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Abstract: The leaf area index (LAI) is a key parameter for describing the canopy structure of apple
trees. This index is also employed in evaluating the amount of pesticide sprayed per unit volume
of apple trees. Hence, numerous manual and automatic methods have been explored for LAI
estimation. In this work, the leaf area indices for different types of apple trees are obtained in terms
of multispectral remote-sensing data collected with an unmanned aerial vehicle (UAV), along with
simultaneous measurements of apple orchards. The proposed approach was tested on apple trees of
the “Fuji”, “Golden Delicious”, and “Ruixue” types, which were planted in the Apple Experimental
Station of the Northwest Agriculture and Forestry University in Baishui County, Shaanxi Province,
China. Five vegetation indices of strong correlation with the apple leaf area index were selected and
used to train models of support vector regression (SVR) and gradient-boosting decision trees (GBDT)
for predicting the leaf area index of apple trees. The best model was selected based on the metrics
of the coefficient of determination (R2) and the root-mean-square error (RMSE). The experimental
results showed that the gradient-boosting decision tree model achieved the best performance with
an R2 of 0.846, an RMSE of 0.356, and a spatial efficiency (SPAEF) of 0.57. This demonstrates the
feasibility of our approach for fast and accurate remote-sensing-based estimation of the leaf area
index of apple trees.

Keywords: leaf area index; gradient-boosting decision trees; UAV remote sensing; apple orchards;
vegetation index

1. Introduction

The leaf area index (LAI) was introduced by the British ecologist D. J. Watson in the
1940s and is defined as the total one-sided area of green leaves per unit land area [1–5]. This
means that the LAI is a dimensionless quantity, characterized by a unit of (meter squared
per meter squared), and it ranges from 0 (for a bare ground) to 5 (for dense orchards), but
it might increase occasionally to over 10 (for highly dense forests such as the equatorial
ones). The leaf area index of fruit trees plays a key role in controlling the amount of
pesticide applied per unit volume of these trees. In fact, LAI-based pesticide management
is important for improving spraying efficiency, achieving rational pesticide delivery, and
reducing pest control costs [6–9].

The traditional LAI estimation methods, such as the square grid and leaf collection
methods, mainly rely on manual field measurements, a practice which is not only wasteful
of manpower but can also be extremely destructive to crops. With continuous developments
in remote-sensing technologies, LAI estimation methods have been proposed based on
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remote sensing [2,3,10–13]. At present, satellites and unmanned aerial vehicles (UAVs) are
two of the most popular systems for acquiring remote-sensing data. However, satellite
remote-sensing data suffer from long re-entry times and poor real-time performance,
and hence, timely and fast acquisition of data within specific ranges cannot be achieved.
Additionally, while satellite remote sensing is suitable for large-scale areas, its resolution
is somewhat limited in small-scale regional studies [12–15]. With the development and
popularization of agricultural information systems, UAV-based remote-sensing technology
has been widely employed in agriculture. Platforms of this technology can carry different
vision sensors of the visible, multispectral, hyperspectral, thermal, or infrared types. In
comparison to satellite remote-sensing systems, these UAV platforms have relatively better
advantages in terms of operational flexibility, time and effort savings, improved ground
image resolution, fast and accurate LAI estimation, and finally, effective agricultural
monitoring [16–19]. While earlier remote-sensing methods for LAI estimation have focused
mainly on crops such as wheat and maize [17,20,21], relatively few studies have been
conducted on LAI estimation for apple trees. This observation attests to the novelty and
importance of our present work, which is devoted to the study of apple trees.

