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Abstract: Oil palm trees are important economic crops in Malaysia and other tropical areas.
The number of oil palm trees in a plantation area is important information for predicting the yield
of palm oil, monitoring the growing situation of palm trees and maximizing their productivity,
etc. In this paper, we propose a deep learning based framework for oil palm tree detection and
counting using high-resolution remote sensing images for Malaysia. Unlike previous palm tree
detection studies, the trees in our study area are more crowded and their crowns often overlap.
We use a number of manually interpreted samples to train and optimize the convolutional neural
network (CNN), and predict labels for all the samples in an image dataset collected through the
sliding window technique. Then, we merge the predicted palm coordinates corresponding to the
same palm tree into one palm coordinate and obtain the final palm tree detection results. Based on
our proposed method, more than 96% of the oil palm trees in our study area can be detected correctly
when compared with the manually interpreted ground truth, and this is higher than the accuracies of
the other three tree detection methods used in this study.

Keywords: oil palm trees; deep learning; convolutional neural network (CNN); object detection

1. Introduction

Oil palm trees are important economic crops. In addition to their main use to produce palm oil,
oil palms are also used to generate a variety of products such as plywood, paper, furniture, etc. [1].
Information about the locations and the number of oil palm trees in a plantation area is important in
many aspects. First, it is essential for predicting the yield of palm oil, which is the most widely used
vegetable oil in the world. Second, it provides vital information to understand the growing situation of
palm trees after plantation, such as the age or the survival rate of the palm trees. Moreover, it informs
the development of irrigation processes and maximizes productivity [2].

Remote sensing has played an important role in various studies on oil palm productivity, the age
of oil palm trees and oil palm mapping, etc. [3–8]. In recent years, high-resolution remote sensing
images have become increasingly popular and important for many applications including automatic
palm tree detection. Previous palm tree or tree crown detection research has usually been based
on traditional methods in the computer vision domain. For instance, a tree detection–delineation
algorithm was designed for high-resolution digital imagery tree crown detection, which is based
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on the local maximum filter and the analysis of local transects extending outward from a potential
tree apex [9]. Shafri et al. [10] presented an approach for oil palm tree extraction and counting from
high spatial resolution airborne imagery data, which is composed of many parts including spectral
analysis, texture analysis, edge enhancement, segmentation process, morphological analysis and blob
analysis. Ke et al. [11] reviewed various methods for automatic individual tree-crown detection and
delineation from passive remote sensing, including local maximum filtering, image binarization, scale
analysis, and template matching, etc. Srestasathiern et al. [12] used semi-variogram computation and
non-maximal suppression for palm tree detection from high-resolution multi-spectral satellite images.

Moreover, some researchers have also applied machine learning-based methods to palm tree
detection studies. Malek et al. [2] used a scale-invariant feature transform (SIFT) and a supervised
extreme learning machine classifier to detect palm trees from unmanned aerial vehicle (UAV) images.
Manandhar et al. [13] used circular autocorrelation of the polar shape matrix representation of an image
as the shape feature and a linear support vector machine to standardize and reduce dimensions of
the feature. This study also used a local maximum detection algorithm on the spatial distribution of
standardized features to detect palm trees. Previous palm tree or tree crown detection studies have
focused on detecting trees that are not very crowded and have achieved good detection results for their
study areas. However, the performance of some of these methods would deteriorate when detecting
palm trees in some of the regions of our study area. For instance, the local maximum filter based
method [9] cannot detect palm trees correctly in regions where the trees are very young and small, as
the local maximum of each filter does not locate around the apex of young palm trees. The template
matching method [10] is not suitable for regions where palm trees are very crowded and where their
crowns overlap.

