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Abstract: Crop identification in large irrigation districts is important for crop yield estimation,
hydrological simulation, and agricultural water management. Remote sensing provides
an opportunity to visualize crops in the regional scale. However, the use of coarse resolution
remote sensing images for crop identification usually causes great errors due to the presence of mixed
pixels in regions with complex planting structure of crops. Therefore, it is preferable to use remote
sensing data with high spatial and temporal resolutions in crop identification. This study aimed
to map multi-year distributions of major crops (maize and sunflower) in Hetao Irrigation District,
the third largest irrigation district in China, using HJ-1A/1B CCD images with high spatial and
temporal resolutions. The Normalized Difference Vegetation Index (NDVI) series obtained from
HJ-1A/1B CCD images was fitted with an asymmetric logistic curve to find the NDVI characteristics
and phenological metrics for both maize and sunflower. Nine combinations of NDVI characteristics
and phenological metrics were compared to obtain the optimal classifier to map maize and sunflower
from 2009 to 2015. Results showed that the classification ellipse with the NDVI characteristic of the
left inflection point in the NDVI curve and the phenological metric from the left inflection point
to the peak point normalized, with mean values of corresponding grassland indexes achieving the
minimum mean relative error of 10.82% for maize and 4.38% for sunflower. The corresponding Kappa
coefficient was 0.62. These results indicated that the vegetation and phenology-based classifier using
HJ-1A/1B data could effectively identify multi-year distribution of maize and sunflower in the study
region. It was found that maize was mainly distributed in the middle part of the irrigation district
(Hangjinhouqi and Linhe), while sunflower mainly in the east part (Wuyuan). The planting sites of
sunflower had been gradually expanded from Wuyuan to the north part of Hangjinhouqi and Linhe.
These results were in agreement with the local economic policy. Results also revealed the increasing
trends of both maize and sunflower planting areas during the study period.

Keywords: crop identification; remote sensing; HJ-1A/1B satellite constellation; normalized difference
vegetation index; phenological metrics; Hetao Irrigation District

1. Introduction

Crop identification in large irrigation districts is important for crop yield estimation [1,2],
hydrological simulation [3], water resources management [4], and agricultural management [5].
The cultivated area is usually acquired through agricultural census [6], which is both time-consuming
and costly. The basic unit of statistical data is usually on the county level [6] without detailed spatial
distribution. In the last few decades, the rapid development of remote sensing technology provides
an opportunity to identify the crops over large areas effectively [7]. In recent years, remote sensing
images are widely used in crop identification because of their advantages of easy access, acceptable
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resolution and large coverage area [8–10]. Due to their capability in characterizing crop conditions,
various remote sensing-based methods had been widely used as effective tools for crop identification
and cultivation area estimation [11,12]. In order to achieve good classification results, two important
issues need to be considered: the selection of an appropriate classifier and the sources of remote
sensing images [13].

The most commonly used classification method by remote sensing is supervised classification
with the basic unit of a pixel, which divides each pixel into a specified type of crop according to the
training data based on the sampling points [12,14,15]. Three supervised classification algorithms based
on machine learning are frequently used, including the multilayer perceptron neural networks [13,16],
the support vector machine [17,18], and the random forest [19,20]. These classifiers are non-parametric
algorithms, which are black-box models without a fixed classification formula. Therefore, one classifier
identified in a study area cannot be applied directly to other similar areas, which would affect the
generalization of the classifier. A key issue for a non-parametric classifier is the determination of input
characteristic variables. The large number of input variables may result in over-fitting and the Hughes
phenomenon [21,22]. Another disadvantage that cannot be ignored for a non-parametric classifier is
the huge computation caused by too much data, which not only requires a high computer property
but also needs a long computation time [2,23]. Accordingly, in order to improve the effectiveness and
robustness of crop identification methods, the best indicators of crop growth characteristics need to
be identified.

