, Division of Science Integration, BLM National Business Center: Denver, CO, USA, 2005.
- Allison, C.D.; Baker, T.T.; Boren, J.C.; Wright, B.D.; Fernald, A. Monitoring Rangelands in New Mexico-Range, Riparian, Erosion, Water Quality, and Wildlife; Range Improvement Task Force, Agricultural Experiment Station, Cooperative Extension Service: Las Cruces, NM, USA, 2002; p. 62. [Google Scholar]
- Ismail, R. Remote Sensing of Forest Health: The Detection and Mapping of Pinus Patula Trees Infested by Sirex Noctilio. Ph.D. Thesis, University of Kwazulu-Natal, Durban, South Africa, 2008. [Google Scholar]
- Soyza, A.G.D.; Whitford, W.G.; Herrick, J.E. Sensitivity Testing of Indicators of Ecosystem Health. Ecosyst. Health 1997, 3, 44–53. [Google Scholar] [CrossRef]
- Dobbie, M.J.; Dail, D. Robustness and Sensitivity of Weighting and Aggregation in Constructing Composite Indices. Ecol. Indic. 2013, 29, 270–277. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, n71. [Google Scholar] [CrossRef]
- The World Bank North America Data. Available online: https://data.worldbank.org/country/XU (accessed on 3 August 2021).
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large Wildfire Trends in the Western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Olthof, I.; King, D.J. Development of a Forest Health Index Using Multispectral Airborne Digital Camera Imagery. Can. J. Remote Sens. 2000, 26, 166–176. [Google Scholar] [CrossRef]
- Hoover, D.L.; Knapp, A.K.; Smith, M.D. Resistance and Resilience of a Grassland Ecosystem to Climate Extremes. Ecology 2014, 95, 2646–2656. [Google Scholar] [CrossRef] [Green Version]
- Yun, T.; Jiang, K.; Hou, H.; An, F.; Chen, B.; Li, W.; Xue, L. Rubber Tree Crown Segmentation and Property Retrieval Using Ground-Based Mobile LiDAR after Natural Disturbances. Remote Sens. 2019, 11, 903. [Google Scholar] [CrossRef] [Green Version]
- Schirpke, U.; Kohler, M.; Leitinger, G.; Fontana, V.; Tasser, E.; Tappeiner, U. Future Impacts of Changing Land-Use and Climate on Ecosystem Services of Mountain Grassland and Their Resilience. Ecosyst. Serv. 2017, 26, 79–94. [Google Scholar] [CrossRef] [PubMed]
- He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of Hyperspectral Remote Sensing for Tracking Plant Invasions. Divers. Distrib. 2011, 17, 381–392. [Google Scholar] [CrossRef]
- Qin, Z.; Xu, B.; Xin, X.; Zhou, Q.; Liu, J. Integration of Remote Sensing and GIS Technology to Evaluate Grassland Ecosystem Health in North China. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2004, Anchorage, AK, USA, 20–24 September 2004; Volume 6, pp. 4034–4037. [Google Scholar]
- Guo, X.; Doan, T.; Gross, D.; Chu, T. Grassland Management Plan Saskatchewan Landing Provincial Park; Ministry of Parks Culture and Sports: Regina, SK, Canada, 2020; p. 72.