China is the world’s largest producer of apples [22]. In fact, China’s apple production
is about 35 percent of the total world production, almost five times the apple production of
the second-largest apple producer worldwide. At present, pest control in apple orchards is
mainly based on chemical pesticides, whose traditional spraying methods often result in
uneven distributions, large residues, and serious environmental impacts of these pesticides.
To overcome these limitations, a precision spraying technology has been recently devel-
oped [6]. Furthermore, the leaf area index (LAI) is a significant parameter for assessing the
growth conditions of apple trees, and it is also an important basis for accurate pesticide
application to these trees [7–9]. Traditional remote-sensing methods for LAI estimation
were based on a single vegetation index or a single waveband, which had different degrees
of saturation that degraded the estimation performance [23–27]. More recent LAI estima-
tion methods based on using multiple bands or multiple vegetation indices demonstrated
superior performance compared to methods based on a single vegetation index or a single
waveband [28,29]. Further, machine-learning approaches have been proposed in order to
fuse multiple vegetation indices and other relevant data that are strongly correlated with
LAI. In fact, the machine-learning models typically outperform single-factor models, can
nonlinearly fit many related factors, show higher accuracy, minimize the overall prediction
error, and demonstrate good generalization performance [30,31]. Hongming et al. [32]
used the gradient-boosting decision tree (GBDT) algorithm to build a model for predicting
the maize leaf area index from vegetation index maps. The constructed model achieved
a relatively high estimation accuracy with a coefficient of determination (R2) of 0.7558
and a root-mean-square error (RMSE) of 0.0015. Xiong et al. [33] introduced a method
for LAI estimation in forest lands using a random forest (RF) model, which resulted in a
RMSE and a mean absolute error (MAE) of 0.509 and 0.414, respectively. The RF model
accuracy was better than those obtained by a support vector regression (SVR) model and
a back propagation (BP) model for the same period [33]. Srinet et al. [34] used an RF
algorithm for tree canopy LAI prediction using several predictors, namely, the short-wave
infrared bands (SWIR-1 and SWIR-2), the tasseled cap wetness, the moisture stress index
(MSI), the normalized difference moisture index (NDMI), and the normalized difference
vegetation index (NDVI). The RF model had RMSE and R2 values of 0.14 and 0.79, respec-
tively, and the results showed that this model can be effectively applied to predict the
LAI spatial distribution [34]. Qi et al. [35] used BP neural networks to build peanut LAI
estimation models based on single and multiple vegetation indices, respectively. Among
the compared vegetation indices, the following indices had higher pairwise correlation
and higher correlation with the peanut LAI: the modified red-edge simple ratio (MSR)
index, the ratio vegetation index (RVI), and the normalized difference vegetation index
(NDVI). As well, peanut LAI estimation based on multiple vegetation indices was found to
be better than that based on a single vegetation index [35]. The above research results show
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that the ensemble learning algorithm based on decision trees has strong noise immunity,
generalized performance, and high accuracy in crop and wood LAI estimation.

The abovementioned studies show that machine-learning models have been suc-
cessfully employed in numerous applications of crop parameter estimation from remote-
sensing data. However, such models generally have the same key limitations of regression
models, namely, model overfitting with limited training data and the difficulty of identify-
ing the most influential factors among the model inputs. The gradient-boosting decision
tree (GBDT) algorithm can largely solve these problems. This algorithm builds weak
classifiers by allowing each tree to learn the residuals and results of all preceding trees in
order to iteratively correct the original model errors and effectively improve the prediction
accuracy. The GBDT algorithm can be used as an effective method for the estimation of the
LAI of apple orchards. Although the aforementioned studies have created learning-based
LAI estimation models with reasonable results, few of these studies addressed the problem
of LAI estimation for apple trees.

In the present study, five typical vegetation indices were employed for three growth
periods of apple trees, namely, the fruit expansion period, the leaf differentiation period,
and the new shoot-stopping period. The aim was to establish machine-learning models
and select vegetation indices suitable for the remote-sensing estimation of the leaf area
indices of apple trees, provide information to support decision making for large-scale apple
orchards crops, and also provide a basis for high-precision apple orchard management.

2. Materials and Methods
2.1. Study Area

The study area is located at the Apple Experimental Station of the Northwest Agri-
culture and Forestry University in Baishui County, Shaanxi Province (35◦12′25.46”N,
109◦32′49.77”E), China. The geographical location of this area is shown in Figure 1. Baishui
County has a temperate continental climate with an average annual temperature of 11.4 ◦C
and a frost-free period of 211 days. The average number of annual sunshine hours is
2163.8 h, the total annual solar radiation is 128.13 kcal/cm2, and the average annual precip-
itation is 577.8 mm. These climate conditions make the region quite suitable for cultivating
apple trees. This study focuses on the “Fuji”, “Golden Delicious”, and “Ruixue” apple trees,
and the planting parameters of these apple types are shown in Table 1. In this study, UAV
multispectral remote-sensing monitoring was conducted during the fruit expansion stage,
the leaf differentiation stage, and the shoot-stopping stage for the three aforementioned
types of apple trees grown in the experimental area. In addition, the planting area was
divided into three sampling zones according to the dominantly planted species. Specifically,
these are called Zone A, Zone B, and Zone C. These zones have apple trees of mainly the
“Fuji”, “Golden Delicious”, and “Ruixue” types, respectively. Fifty representative sampling
points were selected in each sampling zone, and a differential global positioning system
(GPS) (Trimble R8s GNSS System, Trimble Inc., Sunnyvale, CA, USA) was employed. The
longitude and latitude values of the northwest and southeast corners of each sampling
point were recorded.
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Figure 1. General overview of the study area. (a) Geographical location and distribution of the sampling points of the
experimental area; (b) a schematic diagram of the distribution of the sampling points.

Table 1. Planting parameters for three varieties of apple trees.