The convolutional neural network (CNN), a widely used deep learning model, has achieved
great performance in many studies in the computer vision field, such as image classification [14,15],
face recognition [16,17], and pedestrian detection [18,19], etc. In recent years, deep learning based
methods have also been applied to hyperspectral image classification [20,21], large-scale land cover
classification [22], scene classification [23–25], and object detection [26,27], etc. in the remote sensing
domain and achieved better performance than traditional methods. For instance, Chen et al. [20]
introduced the concept of deep learning and applied the stacked autoencoder method to hyperspectral
remote sensing image classification for the first time. Li et al. [22] built a classification framework for
large-scale remote sensing image processing and African land cover mapping based on the stacked
autoencoder. Zou et al. [24] proposed a deep belief network based feature selection method for
remote sensing scene classification. Chen et al. [26] proposed a hybrid deep convolutional neural
network for vehicle detection in high-resolution satellite images. Vakalopoulou et al. [27] proposed
an automated building detection framework from very high-resolution remote sensing data based on
deep convolutional neural networks.

In this paper, we introduce the deep learning based method to oil palm tree detection for the first
time. We propose a CNN based framework for the detection and counting of oil palm trees using
high-resolution remote sensing images from Malaysia. The detection and counting of oil palm trees
in our study area is more difficult than for the previous palm detection research mentioned above,
as the trees are very crowded and their crowns often overlap. In our proposed method, we collect
a number of manually interpreted training and test samples for training the convolutional neural
network and calculating the classification accuracy. Secondly, we optimize the convolutional neural
network through tuning its main parameters to obtain the best CNN model. Then, we use the best
CNN model obtained previously to predict the labels for all the samples in an image dataset that are
collected through the sliding window technique. Finally, we merge the predicted palm tree coordinates
corresponding to the same palm tree (spatial distance less than a certain threshold) into one coordinate,
and obtain the final palm tree detection results. Compared with the manually interpreted ground
truth, more than 96% of the oil palm trees in our study area can be detected correctly, which is higher
than the accuracies of the other three tree detection methods used in this study. The detection accuracy
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of our proposed method is affected, to some extent, by the limited number of our manually interpreted
samples. In our future work, more manually interpreted samples will be collected to further improve
the overall performance of our proposed method.

The rest of this paper is organized as follows. Section 2 presents the study area and the datasets
of this research; Section 3 describes the flowchart and the details of our proposed method; Section 4
provides the detection results of our proposed method and the performance comparison with other
methods; and Section 5 presents some important conclusions of this research.

2. Study Area and Datasets

In this research, a QuickBird image acquired on 21 November 2006 is used. The QuickBird satellite
has one panchromatic (Pan) band with 0.6-m spatial resolution and four multi-spectral (MS) bands
with 2.4-m spatial resolution. The Gram–Schmidt (GS) spectral sharpening fusion method [28], which
is implemented in the ENVI software (version 5.3, Exelis Visual Information Solutions, Boulder, CO,
USA), was employed to integrate Pan and MS bands to obtain a higher sharpness and spectral quality
(0.6-m spatial resolution, four bands) dataset for further image processing and analysis.

The study area of this research is located in the south of Malaysia, as shown in Figure 1. The manually
interpreted samples used in this study were collected from two typical regions of our study area
(denoted by the blue rectangles in Figure 1). To evaluate the performance of our proposed method,
we selected another three representative regions in our study area (denoted by the red squares in
Figure 1) and compared the detected images of these regions with the ground truth collected by
manual interpretation.
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Figure 1. The study area of this research in the south of Peninsular Malaysia. The blue rectangles show
the two regions from which the manually interpreted samples are collected. The red squares show the
three selected regions for evaluating the performance of our proposed method.

3. Methods

3.1. Overview

The flowchart of our proposed method is shown in Figure 2. First, the convolutional neural
network [14] was implemented based on the Tensorflow framework [29]. We used a number of
training samples collected previously by manual interpretation to train the CNN, and calculated the
classification accuracy based on a number of test samples collected independently of training samples.
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The main parameters of the CNN (e.g., the number of kernels in the first convolutional layer, the
number of kernels in the second convolutional layer and the number of hidden units in the fully
connected layer) were adjusted continuously until we found the best combination of parameters of
which the overall accuracy was the highest on our test samples. By tuning the parameters, we achieved
the best CNN model and saved it for further use. Secondly, the image dataset for palm tree detection
was collected through the sliding window technique (the window size is 17 × 17 and the sliding
step is three pixels). Then, we used the best CNN model obtained previously to predict the label for
each sample in the image dataset. Thirdly, for all samples that were predicted as “palm tree” class,
we merged the coordinates corresponding to the same palm tree sample (spatial distance less than
a certain threshold) into one coordinate, and obtained the final palm tree detection results.
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Figure 2. The flowchart of our proposed method.