- Foody, G.M.; Dash, J. Discriminating and Mapping the C3 and C4 Composition of Grasslands in the Northern Great Plains, USA. Ecol. Inform. 2007, 2, 89–93. [Google Scholar] [CrossRef]
- Meneses-Tovar, C.L. NDVI as Indicator of Degradation. Unasylva 2011, 238, 39–46. [Google Scholar]
- Guo, X.; Zhang, C.; Wilmshurst, J.F.; Sissons, R. Monitoring Grassland Health with Remote Sensing Approaches. Prairie Perspect. 2005, 8, 11–22. [Google Scholar]
- Wu, N.; Liu, A.; Wang, Y.; Li, L.; Chao, L.; Liu, G. An Assessment Framework for Grassland Ecosystem Health with Consideration of Natural Succession: A Case Study in Bayinxile, China. Sustainability 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Li, X.; Gong, J.; Wang, H.; Dang, D.; Dou, H.; Li, S.; Liu, S. Comprehensive Grassland Degradation Monitoring by Remote Sensing in Xilinhot, Inner Mongolia, China. Sustainability 2020, 12, 3682. [Google Scholar] [CrossRef]
- Xu, D.; Guo, X. Some Insights on Grassland Health Assessment Based on Remote Sensing. Sensors 2015, 15, 3070–3089. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Logan, M.; Hu, Z.; Brinkman, R.; Sun, S.; Sun, X.; Schaffelke, B. Ecosystem Health Report Cards: An Overview of Frameworks and Analytical Methodologies. Ecol. Indic. 2020, 113, 105834. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Deng, W.; Peng, L. Ecosystem Health: Assessment Framework, Spatial Evolution, and Regional Optimization in Southwest China. Chin. Geogr. Sci. 2020, 30, 142–156. [Google Scholar] [CrossRef] [Green Version]
- Trumbore, S.; Brando, P.; Hartmann, H. Forest Health and Global Change. Science 2015, 349, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Lemons, R. Understanding the Effects of Spatial and Temporal Scale on State and Transition Models Based Upon Remotely Sensed Data; ProQuest Dissertations Publishing; University of North Dakota: Grand Forks, ND, USA, 2018. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using Negative Soil Adjustment Factor in Soil-Adjusted Vegetation Index (SAVI) for Aboveground Living Biomass Estimation in Arid Grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Chen, J.; Chen, K.; Xu, J. Research on the Remote Sensing Monitoring of Grassland Productivity Based on TM-NDVI. Agric. Sci. Technol. Hunan 2011, 12, 119–122. [Google Scholar]
- Estel, S.; Mader, S.; Levers, C.; Verburg, P.H.; Baumann, M.; Kuemmerle, T. Combining Satellite Data and Agricultural Statistics to Map Grassland Management Intensity in Europe. Environ. Res. Lett. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Housman, I.W.; Chastain, R.A.; Finco, M.V. An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Gamon, A.J.; Emmerton, A.C.; Springer, R.K.; Yu, R.; Hmimina, G. Detecting Intra- and Inter-Annual Variability in Gross Primary Productivity of a North American Grassland Using MODIS MAIAC Data. Agric. For. Meteorol. 2020, 281, 1–12. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing Very High Resolution UAV Imagery for Monitoring Forest Health during a Simulated Disease Outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Heilman, G.E.; Strittholt, J.R.; Slosser, N.C.; Dellasala, D.A. Forest Fragmentation of the Conterminous United States: Assessing Forest Intactness through Road Density and Spatial Characteristics: Forest Fragmentation Can Be Measured and Monitored in a Powerful New Way by Combining Remote Sensing, Geographic Information Systems, and Analytical Software. BioScience 2002, 52, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Pattison, C.A.; Quinn, M.S.; Dale, P.; Catterall, C.P. The Landscape Impact of Linear Seismic Clearings for Oil and Gas Development in Boreal Forest. Northwest Sci. 2016, 90, 340–354. [Google Scholar] [CrossRef]
- Doan, T.T.M. Application of Remote Sensing and GIS in Modelling Bison Carrying Capacity in Mixed-Grass Prairie. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2019. [Google Scholar]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of Grassland Use Intensity by Remote Sensing to Support Conservation Schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Lauver, C.L.; Busby, W.H.; Whistler, J.L. Testing a GIS Model of Habitat Suitability for a Declining Grassland Bird. Environ. Manag. 2002, 30, 88–97. [Google Scholar] [CrossRef]