Varieties Age of Tree
(Year) Tree Height (m) Spacing Between

Trees (m)
Row Spacing

(m)

Fuji 10 2.8 0.5 1.1
Golden

Delicious 12 2.8 0.5 1.2

Ruixue 8 2.4 0.3 2.0

2.2. Data Acquisition and Preprocessing
2.2.1. Multi-Spectral Data Acquisition via an Unmanned Aerial Vehicle (UAV)

The equipment used in multispectral data acquisition in this study is shown in Figure 2.
The employed drone (or unmanned aerial vehicle (UAV)) is the DJI M600 Pro Hexacopter
(DJI Innovation Technology), which is shown in Figure 2a. The selected multispectral
image acquisition system is a RedEdge 5-band multispectral camera (MicaSense Inc, USA),
shown in Figure 2b. This camera has a resolution of 1280 × 960 pixels, and it is equipped
with a light intensity sensor and a correction grey plate. The camera band information is
shown in Table 2. Another camera used is a visible light camera, namely, the Zenith X3 HD
visible-light camera (DJI Innovation Technology), shown in Figure 2c. During UAV aerial
photography, the light intensity sensor is used to reduce the effects of the external light
variability on the spectral imaging data. Additionally, the grey plate has a fixed reflectivity,
which is exploited in correcting the reflectivity of the aerial images, as shown in Figure 2d.
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Figure 2. Various pieces of equipment for multispectral data acquisition. (a) DJI M600 Pro Hexacopter UAV; (b) RedEdge
five-band multispectral camera; (c) Zenith X3 visible-light camera; (d) multispectral camera setup with grey-plate correction.

Table 2. Band information for the RedEdge five-band multispectral camera.

Band Number Band Name Central Wavelength (nm) Bandwidth (nm)

B1 Blue 475 20
B2 Green 560 20
B3 Red 668 10
B4 NIR 840 40
B5 Red edge 717 10

The experimental testing of the proposed system was conducted on a clear, windless
day with a uniform sky. The testing time was chosen from 11:30–14:30 Beijing time, and the
UAV had a flight height of 70 m, a north–south flight direction, a heading overlap of 90%,
and a side overlap of 80%. Meanwhile, the flight speed was 3 m/s, and an imaging mode
with equidistant intervals was adopted. Ambient conditions and relevant parameters of
the UAV remote-sensing data collection are shown in Table 3.

Table 3. Ambient conditions and relevant parameters of the UAV remote-sensing data collection.

Date Weather Sample Size Speed of
Flight (m/s)

Flying
Altitude(m/s)

Course
Overlap (%)

Lateral
Overlap (%)

20 June 2020 Sunny 150 3 70 90 80
28 June 2020 Sunny 150 3 70 90 80
6 July 2020 Sunny 150 3 70 90 80
18 July 2020 Sunny 145 3 70 90 80
29 July 2020 Sunny 140 3 70 90 80

7 August 2020 Sunny 150 3 70 90 80
15 August 2020 Sunny 150 3 70 90 80
23 August 2020 Sunny 150 3 70 90 80
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After completing each UAV image acquisition session, the captured images were
time-stamped and imported into the Pix4D Mapper software (developed by the Swiss
company Pix4D). Additionally, the ground image control points were obtained by the
Real Time Kinematic (RTK) tool, and the Position and Orientation System (POS) data
associated with each small map were imported. The Pix4D Mapper software performed
geometric correction, stitching, and other pre-processing operations in order to produce a
high-definition ortho-rectified multispectral image of the test area. Eight data collection
sessions were carried out from the 20th of June 2020 to the 15th of August 2020, covering the
apple growth stages of fruit expansion, leaf differentiation, and shoot stopping. After pre-
processing the data samples by the Pix4D Mapper software, these samples were imported
into the ENVI software. The multispectral images captured at each sampling point were
cropped according to the GPS measurements of the longitude and latitude values of the
northwest and southeast corners of that sampling point.

2.2.2. Ground-Truth LAI Measurements for Apple Orchards

Ground-truth LAI measurements were made in parallel with the UAV multispectral
remote-sensing data acquisition sessions. The measuring instrument was the LAI-2200C
Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA), which is shown in Figure 3. LAI-
2200C uses a non-destructive method for easy and accurate LAI measurement. This
analyzer is based on the proven LAI-2000 technology platform and has a built-in GPS
module that incorporates GPS information. The LAI data acquisition process may be
influenced by the weather, sunlight, tree shadows, and other environmental factors. To
account for these effects and ensure the truth and validity of the collected data, the LAI-
2200C is scatter-corrected by using appropriate specifications. Additionally, as apple trees
are essentially arranged in rows, the diagonal measurement method was chosen for LAI
determination based on the LAI-2200C manual. This method requires the measurement
of the B-value at evenly distributed points on the diagonal of each two rows of fruit trees.
B-value is the value measured by a canopy analyzer from up to down For LAI measurement
with the LAI-2200C analyzer, the shade cap was set to 270◦, one A-value was measured
in each sampling plot, and five B-values were measured at evenly distributed points on
the diagonal between each two rows of fruit trees. For row-planted and dense-canopy
vegetation such as apple trees, the diagonal measurement method used herein better
reflects the uniformity of the spatial distribution.