Recently, the crop phenological metric is widely used as an approach to improve the crop
classifiers [24–26]. Vegetation phenology reflects the growth characteristics of each crop. Therefore,
different crops could be identified according to the character of crop phenology. Previous studies have
shown that vegetation indexes retrieved from remotely sensed data, such as the Enhanced Vegetation
Index (EVI) [27,28] and Normalized Difference Vegetation Index (NDVI) [26,29], can accurately
describe the crop phenology. The NDVI is widely used due to its simple calculation [30] and readily
available NDVI products [16,31]. Furthermore, during the monitoring of the vegetation dynamics
in arid and semi-arid areas, the NDVI is more sensitive to soil conditions and atmospheric effects
compared with other vegetation indexes. Lu et al. [32] used three Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived vegetation indexes including NDVI, EVI and the Soil-Adjusted
Vegetation Index (SAVI), to monitor dryland vegetation dynamics. The results showed the spatial
deviation of phenological metrics generated from NDVI was the largest. Johnson et al. [33] have
compared the yield estimation effects of the predictors of NDVI and EVI, and he concluded that NDVI
was the most effective predictor for three crops in the study area. This shows that NDVI is more
accurate in describing the vegetation growth process. Therefore, the NDVI is used as the primary
index for correlating with the phenological metrics.

The source of remote sensing data is another key factor for determining the accuracy
of crop identification. In the last few decades, Advanced Very High-Resolution Radiometer
(NOAA-AVHRR) [31,34], SPOT VEGETATION product [5,35], MODIS [36,37], and Landsat
TM/ETM+ [38,39] have become the main sources of remote sensing data. For these data sources,
Landsat TM/ETM+ has a high spatial resolution of 30 m, but has a long revisit cycle of 16 days. It may
be difficult to identify crop phenology accurately with a high possibility of images influenced by cloud.
Other data sources generally have coarse or medium spatial resolution, which will lead to mixed pixel
problems for areas with complex planting structure. To solve the problem of lacking data sources
with both high spatial and temporal resolutions, downscaling of moderate spatial resolution MODIS
data using Landsat data [40] and fusion of Landsat data and other satellite-sensor data [41] has been
tested. However, these re-processing methods can further increase the uncertainty of the derived
indexes on the basis of error between satellite-derived NDVI and ground-based NDVI [42]. Therefore,
remote sensing data sources with both high spatial resolution and frequent revisit time are desired for
crop identification.
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On 6 September 2008, China launched the HJ-1A/1B satellite constellation for environment and
disaster monitoring. The satellite constellation has achieved high temporal resolution (four days revisit
period of a single satellite) and mid-high spatial resolution (30 m) [43]. Previous studies have indicated
that the NDVI series derived from HJ-1A/1B could present a complete phenological cycle of crops
and the retrieved phenological metrics were comparable with local agro-metrological observation [29].
Monthly NDVI series from HJ-1A/1B is also used to identify the species of salt marshes in coastal
zones [44]. However, few studies had applied HJ-1A/1B data to crop identification in arid and
semi-arid areas. The main objective of this study is to identify the multi-year distribution of main
crops (maize and sunflower) in Hetao Irrigation District of China with complex planting structure
using the NDVI and phenological characteristics derived from HJ-1A/1B images.

2. Study Region and Data Sources

2.1. Study Region

The Hetao Irrigation District is the third largest irrigation district and an important food
production base in China. The irrigation district is located in the western part of the Inner Mongolia
Autonomous Region in North China. The area of Hetao Irrigation District is 1.12 million ha and the
irrigated farmland is 0.57 million ha. In the present research, four counties (Dengkou, Hangjinhouqi,
Linhe and Wuyuan) in the district were selected as the study region, which spans from 40.1◦N to
41.4◦N and from 106.1◦E to 109.4◦E (Figure 1). The region covers an area of 0.91 million ha, with
44% being irrigated land (Figure 2). The study region is characterized by arid continental climate
with an annual precipitation of approximately 160 mm and pan evaporation (20 cm evaporation pan)
of approximately 2240 mm. Mean annual temperature is 7.7–9.5 ◦C from 2009 to 2015, and daily
mean temperatures ranging from −16.9 ◦C in January to 29.1 ◦C in July. The study region belongs to
an alluvial plain of the Yellow River with elevation varied from 1000 m to 1091 m above sea level.
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Figure 2. Land use map for the study area.