- Hammi, S.; Simonneaux, V.; Cordier, J.B.; Genin, D.; Alifriqui, M.; Montes, N.; Auclair, L. Can Traditional Forest Management Buffer Forest Depletion? Dynamics of Moroccan High Atlas Mountain Forests Using Remote Sensing and Vegetation Analysis. For. Ecol. Manag. 2010, 260, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Croft, H. Remote Sensing of Soil Surface Properties. Prog. Phys. Geogr. 2009, 33, 457–473. [Google Scholar] [CrossRef]
- Pasolli, L.; Asam, S.; Castelli, M.; Bruzzone, L.; Wohlfahrt, G.; Zebisch, M.; Notarnicola, C. Retrieval of Leaf Area Index in Mountain Grasslands in the Alps from MODIS Satellite Imagery. Remote Sens. Environ. 2015, 165, 159–174. [Google Scholar] [CrossRef]
- Huang, S.; Potter, C.; Crabtree, R.L.; Hager, S.; Gross, P. Fusing Optical and Radar Data to Estimate Sagebrush, Herbaceous, and Bare Ground Cover in Yellowstone. Remote Sens. Environ. 2010, 114, 251–264. [Google Scholar] [CrossRef]
- Powers, R.P.; Coops, N.C.; Morgan, J.L.; Wulder, M.A.; Nelson, T.A.; Drever, C.R.; Cumming, S.G. A Remote Sensing Approach to Biodiversity Assessment and Regionalization of the Canadian Boreal Forest. Prog. Phys. Geogr. 2013, 37, 36–62. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L. Simulating Alpine Vegetation Net Primary Productivity by Remote Sensing in Qinghai Province, China. J. Mt. Sci. 2014, 11, 967–978. [Google Scholar] [CrossRef]
- Roch, L.; Jaeger, J.A. Monitoring an Ecosystem at Risk: What Is the Degree of Grassland Fragmentation in the Canadian Prairies? Environ. Monit. Assess. 2014, 186, 2505–2534. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of Grassland Canopy Height and Aboveground Biomass at the Quadrat Scale Using Unmanned Aerial Vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef] [Green Version]
- Bombrun, M.; Dash, J.P.; Pont, D.; Watt, M.S.; Pearse, G.D.; Dungey, H.S. Forest-Scale Phenotyping: Productivity Characterisation Through Machine Learning. Front. Plant Sci 2020, 11. [Google Scholar] [CrossRef]
- Xu, D.; Guo, X.; Li, Z.; Yang, X.; Yin, H. Measuring the Dead Component of Mixed Grassland with Landsat Imagery. Remote Sens. Environ. 2014, 142, 33–43. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Jin, Y.; Yang, Z.; Huang, W.; Zhao, L.; Gao, T.; Yu, H.; Ma, H.; Qin, Z. Monitoring and Analysis of Grassland Desertification Dynamics Using Landsat Images in Ningxia, China. Remote Sens. Environ. 2013, 138, 19–26. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S. Large-Area Mapping of Canadian Boreal Forest Cover, Height, Biomass and Other Structural Attributes Using Landsat Composites and Lidar Plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Das, D.; Banerjee, S.; John, R. Predicting the Distribution and Abundance of Invasive Plant Species in a Sub-Tropical Woodland-Grassland Ecosystem in Northeastern India. Plant Ecol. 2019, 220, 935–950. [Google Scholar] [CrossRef]
- Wallerman, J.; Nyström, K.; Bohlin, J.; Persson, H.J.; Soja, M.J.; Fransson, J.E. Estimating forest age and site productivity using time series of 3D remote sensing data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3321–3324. [Google Scholar]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Czerwinski, C.J.; King, D.J.; Mitchell, S.W. Mapping Forest Growth and Decline in a Temperate Mixed Forest Using Temporal Trend Analysis of Landsat Imagery, 1987–2010. Remote Sens. Environ. 2014, 141, 188–200. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil Moisture Retrieval over Irrigated Grassland Using X-Band SAR Data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Sewell, P.D.; Quideau, S.A.; Dyck, M.; Macdonald, E. Long-Term Effects of Harvest on Boreal Forest Soils in Relation to a Remote Sensing-Based Soil Moisture Index. For. Ecol. Manag. 2020, 462, 117986. [Google Scholar] [CrossRef]