Figure 3. The LAI-2200C canopy analyzer.

A total of 1200 LAI sets was collected during the eight sessions. The LAI measurements
had a maximum value of 4.36, a minimum value of 2.00, a maximum variance of 0.937, and
a maximum standard deviation of 0.968 (see Table 4 for details).
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Table 4. Basic statistics of the ground-truth LAI measurements for the studied apple trees during
three growth stages.

Growth Stage Sample Size Maximum Minimum Mean Value Standard
Deviation

Fruit Expansion Stage 450 4.36 2.00 3.17 0.933
Leaf Differentiation Stage 431 4.15 2.07 3.09 0.968

Shoot-Stopping Stage 319 4.16 2.04 3.10 0.954

2.3. Remote-Sensing Method for LAI Estimation
2.3.1. Vegetation Indices

The LAI values of the apple trees are strongly correlated with the visible bands
(red, green, and blue) and the near-infrared bands of the spectral images of the apple
trees. The absorption and scattering effects of the vegetation on the numbers of incident
photons at different wavelengths result in characteristic spectral responses. In particular,
the vegetation exhibits strong absorption and reflection phenomena in the red and near
infrared bands, respectively, and numerous studies have demonstrated that these two
bands are well correlated with vegetation cover and the LAI. In this study, nine vegetation
indices (namely, NDVI, GNDVI, RVI, EVI, SAVI, DVI, IPVI, WDVI, and GARI) were
investigated for accurate LAI estimation in apple trees during the fruit expansion, leaf
differentiation, and shoot-stopping periods. Table 5 lists the abbreviation, full name, related
bands, mathematical formula, and references for each of these nine vegetation indices.

Table 5. Definitions, bands, and mathematical formulas for common vegetation indices of apple trees.

Vegetation Index Full Name Related Bands Formula References

NDVI Normalized Difference
Vegetation Index B4, B3 B4−B3

B4+B3 [36,37]

GNDVI Green Normalized Difference
Vegetation Index B2, B4 B4−B2

B4+B2 [38]

RVI Ratio Vegetation Index B4, B3 B4
B5 [39]

EVI Enhanced Vegetation Index B4, B3, B1 2.5 B4−B3
B4+6B3−7.5B1+1 [40]

SAVI Soil Adjusted Vegetation Index B4, B3 1.5 B4−B3
B4+B3+0.5 [41]

DVI Difference Vegetation Index B4, B3 B4− B3 [37,42]

IPVI Infrared Percentage
Vegetation Index B4, B3 B4

B4+B3 [43]

WDVI Weighted Difference
Vegetation Index B4, B3 B4− 0.5B3 [44]

GARI Green Vegetation Atmospheric
Resistant Index B4, B3, B2, B1 B4−(B3−(B2−B1))

B4+(B3−(B2−B1))
[45]

2.3.2. Support Vector Regression

Support vector regression (SVR) is a machine-learning method based on statistical
learning theory where learning is formulated as a quadratic programming problem and the
optimal solution is obtained through the minimization of a structural risk criterion [46–50].
This method was originally used for solving classification problems and has eventually
evolved to solve regression problems. Currently, the SVR method has been widely used for
crop LAI estimation. Since the SVR-based prediction accuracy is largely determined by the
kernel type and other related parameters, the determination of these parameters is the key
design consideration in SVR modeling.

2.3.3. Gradient-Boosting Decision Trees

Gradient-boosting decision trees (GBDT) have been widely used in regression and
classification tasks. In the GBDT method, predictive models are generated in the form
of an ensemble of weak learners, which are then iteratively combined into a stronger
learner [51–53]. Each decision tree is iteratively tuned to reduce the residuals of the
preceding tree in the direction of the gradient. Specifically, a weak learner is sought where
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a classification and regression tree (CART) model is fit to the residuals of a preceding
model in order to minimize the loss (or error) between the output and true values. The
final predictive model at a specific iteration is obtained by summing the outputs of all
models from the previous iteration. The GBDT algorithm has the advantages of flexibility
in handling a wide range of data, high prediction accuracy, use of robust loss functions,
and strong robustness to outliers.