3.2. CNN Training and Parameter Optimization

The LeNet convolutional neural network used in this study is constructed of two convolutional
layers, two pooling layers and a fully connected layer, as shown in Figure 3. The input to the fully
connected layer is the set of all features maps at the layer below. The fully connected layers correspond
to a traditional multilayer perception constructed by a hidden layer and a logistic regression layer.
We use the Rectified Linear Unit (ReLU) as the activation function of the CNN. In this research,
we manually interpreted 5000 palm tree samples and 4000 background samples from two regions of
our study area (denoted by the blue rectangles in Figure 1). Then, we randomly select 7200 of these
samples as the training dataset of the convolutional neural network, and the other 1800 samples as its
test dataset. Only a sample with a palm located at its center will be labeled as “palm tree”. Each sample
corresponds to 17 × 17 pixels with three bands (Red, Green and Blue) selected from the original four
bands. The main parameters of CNN are adjusted continuously until we find the best combination
of parameters for which the overall accuracy is the highest from 1800 test samples. After parameter
tuning, we achieve the best CNN model that will be used in the subsequent process of image dataset
label prediction.
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7200 training samples 1800 test samples

Palm Background Palm Background

… … … … … … … …

Convolutional layer Convolutional layerMax-pooling layer Max-pooling layer Fully connected layer

Palm Background Palm Background

7200 training samples 1800 test samples

Palm tree Background Palm tree Background

7200 training samples 1800 test samples

Figure 3. The structure of the convolutional neural network (CNN).

3.3. Label Prediction

The image dataset for label prediction is collected through the sliding window technique, as
shown in Figure 4. The size of the sliding window is 17 × 17 pixels, which is consistent with the
feature size of our training and test samples. In addition, the sliding step (the moving distance of the
sliding window in each step) will have a great influence on the final palm tree detection results. If the
sliding step is too large, many palm samples will be missed and will not be detected. On the other
hand, if the sliding step is too small, one palm sample might be detected repeatedly. Moreover, the
process of label prediction will become slower due to the increasing number of samples in the image
dataset, which is actually unnecessary and a waste of time. In this study, the sliding step is set as three
pixels through experimental tests. After collecting all samples of the image dataset through the sliding
window technique, we use the best CNN model obtained in Section 3.2 to predict the label for each
sample in the image dataset.
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Figure 4. The sliding window technique.

3.4. Sample Merging

After the labels of all samples in the image dataset are predicted, we collect the spatial coordinates
of all the samples that are predicted as “palm tree” class. At this point, the number of predicted
palm tree coordinates could be larger than the actual number of palm trees because one palm tree
might correspond to several predicted palm tree coordinates. To avoid this problem, the coordinates
corresponding to the same palm tree sample will be merged into one coordinate iteratively, as shown in
Figure 5. Assuming that, in our study area, the spatial distance between two palm trees cannot be less
than 8 pixels, the merging process will take six iterations. In each iteration, all groups of coordinates
with the Euclidean distance less than a certain threshold (3, 4, 5, 6, 7, 8 pixels) will be merged into
one coordinate. That is, the original group of coordinates will be replaced by their average coordinate.
The remaining palm tree coordinates after the merging process represent the actual coordinates of
detected palm trees.