- Ranson, K.J.; Kovacs, K.; Sun, G.; Kharuk, V.I. Disturbance Recognition in the Boreal Forest Using Radar and Landsat-7. Can. J. Remote Sens. 2003, 29, 271–285. [Google Scholar] [CrossRef]
- Reiche, M.; Funk, R.; Zhang, Z.; Hoffmann, C.; Reiche, J.; Wehrhan, M.; Li, Y.; Sommer, M. Application of Satellite Remote Sensing for Mapping Wind Erosion Risk and Dust Emission-Deposition in Inner Mongolia Grassland, China. Grassl. Sci. 2012, 58, 8–19. [Google Scholar] [CrossRef]
- Adagbasa, E.G.; Adelabu, S.A.; Okello, T.W. Development of Post-Fire Vegetation Response-Ability Model in Grassland Mountainous Ecosystem Using GIS and Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2020, 164, 173–183. [Google Scholar] [CrossRef]
- Loboda, T.V.; Zhang, Z.; O’Neal, K.J.; Sun, G.; Csiszar, I.A.; Shugart, H.H.; Sherman, N.J. Reconstructing Disturbance History Using Satellite-Based Assessment of the Distribution of Land Cover in the Russian Far East. Remote Sens. Environ. 2012, 118, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is Burn Severity Related to Fire Intensity? Observations from Landscape Scale Remote Sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Barrett, K.; McGuire, A.D.; Hoy, E.E.; Kasischke, E.S. Potential Shifts in Dominant Forest Cover in Interior Alaska Driven by Variations in Fire Severity. Ecol. Appl. 2011, 21, 2380–2396. [Google Scholar] [CrossRef]
- Suo, A.-N.; Xiong, Y.-C.; Wang, T.-M.; Yue, D.-X.; Ge, J.-P. Ecosystem Health Assessment of the Jinghe River Watershed on the Huangtu Plateau. EcoHealth 2008, 5, 127–136. [Google Scholar] [CrossRef] [PubMed]
Metadata Attributes | |
---|---|
Journal | Publication year |
Journal name | |
Publication type | |
Broader geography | Terrestrial Biome |
Ecoregion | |
Continent | |
Country | |
Region | |
Study area | Study area name |
Scale | |
Extent of study area | |
Resolution | |
Latitude | |
Longitude |
Extracted Data Attributes | Details |
---|---|
Ecosystem | Forest or Grassland |
Ecological/Management stressor | Level 1 |
Level 2 | |
Level 3 | |
Ecological attribute | Level 1 |
Level 2 | |
Level 3 | |
Ecosystem health indicator | Quantification of ecological attribute |
Indicator Extraction Method | Qualitative or Quantitative |
Threshold determination | Historic range of variation |
Reference plant community | |
Expert opinion | |
Measurement frequency | Time measure |
Field measurement/Proxy value | Level 1 |
Level 2 | |
Level 3 | |
RS type | |
RS sensor | |
RS VI | |
GIS data | |
Other data |
Level 1 | Level 2 |
---|---|
Biotic Interactions, Composition, Structure | Keystone species and/or functional groups |
Vegetation stratification and structure within patches | |
Rare/sensitive species or species groups | |
Infestation and mass grazing 1 | |
Component communities and seral stages | |
Spatial arrangement of key species and communities | |
Hydrology | Channel morphology and sediments |
Plant litter and mineral inputs | |
Precipitation (rain, snow, fog) | |
Surface water-groundwater exchange | |
Water temperature and pH | |
Soils Chemistry and Structure | Soil erosion and deposition |
Soil structure and drainage | |
Soil chemistry | |
Soil moisture | |
Soil temperature and pH | |
Disturbance | Fire area/intensity regime |
Precipitation and flooding extremes | |
Air temperature extremes and drought | |
Human disturbance 2 | |
Economy | |
Social response | |
Fragmentation | Connectivity with adjacent systems (terrestrial, aquatic) |
Connectivity among similar and different patch types within target system | |
Linear development density |
Level 1 Stressor | Level 2 Stressor |
---|---|
Developments | Residential and Commercial Development |
Energy Production and Mining | |
Biological Resource Use | |
Human Intrusions and Disturbance | |
Transportation and Service Corridors | |
Disturbance | Overgrazing |
Natural System Modification 1 | |
Climate Change and Severe Weather | |
Invasive and Other Problematic Species and Genes | / |
GIS Datasets | Example Studies |
---|---|