2.4. Soil Interference Rejection in Remote-Sensing Images

Although the accuracy of the UAV remote-sensing imaging process is high, the soil
background image components constitute a large proportion of the whole spectral image
of the study area. In order to extract the vegetation components accurately, these soil
components need to be identified and eliminated. In this study, the Otsu segmentation
method was used for thresholding the vegetation index maps after stitching the images
of the three growth periods [54]. The Otsu algorithm creates an image histogram and
automatically selects a global segmentation threshold at which the interclass variance is
maximized. The best segmentation threshold was found to be 0.4. This threshold was used
to mask out and reject the soil background components. The technical process is shown in
Figure 4.

Figure 4. Soil background interference rejection using the Otsu thresholding method.

2.5. Model Construction for the Apple Tree LAI Estimation

In this study, a total of 450 sets of data (with 150 sets for each of the three zones A, B,
C) was collected during the fruit expansion stage. Additionally, a total of 435 sets of data
was collected during the leaf differentiation stage, including 150 sets in Zone A, 145 sets in
Zone B, and 140 sets in Zone C. As well, a total of 300 sets of data was collected during the
shoot-stopping stage, including 100 sets in Zone A, 100 sets in Zone B, and 100 sets in Zone
C. Figure 5 shows the change in the apple tree growth patterns in Zone A during the three
growth stages.
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Figure 5. Changes in the apple tree growth patterns in Zone A during: (a) the fruit expansion stage,
(b) the leaf differentiation stage, and (c) the shoot-stopping stage.

The overall set of the collected LAI data is partitioned into training and test subsets in
the ratio 3:1. The test data consist of 300 sets of data from Zone C, while the rest of the data
constitute the training dataset. The distribution of the sets of data across various zones and
stages is shown in Table 6.

Table 6. The LAI data distribution by zones and growth stages.

Zone A Zone B Zone C Total

Fruit expansion stage 150 150 150 450
Leaf differentiation

stage 150 145 140 435

Shoot-stopping stage 100 100 100 300

The SVR and GBDT algorithms were implemented in Python and were, respectively,
used to construct models for LAI estimation in each growth stage of the apple trees. For the
prediction model in each growth stage, the vegetation indices were used as the independent
variables, and the apple LAI value was used as the dependent variable.

The SVR model was implemented using the LIB-SVR library in Python. The radial
basis function was chosen as the SVR kernel while the best values of the other parameters
were set through the network search method. The penalty factor was set to c = 8, while
the kernel function parameter was set to g = 0.36321. These settings led to a minimum
cross-validation mean-square error of CVmse = 0.0079561. Likewise, the GBDT algorithm
and the regression method were implemented in Python. In order to avoid overfitting, the
number of sub-models (n-estimators) of each training set was set to 500, and the number of
trees was determined through multiple experiments. The maximum depth (max-depth)
was set to 4, and the minimum absolute deviation (1ad) was selected as the loss function
(loss).

2.6. Model Evaluation

In this study, the coefficient of determination (R2), the root-mean-square deviation
(RMSD) (also known as the root-mean-square error (RMSE)), and the spatial efficiency
(SPAEF) metric were used to evaluate the accuracy of the estimation model [55–57].
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The coefficient R2 takes a value between 0 and 1. The closer it is to 1, the closer the
predicted LAI value is to the ground-truth measurement, and the better its prediction is.
The coefficient R2 is expressed mathematically as [55,56]

R2 = 1− ∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2 (1)

where x is the i-th measured LAI value, x is the mean of the LAI measurements, yi is the
ith predicted LAI value, and n is the number of LAI samples.

The RMSD mainly reflects the difference between the predicted and measured LAI
values. For the same sample, the smaller the RMSD value, the higher the accuracy of the
constructed model is. The RMSD mathematical expression is

RMSD =

√
∑n

i=1 (yi − xi)
2

n−1
(2)

where, as before, xi is the ith measured LAI value, yi is the ith predicted LAI value, and n
is the number of LAI samples.

Spatial efficiency (SPAEF) is a metric that reflects the spatial variability of the model
prediction accuracy [57,58]. This metric is mathematically expressed as

SPAEF = 1−
√
(α− 1)2 + (β− 1)2 + (γ− 1)2 (3)

where α is the Pearson correlation coefficient between the observed (obs) and predicted
(pre) patterns, β is the fraction of the coefficient of variation representing spatial variability,
and γ is the histogram intersection measure computed for the given n-bin histogram K of
the observed patterns and the n-bin histogram L of the simulated patterns. The z score
of the patterns is used to compute γ in order to enable the comparison of variables with
different units and ensure bias insensitivity.

