Vine Identification and Characterization in Goblet-Trained Vineyards Using Remotely Sensed Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Research Data
2.2. Proposed Method
2.2.1. Vine Identification
2.2.1.1. Image Segmentation and Binarization
2.2.1.2. Image Rotation
2.2.1.3. Living and Missing Vine Identification
2.2.2. Vine Characterization
2.3. Semantic Segmentation
3. Results
3.1. Assessment of Proposed Method Compared to Ground-Truth Data
3.2. Assessment of Proposed Method Compared to On-Screen Vine Identification
3.3. Comparison with Semantic Segmentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Binary parcel image | |
Binary parcel image where the vine columns are vertical | |
Binary parcel image where the vine rows are horizontal | |
TLV | Number of truly identified living vines |
TMV | Number of truly identified missing vines |
FLV | Number of misidentified living vines |
FMV | Number of misidentified missing vines |
AMV | Missing vine identification accuracy |
ALV | Living vine identification accuracy |
ACC | Vine identification accuracy |
Appendix A
References
- Matese, A.; Di Gennaro, S. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; Pazzona, A.L. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors 2021, 21, 956. [Google Scholar] [CrossRef] [PubMed]
- Delenne, C.; Rabatel, G.; Deshayes, M. An Automatized Frequency Analysis for Vine Plot Detection and Delineation in Remote Sensing. IEEE Geosci. Remote Sens. Lett. 2008, 5, 341–345. [Google Scholar] [CrossRef] [Green Version]
- Delenne, C.; Durrieu, S.; Rabatel, G.; Deshayes, M. From pixel to vine parcel: A complete methodology for vineyard delineation and characterization using remote-sensing data. Comput. Electron. Agric. 2010, 70, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Comba, L.; Gay, P.; Primicerio, J.; Ricauda Aimonino, D. Vineyard detection from unmanned aerial systems images. Comput. Electron. Agric. 2015, 114, 78–87. [Google Scholar] [CrossRef]
- Primicerio, J.; Caruso, G.; Comba, L.; Crisci, A.; Gay, P.; Guidoni, S.; Genesio, L.; Ricauda Aimonino, D.; Primo Vaccari, F. Individual plant definition and missing plant characterization in vineyards from high-resolution UAV imagery. Eur. J. Remote Sens. 2017, 50, 179–186. [Google Scholar] [CrossRef]
- Chanussot, J.; Bas, P.; Bombrun, L. Airborne remote sensing of vineyards for the detection of dead vine trees. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, 29 July 2005; Volume 5, pp. 3090–3093. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Olmedo, G.F.; Ingram, B.; Bardeen, M. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial Vineyard. Remote Sens. 2017, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Carbonneau, A.; Cargnello, G. Architectures de la Vigne et Systèmes de Conduite; Pratiques Vitivinicoles, Dunod: Paris, France, 2003. [Google Scholar]
- Robbez-Masson, J.M.; Foltête, J.C. Localising missing plants in squared-grid patterns of discontinuous crops from remotely sensed imagery. Comput. Geosci. 2005, 31, 900–912. [Google Scholar] [CrossRef]
- Hayat, S.; Kun, S.; Tengtao, Z.; Yu, Y.; Tu, T.; Du, Y. A Deep Learning Framework Using Convolutional Neural Network for Multi-Class Object Recognition. In Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 194–198. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Duda, R.O.; Hart, P.E. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Batchelor, B.G.; Waltz, F.M. Morphological Image Processing. In Machine Vision Handbook; Batchelor, B.G., Ed.; Springer: London, UK, 2012; pp. 801–870. [Google Scholar] [CrossRef]