Figure 5. Sample merging.
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4. Results

4.1. Classification Accuracy and Parameter Optimization

In this study, the classification accuracy of our CNN model was assessed by 1800 test samples
collected independently from 7200 training samples. The classification accuracy can be affected by
many parameters, such as the size of the convolutional kernel and the max-pooling kernel, the number
of kernels in each convolutional layer and hidden units in fully connected layers, etc. For our CNN
model, the size of the convolutional kernel is five, the size of the max-pooling kernel is two, the size
of mini-batch is 10 and the maximum number of iterations is 8000. We adjusted three important
parameters to optimize the model: the number of kernels in the first convolutional layer, the number
of kernels in the second convolutional layer and the number of hidden units in the fully connected
layer. Experimental results showed that we could obtain the highest overall accuracy of 95% after
7500 iterations when the number of kernels in two convolutional layers are set as 30 and 55 and the
number of hidden units in fully connected layers is set as 600.

4.2. Detection Results Evaluation

To evaluate the performance of our proposed oil palm tree detection method quantitatively,
we calculate the precision, recall and overall accuracy of the palm tree detection results through
comparison with the ground truth. The precision is the probability that a detected oil palm tree is
valid, as described in Formula (1); the recall is the probability that an oil palm tree in ground truth is
detected, as described in Formula (2); the overall accuracy is the average of precision and recall, as
described in Formula (3). A palm is regarded as detected correctly only if the distance between the
center of a detected palm and the center of a palm in ground truth is less than or equal to five pixels:

Precision =
The number of correctly detected palm trees

The number of all detected objects
, (1)

Recall =
The number of correctly detected palm trees
The number of palm trees in ground truth

, (2)

Overall Accuracy =
Precision + Recall

2
. (3)

Table 1 shows that the overall accuracies of regions 1, 2 and 3 are 96.05%, 96.34% and 98.77%,
respectively. In addition, for each of the three regions, the difference between the predicted number
of palm trees (the number of all detected objects) and the true number of palm trees (the number of
palm trees in ground truth) is less than 4%. These evaluation results show that our proposed method
is effective for both palm tree detection and counting.

Table 1. Detection results of convolutional neural network (CNN).

Evaluation Index Region 1 Region 2 Region 3

The number of correctly detected palm trees 1651 1607 1683
The number of all detected objects 1729 1695 1706

The number of palm trees in ground truth 1709 1642 1702
Precision 95.49% 94.81% 98.65%

Recall 96.61% 97.87% 98.88%
Overall accuracy 96.05% 96.34% 98.77%

5. Discussion

To further evaluate our proposed palm tree detection method, we implemented three other
representative existing palm trees or tree crown detection methods (i.e., Artificial Neural Network
(ANN), template matching, and local maximum filter) and compared their detection results with



Remote Sens. 2017, 9, 22 8 of 13

our proposed method. The procedure of the ANN based method is the same as our proposed
method, including the ANN training, parameter optimization, image dataset label prediction, and
sample merging.

The local maximum filter based method [9] and the template matching based method [11] are
two traditional tree crown detection methods. For the template matching based method, we used
5000 manually labeled palm tree samples as the template dataset, and a 17 × 17 window to slide
through the whole image. We chose the CV_TM_SQDIFF_NORMED provided by OpenCV [30] as
our matching method. A sliding window will be detected as a palm tree if it matches any sample in
the template dataset (the difference between the sliding window and the template calculated by the
CV_TM_SQDIFF_NORMED method is less than a threshold. In this study, the threshold is set as five
through experimental tests).

For the local maximum filter based method, we first applied a non-overlapping 10×10 local
maximum filter to the absolute difference image of the NIR and red spectral bands. Then, we conducted
transect sampling and a scaling scheme to obtain potential tree apexes, and adjusted the locations of
tree apexes to the new local maximum positions.

Finally, the outputs of the template matching based method and the local maximum filter based
method are post-processed (described in Section 3.4) to obtain the final palm tree detection results.
Figures 6–8 show the detection images of each method for extracted areas of regions 1, 2 and 3,
respectively. Each red circle denotes a detected palm tree. Each green square denotes a palm tree in
ground truth that cannot be detected correctly. Each blue square denotes a background sample that is
detected as a palm tree by mistake.