3. Results
3.1. Correlation Analysis
3.1.1. Correlation Analysis between the Apple LAI and Vegetation Indices

For the data obtained from the three stages, a total of 1200 sets of data was selected
with different growth stages (or different acquisition times). The correlation analysis was
carried out (using the SPSS software) between each of the vegetation indices in Table 7 and
the measured LAI.

Table 7. Results of the correlation analysis between the LAI measurements and the top five
vegetation indices.

Data Acquisition Time Vegetation Index Correlation Coefficient

Fruit Expansion Stage

NDVI 0.849
GNDVI 0.716

RVI 0.796
EVI 0.53

SAVI 0.802
DVI 0.426
IPVI 0.380

WDVI 0.556
GARI 0.409
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Table 7. Cont.

Data Acquisition Time Vegetation Index Correlation Coefficient

Leaf Differentiation Stage

NDVI 0.779
GNDVI 0.842

RVI 0.731
EVI 0.631

SAVI 0.625
DVI 0.429
IPVI 0.358

WDVI 0.453
GARI 0.422

Shoot-Stopping Stage

NDVI 0.836
GNDVI 0.596

RVI 0.639
EVI 0.555

SAVI 0.653
DVI 0.392
IPVI 0.462

WDVI 0.483
GARI 0.399

By consulting the correlation-coefficient significance-testing table, a correlation of 0.081
or more at a confidence level of 0.01 is considered significant for a sample of 1200. This
shows significant LAI correlation with each of the five vegetation indices at a confidence
level of 0.01, and hence, the experimental requirements are satisfied.

3.1.2. Data Autocorrelation Analysis

In order to assess the autocorrelation of all spatial variables, the Moran’s I statistic and
the p value were employed. In particular, spatial autocorrelation analysis was conducted
for the five vegetation indices and the LAI during the fruit expansion stage, the leaf
differentiation stage, and the shoot-stopping stage. The analysis was carried out by the
GeoDa and JMP software tools. The results are shown in Table 8.

Table 8. Results of the autocorrelation analysis of the spatial variables.

Variables
Fruit Expansion Stage Leaf Differentiation Stage Shoot-Stopping Stage

Moran’s I p-Value Moran’s I p-Value Moran’s I p-Value

LAI 0.4818 0.005 0.4214 0.008 0.3952 0.005
NDVI 0.5211 0.011 0.5146 0.012 0.4263 0.011

GNDVI 0.3215 0.016 0.3654 0.025 0.5244 0.021
RVI 0.2148 0.025 0.3125 0.033 0.2411 0.026
EVI 0.2979 0.032 0.1956 0.036 0.2006 0.034

SAVI 0.3642 0.029 0.4066 0.031 0.3199 0.028
DVI 0.1956 0.021 0.2541 0.036 0.3295 0.031
IPVI 0.2642 0.033 0.2649 0.046 0.2354 0.047

WDVI 0.3321 0.035 0.3652 0.049 0.3463 0.040
GARI 0.2008 0.042 0.2555 0.037 0.4235 0.038

As shown in Table 8, the Moran’s I statistic of each spatial variable is greater than
0, and the p-value is less than 0.05. Thus, the data in our study have significant spatial
autocorrelation.

3.2. Model Performance Evaluation and Comparison
3.2.1. Analysis of Model Bias

The LAI prediction outcomes were obtained for the GBDT and SVR models based on
the test dataset (which is separate from the training one). The prediction performance of
each model was evaluated through comparing the predicted and ground-truth measure-
ment values. Regression analysis was performed on the measured and predicted LAI data,
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and the corresponding regression lines were found for the GBDT and SVR models. Results
and plots of these lines are shown in Table 9 and Figures 6–8.

Table 9. Comparison of the evaluation indicators for the GBDT and SVR models of LAI prediction.

Evaluation
Indicators

Fruit Expansion Stage Leaf Differentiation Stage Shoot-Stopping Stage

GBDT SVR GBDT SVR GBDT SVR

R2 0.781 0.667 0.774 0.645 0.846 0.701
RMSD 0.339 0.443 0.379 0.454 0.356 0.431

Figure 6. Regression lines between the measured and predicted LAI values for the fruit expansion stage: (a) results of the
GBDT model; (b) results of the SVR model.

Figure 7. Regression lines between the measured and predicted LAI values for the leaf differentiation stage: (a) results of
the GBDT model; (b) results of the SVR model.
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Figure 8. Regression lines between the measured and predicted LAI values for the shoot-stopping stage: (a) results of the
GBDT model; (b) results of the SVR model.

Table 10 shows the results of the t-test for the intercept a and the slope b of the curve
fitted between the predicted and measured values.

Table 10. The t-test statistics for the intercept a and the slope b of the curve fitted between the
predicted and measured values.