Topographic information in local/national/global scales: i.e., Digital Elevation Model, contour map, slope. These are remote sensing derived (e.g., from RADAR (Radio Detection and Ranging) or multispectral sensors) | Hammi et al. [72]; Ding et al. [18]; Anderson and Croft [73]; Lyu et al. [53]; Pasolli et al. [74]; Huang et al. [75]; Doan [69]; Powers et al. [76] |
Land use Land cover (LULC) layers | Ding et al. [18]; Wei and Wang [77]; Anderson and Croft [73]; |
National Forest/Wetland Inventories | Powers et al. [76]; |
Landscape features (e.g., rivers, roads, barriers, fences, boundaries, pipelines, ecoregions) | Roch and Jaeger [78]; Doan [69]; Heilman et al. [67] |
Satellite Sensors | Independent Variable | Derived Ecosystem Health Indicator | Ecosystem Used | Field Measurements | Modeling Method | Example Studies |
---|---|---|---|---|---|---|
Unmanned Aerial Vehicle | EGI, Canopy height metrics | Aboveground biomass | Grassland | Average canopy height, dried aboveground biomass | Correlation analysis between canopy height model and field aboveground biomass | Zhang et al. [79] |
LiDAR | Forest | Diameter at breast height, tree height, canopy density, height percentiles, mean and maximum height | Gradient boost machine | Bombrun et al. [80] | ||
Hyperion Landsat 8 OLI Radar | NDVI, RVI, DVI, MSAVI, TVI | Vegetation composition: species, functional components | Grassland | Spectral curves of species, height, crown width, density, coverage, and dried aboveground biomass | Multiple endmember spectral mixture analysis | Lyu et al. [53] |
MODIS Radar | Forest | Summary of all species maps | Powers et al. [76] | |||
Landsat Hyperspectral data | NDVI, NBR, DFI, NDSVI, NDWI, PVI | Vegetation cover | Grassland | Ground percentage cover of component groups, dried above ground biomass, spectral reflectance | Linear spectral mixture analysis | Xu et al. [81] |
Landsat | NDVI, NDWI | Grassland | Ground-bare sand ratio, vegetation coverage | Spectral mixture analysis and decision tree method | Li et al. [82] | |
Landsat LiDAR | TCB, TCG, TCW, TCA, TCD, EVI, NBR | Forest | Canopy cover, stand height, basal area, stem volume, aboveground biomass | Random forest algorithm | Matasci et al. [83] | |
Unmanned Aerial Vehicle | EGI, Canopy height metrics | Canopy height | Grassland | Average canopy height, dried aboveground biomass | Canopy height model | Zhang et al. [79] |
Aerial photographs SPOT | Forest | Species and morphology records, tree’s height, net foliage volume, number of regenerations and stumps | Analysis of Variance | Hammi et al. [72] | ||
Landsat MODIS | NDVI, NMDI | Invasive species cover | Grassland | Abundance of invasive plant species, top soil samples | Random forest algorithm | Das et al. [84] |
Hyperspectral data | Forest, Grassland | He et al. [46] | ||||
Aerial photographs TanDEM-X | Tree age and size | Forest | Species records, tree’s height, stem diameter at breast height | Non-linear regression algorithm | Wallerman et al. [85] | |
Sentinel-1 Sentinel-2 Landsat | NDVI, EVI, LSWI | Leaf Area Index | Grassland | Leaf area index, aboveground biomass | Multiple linear regression, support vector machine, random forest | Wang et al. [86] |
Landsat | NDVI, EVI, EVI2, TCB, TCG, TCW | Forest | Leaf area index, canopy openness | Contextual Mann-Kendall significance test | Czerwinski et al. [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soubry, I.; Doan, T.; Chu, T.; Guo, X. A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sens. 2021, 13, 3262. https://doi.org/10.3390/rs13163262
Soubry I, Doan T, Chu T, Guo X. A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sensing. 2021; 13(16):3262. https://doi.org/10.3390/rs13163262
Chicago/Turabian StyleSoubry, Irini, Thuy Doan, Thuan Chu, and Xulin Guo. 2021. "A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures" Remote Sensing 13, no. 16: 3262. https://doi.org/10.3390/rs13163262
APA StyleSoubry, I., Doan, T., Chu, T., & Guo, X. (2021). A Systematic Review on the Integration of Remote Sensing and GIS to Forest and Grassland Ecosystem Health Attributes, Indicators, and Measures. Remote Sensing, 13(16), 3262. https://doi.org/10.3390/rs13163262