- Beucher, S.; Lantuéjoul, C. Use of Watersheds in Contour Detection. In Proceedings of the International Workshop on Image Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1967; Volume 132. [Google Scholar]
- Meyer, F. Topographic distance and watershed lines. Signal Process. 1994, 38, 113–125. [Google Scholar] [CrossRef]
- Beucher, S. The watershed transformation applied to image segmentation. Scanning Microsc. Suppl. 1992, 28, 299–314. [Google Scholar]
- The MathWorks. Image Processing Toolbox; MathWorks: Natick, MA, USA, 2019. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2018; Volume 11211, pp. 833–851. [Google Scholar] [CrossRef] [Green Version]
- The MathWorks. Deep Learning Toolbox; MathWorks: Natick, MA, USA, 2019. [Google Scholar]
Parcel | Area | X | Y |
---|---|---|---|
59B | 23,849 m | 755,285 m | 3,726,712 m |
59A | 21,061 m | 755,158 m | 3,726,796 m |
57A | 10,155 m | 754,148 m | 3,726,945 m |
1B | 16,651 m | 753,344 m | 3,726,512 m |
58C | 23,225 m | 754,582 m | 3,726,680 m |
58D | 6870 m | 754,678 m | 3,726,610 m |
60D | 33,778 m | 755,904 m | 3,726,233 m |
60A | 25,039 m | 755,523 m | 3,726,573 m |
61A | 21,480 m | 755,471 m | 3,726,997 m |
10F | 7115 m | 753,318 m | 3,726,843 m |
Obtained Results | Ground-Truth Data | |
---|---|---|
No. of vine rows | 63 | 63 |
No. of living vines | 3648 | 3643 |
No. of missing vines | 46 | 43 |
Mortality rate | 1.24% | 1.17% |
Parcel | TLV | TMV | FLV | FMV | ALV | AMV | ACC |
---|---|---|---|---|---|---|---|
59B | 3643 | 37 | 5 | 0 | 100.00% | 88.10% | 99.86% |
59A | 2985 | 212 | 23 | 24 | 99.20% | 90.21% | 98.55% |
57A | 1507 | 44 | 9 | 4 | 99.74% | 83.02% | 99.17% |
1B | 2011 | 406 | 89 | 38 | 98.15% | 82.02% | 95.01% |
58C | 2554 | 851 | 108 | 46 | 98.23% | 88.74% | 95.67% |
58D | 736 | 228 | 14 | 25 | 96.71% | 94.21% | 96.11% |
60D | 4911 | 217 | 28 | 8 | 99.84% | 88.57% | 99.30% |
60A | 3581 | 173 | 25 | 23 | 99.36% | 87.37% | 98.74% |
61A | 3161 | 128 | 7 | 1 | 99.97% | 94.81% | 99.76% |
10F | 975 | 74 | 24 | 12 | 98.78% | 75.51% | 96.68% |
Parcel | Size < 0.69 m | 0.69 m ⩽ Size < 1.38 m | Size ⩾ 1.38 m |
---|---|---|---|
59B | 9.92% | 62.20% | 27.88% |
59A | 5.82% | 48.99% | 45.19% |
57A | 9.58% | 58.92% | 31.51% |
1B | 16.48% | 52.19% | 31.33% |
58C | 28.27% | 57.63% | 14.10% |
58D | 18.62% | 49.60% | 31.78% |
60D | 1.17% | 12.91% | 85.92% |
60A | 3.52% | 48.14% | 48.34% |
61A | 10.42% | 63.45% | 26.14% |
10F | 11.53% | 47.24% | 41.22% |
Obtained Results | Semantic Segmentation | Ground-Truth Data | |
---|---|---|---|
No. of vine rows | 63 | 63 | 63 |
No. of living vines | 3648 | 3647 | 3643 |
No. of missing vines | 46 | 47 | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajjar, C.; Ghattas, G.; Sarkis, M.K.; Chamoun, Y.G. Vine Identification and Characterization in Goblet-Trained Vineyards Using Remotely Sensed Images. Remote Sens. 2021, 13, 2992. https://doi.org/10.3390/rs13152992
Hajjar C, Ghattas G, Sarkis MK, Chamoun YG. Vine Identification and Characterization in Goblet-Trained Vineyards Using Remotely Sensed Images. Remote Sensing. 2021; 13(15):2992. https://doi.org/10.3390/rs13152992
Chicago/Turabian StyleHajjar, Chantal, Ghassan Ghattas, Maya Kharrat Sarkis, and Yolla Ghorra Chamoun. 2021. "Vine Identification and Characterization in Goblet-Trained Vineyards Using Remotely Sensed Images" Remote Sensing 13, no. 15: 2992. https://doi.org/10.3390/rs13152992
APA StyleHajjar, C., Ghattas, G., Sarkis, M. K., & Chamoun, Y. G. (2021). Vine Identification and Characterization in Goblet-Trained Vineyards Using Remotely Sensed Images. Remote Sensing, 13(15), 2992. https://doi.org/10.3390/rs13152992