Parameters
Fruit Expansion Stage Leaf Differentiation Stage Shoot-Stopping Stage

GBDT SVR GBDT SVR GBDT SVR

a 0.51 0.39 0.82 0.59 0.62 0.25
Significant difference

between a and 0
(p-value)

0.277 0.215 0.356 0.265 0.296 0.231

b 0.86 1.04 0.82 0.81 0.81 0.94
Significant difference

between b and 1
(p-value)

0.557 0.512 0.462 0.486 0.413 0.321

It can be seen from Tables 9 and 10 and Figures 6–8 that the coefficient R2 of the GBDT
model is above 0.770, while its RMSD is below 0.4 at different growth stages of the apple
trees. Additionally, the evaluation indicators of the GBDT model are better than those of
the SVR model. In fact, Figures 6–8 show that the GBDT model can match the 1:1 line better
than the SVR model, and this shows that the prediction accuracy of the GBDT model is also
much higher than that of the SVR model. This superiority of the GBDT algorithm can be
ascribed to its ability to improve the estimation accuracy by setting different loss functions
with a relatively small tuning time. On the other hand, the SVR model is more sensitive
to the selection of the kernel function and the other parameters. Hence, the SVR model
typically shows less accurate estimates compared to the GBDT model and also suffers from
the excessive computational burden to search for suitable kernel and parameter settings.
For different growth stages, the GBDT model had the best prediction performance with an
R2 of 0.846 and an RMSD of 0.356 at the shoot-stopping stage. The GBDT model predictions
for the leaf differentiation and fruit expansion stages were generally similar, but still lagged
behind those of the shoot-stopping stage. The relatively better performance during the
shoot-stopping stage is because the apple orchards were weeded and sprayed with a
nutrient solution, and thus, the fruit trees were more vigorous during this period while
the external factors (such as weeds) had less influence on the collection of remote-sensing
data. For the other two growth periods, the influence of the external factors (such as weeds)
resulted in worse model estimates compared to the shoot-stopping stage.

In summary, both the SVR and GBDT models enable LAI inversion for apple trees,
and the GBDT inversion results were more satisfactory compared to those of the SVR
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model. Therefore, the GBDT model should be more preferable for remote-sensing-based
LAI estimation in apple orchards.

3.2.2. Performance Analysis Based on Spatial Metrics

The results of the evaluation of the spatial metrics of the GBDT and SVR models are
shown in Table 11. Obviously, the GBDT model significantly outperforms the SVR model,
with the optimal SPAEF value for the GBDT model reaching 0.57, while that of the SVR
model is just 0.31.

Table 11. Comparison of the SPAEF metric of LAI prediction for the GBDT and SVR models.

Evaluation
Indicators

Fruit Expansion Stage Leaf Differentiation Stage Shoot-Stopping Stage

SVR GBDT SVR GBDT SVR GBDT

SPAEF 0.22 0.48 0.31 0.57 0.29 0.53

In summary, the GBDT model outperforms the SVR model in terms of the SPAEF
metric. This is the same conclusion when the model bias is evaluated in terms of spatial
metrics.

The LAI of the apple trees in the study area was estimated by the GBDT model for
the three apple growth periods, namely, the fruit expansion period, the leaf differentiation
period, and the shoot-stopping period. The spatial LAI distributions for Ruixue apple
orchards in the Baishui Apple Experimental Station were visualized based on the GBDT
model using ArcGIS10.3, as shown in Figures 9–11.

Figure 9. Remote-sensing maps of the apple trees during the fruit expansion stage: (a) the Fuji apple trees; (b) the Golden
Delicious apple trees; (c) the Ruixue apple trees.
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Figure 10. Remote-sensing maps of the apple trees during the leaf differentiation stage: (a) the Fuji apple trees; (b) the
Golden Delicious apple trees; (c) the Ruixue apple trees.

Figure 11. Remote-sensing maps of the apple trees during the shoot-stopping stage: (a) the Fuji apple trees; (b) the Golden
Delicious apple trees; (c) the Ruixue apple trees.

The LAI values of apple trees in the trial area ranged from 0 to 5, with Fuji having
the largest LAI value, followed by Golden Delicious, and with Ruixue having the smallest
value. This is mainly because Fuji and Golden Delicious are mainly densely planted and
have tall canopies, and their LAI values are relatively large. On the other hand, the Ruixue
apples represent a new variety with short saplings and small canopies, and this apple type
is mainly planted on dwarf rootstocks, with relatively large row and plant spacing, and
hence, has a relatively small LAI value. For the different growth periods, the LAI of apple
trees in each sampling area gradually increases between the fruit expansion period and the
shoot-stopping period. This is due to the fact that the orchards in the test area were thinned
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before the fruit expansion period, and the LAI of the fruit trees gradually increased after
about two months of development.