Tables 2–4 show the detection results of ANN, template matching (TMPL), and local maximum
filter (LMF), respectively. Table 5 summarizes the performance of all four methods in terms of the
number of correctly detected palm trees. Table 6 summarizes the performance of all four methods in
terms of precision, recall and overall accuracy (OA). The proposed method (CNN) performs better
than any of the other three methods in the number of correctly detected palm trees and in OA.
Generally, machine learning based approaches (i.e., CNN and ANN) perform better than traditional
tree crown detection methods (i.e., TMPL and LMF) in our study area, especially in region 1 and region
2. For example, the local maximum filter based method cannot detect palm trees correctly for regions
where palm trees are very young and small (see Figure 7d), as the local maximum of each filter does
not locate around the apex of young palm trees. The template matching method is not suitable for
regions where the palm trees are very crowded and the canopies often overlap (see Figure 6c).

Table 2. Detection results of artificial neural network (ANN).

Evaluation Index Region 1 Region 2 Region 3

The number of correctly detected palm trees 1648 1585 1679
The number of all detected objects 1800 1725 1718

The number of palm trees in ground truth 1709 1642 1702
Precision 91.56% 91.88% 97.73%

Recall 96.43% 96.53% 98.64%
Overall accuracy 94.00% 94.21% 98.19%

Table 3. Detection results of template matching (TMPL).

Evaluation Index Region 1 Region 2 Region 3

The number of correctly detected palm trees 1429 1392 1608
The number of all detected objects 1532 1493 1684

The number of palm trees in ground truth 1709 1642 1702
Precision 93.28% 93.24% 95.49%

Recall 83.62% 84.77% 94.48%
Overall accuracy 88.45% 89.01% 94.99%
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Table 4. Detection results of local maximum filter (LMF).

Evaluation Index Region 1 Region 2 Region 3

The number of correctly detected palm trees 1493 1397 1643
The number of all detected objects 1719 1675 1761

The number of palm trees in ground truth 1709 1642 1689
Precision 86.85% 83.40% 93.30%

Recall 87.36% 85.08% 97.28%
Overall accuracy 87.11% 84.24% 95.29%
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Table 5. Summary of the number of correctly detected palm trees for all four methods.

Methods Region 1 Region 2 Region 3

CNN 1651 1607 1683
ANN 1648 1585 1679
TMPL 1429 1392 1608
LMF 1493 1397 1643

Table 6. Summary of the precision, recall and overall accuracy (OA) of all four methods.

Methods
Region 1 Region 2 Region 3

Precision Recall OA Precision Recall OA Precision Recall OA

CNN 95.49% 96.61% 96.05% 94.81% 97.87% 96.34% 98.65% 98.88% 98.77%
ANN 91.56% 96.43% 94.00% 91.88% 96.53% 94.21% 97.73% 98.64% 98.19%
TMPL 93.28% 83.62% 88.45% 93.24% 84.77% 89.01% 95.49% 94.48% 94.99%
LMF 86.85% 87.36% 87.11% 83.40% 85.08% 84.24% 93.30% 97.28% 95.29%
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6. Conclusions

In this paper, we designed and implemented a deep learning based framework for oil palm tree
detection and counting from high-resolution remote sensing images. Three representative regions
in our study area are selected for assessment of our proposed method. Experimental results show
the effectiveness of our proposed method for palm tree detection and counting. First, the palm tree
detection results are very similar to the manually labeled ground truth in general. Secondly, the overall
accuracies of region 1, region 2 and region 3 are 96%, 96% and 99%, respectively, which are higher than
the accuracies of the three other methods used in this research. Moreover, the difference between the
predicted number of palm trees and the true number of palm trees is less than 4% for each region of
the study area. In our future work, the palm tree detection results should be further improved through
enlarging the number of manually interpreted samples and optimizing our proposed CNN based
detection framework. We also want to take the computation time of different detection methods into
consideration, and explore the deep learning based detection framework for larger scale palm tree
detection studies.
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