In summary, the LAI estimation in apple trees based on the GBDT algorithm can
well reflect the LAI temporal and spatial variations and can effectively realize the LAI
estimation for apple trees.

4. Discussion

The UAV-based remote sensing is an important tool for quickly obtaining information
on vegetation in large-scale areas of apple orchards. As well, the apple tree LAI is highly
correlated with general vegetation indices of fruit trees. Most of the previous studies used
a single vegetation index for remote-sensing estimation, and the number of investigated
vegetation indices was relatively small. A single vegetation index contains information
on only a single band and may have different degrees of saturation. Thus, poor gener-
alization performance is typical in remote-sensing models for LAI estimation where a
single vegetation index is used. In this study, the LAI of apple trees was estimated using
multiple growth periods and multiple vegetation indices. This approach allowed relatively
comprehensive LAI estimation for apple trees in different growth periods.

In addition to the selection of the independent variables (i.e., the vegetation indices),
appropriate model selection is an important factor affecting the remote-sensing LAI mon-
itoring in apple trees. Moreover, the selection of a suitable model can help improve the
accuracy of remote-sensing prediction of the vegetation’s physical and chemical parameters.
In this study, the gradient-boosting decision tree (GBDT) algorithm was introduced, for
the first time, into the study of the apple-tree LAI estimation models. In addition, the LAI
estimation was carried out for the three most important growth periods of the apple trees,
namely, the fruit expansion period, the leaf differentiation period, and the shoot-stopping
period. The obtained GBDT model was found to be significantly better than the SVR model,
which is in line with previous studies [32]. The key advantage of the GBDT algorithm is
its ability to combine several weak learners into a strong learner, whose outcome is the
sum of multiple regression trees. The model constructed by this algorithm can flexibly
process various types of continuous data (e.g., LAI) or discrete data (e.g., crop canopy
temperature). For regression analysis with small samples, the GBDT algorithm can set
different loss functions with a relatively small tuning time and, hence, can improve the
estimation accuracy. The GBDT algorithm avoids the time complexity incurred by the SVR
model for selecting suitable kernel functions and other parameters. Additionally, while the
SVR algorithm assigns equal weights to all input factors and cannot judge the contribution
of each factor, the GBDT algorithm solves these problems. Therefore, the GBDT algorithm
is highly applicable in regression problems. However, two GBDT aspects need to be noted:

(1) The GBDT algorithm is used to judge the influence of several similar vegetation
indices in the red and near-infrared bands, a fact that highlights the advantages of the
algorithm. Still, there is room for accuracy improvement via further studies.

(2) There are dependencies between the base learners in the GBDT algorithm, and hence,
parallel calculations can be generally difficult to perform. This paper has not consid-
ered the parallelism among the base learners. In future research, we should focus on
how to realize parallel operations (at least partially) to further improve the estimation
efficiency.

In the study, nine vegetation indices with a high correlation with the leaf area index
(LAI) of apple trees were used, all of which were in the visible and near-infrared bands of
the spectra, which are consistent with previous studies.

Previously, the acquisition of leaf area index in orchards was mainly based on ground
measurements, and the main manual ground measurement methods are the instrumental
measurement method (LAI-2200C) and hemispheric photography method. However, they
can only respond to a small area of the leaf area index situation, and the measurement
efficiency is low. This study is the first to apply UAV remote sensing to the measurement
of a leaf area index of apple trees. Compared with manual ground measurement of apple
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tree LAI, it has the advantages of being high efficiency, time saving, and having wide
application. Therefore, it is suitable for the acquisition of LAI in large apple orchards [58].

5. Conclusions

In this paper, we use UAV remote-sensing data and actual LAI measurements of apple
trees, in combination with the GBDT and SVR models, for LAI estimation in apple trees.
We can draw the following main conclusions:

(1) The acquisition of large-scale remote-sensing images of apple orchards can be achieved
using a multi-rotor UAV, the RedEdge multispectral camera, and its stabilized gimbal.
The acquisition system enjoys several features including stability, easy maintenance
and operation, data reliability, and accessibility.

(2) All nine vegetation indices selected for this study have a strong correlation with the
LAI. This is particularly true for the five indices of NDVI, GNDVI, RVI, EVI, and
SAVI. Indeed, each of these five indices has a correlation coefficient greater than 0.5 at
a confidence level of 0.01. This indicates a significant correlation between these five
vegetation indices and the LAI.

(3) The remote-sensing-based LAI estimation in apple trees can be combined with ma-
chine learning. In this case, the performance of the GBDT model is better than that of
the SVR model. The GBDT model actually has strong noise immunity and generaliza-
tion and is very suitable for remote-sensing estimation of the LAI for apple trees in
different growth periods.
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