Dominant crops in the study area are summer maize, sunflower and spring wheat. The crop
growing season spans from April to October. According to statistics of local government (http:
//www.bmagri.gov.cn), the planting area of three major crops has changed evidently in recent years
(Figure 3). For summer maize and sunflower, the planting area increased from 2009 to 2015, while
the planting area of spring wheat decreased significantly. Thus, summer maize and sunflower were
considered in the following analysis.
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2.2. Sampling and Verification Data

Survey of crop planting structure was carried out in Hetao Irrigation District during 28 to
30 August 2012 [11]. We obtained 41 sampling sites of maize and 53 sampling sites of sunflower
using the Global Positioning System (GPS), which has a positioning accuracy of 2 m–5 m (Figure 1).
In order to avoid the appearance of mixed pixels, the area of the sampling site is above 100 m × 100 m.
From the spatial distribution of the sampling points, sunflower is mainly distributed in Wuyuan
County, while summer maize mainly in Hangjinhouqi and Linhe counties. To find out more about the
growth situation of these two major crops, we also investigated the local phenology calendar (Table 1).

http://www.bmagri.gov.cn
http://www.bmagri.gov.cn
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In order to evaluate the accuracy of crop identification, we also carried out field investigations to
obtain the verification points in 2014 and 2015. A total of 55 verification points were selected per year
and the location of these points in two years were completely consistent (Figure 1). Because of the crop
rotation policy in Hetao Irrigation District, the crops in the same location were different in different
years. As a result, there were 19 sampling points of summer maize, 23 of sunflower, and 7 of other
crops in 2014, while there were 15 of maize, 25 of sunflower, and 15 of other crops in 2015.

Table 1. Field investigated maize and sunflower phenological metrics in 2012.

Maize Sunflower

Growing Period Date Growing Period Date

Sowing-Jointing 5.1–6.19 Sowing-Seedling 6.1–7.5
Jointing-Trumpet 6.20–7.9 Seedling-Emergence 7.6–7.24
Trumpet-Heading 7.10–7.29 Emergence-Blooming 7.25–8.6
Heading-Grouting 7.30–8.19 Blooming-Grouting 8.7–8.27
Grouting-Harvest 9.1–9.20 Grouting-Harvest 8.28–9.20

2.3. Satellite Data and Preprocessing

The two-day-repeat CCD sensors of Chinese HJ-1A/1B satellites capture ground features with
30 m pixel resolution, with each satellite carrying a four-band multispectral optical image that captures
radiation in the blue (0.43–0.52 µm), green (0.52–0.60 µm), red (0.63–0.69 µm), and near-infrared
(0.76–0.90 µm) bands [45]. The HJ-1A/1B CCD images were downloaded from the China Centre for
Resources Satellite Data and Application (CRESDA) (http://cresda.spacechina.com). The satellite
images used in this study consisted of 195 HJ-1A/1B CCD images of Level 2A for Hetao Irrigation
District covering the years from 2009 to 2015 with the cloud cover less than 5%.

The HJ-1A/1B CCD images preprocessing procedures mainly include radiometric calibration and
atmospheric and geometric corrections. Theradiometric calibration was used to convert image digital
number (DN) to the sensor radiance value for each band using Equation (1).

Lλ =
DN

g
+ L0 (1)

where Lλ is the spectral radiance of each band, g and L0 are calibration coefficients that can be found in
the meta-data file attached with the image.

Atmospheric correction was based on image data according to Equations (2)–(5) [46] instead
of using the FLAASH module embedded in the ENVI software [29,47]. The main advantage of
this method is that the coefficients necessary for the atmospheric correction are obtained from the
image itself.

ρs,λ =
π · (Lλ − Lp) · d2

ESUNλ · cos θz · Tz
(2)

d = 1 + 0.0167 · sin(
2π · (DOY − 93.5)

365
) (3)

Lp = Lmin − L1% (4)

L1% =
0.01 · ESUNλ · cos θz · Tz

π · d2 (5)

where ρs,λ is at-surface reflectivity of each band, ESUNλ is the mean solar exoatmospheric radiation
over each band (Table 2), θz is solar zenith angle, d is the relative Earth–Sun distance, Tz is the
atmospheric transmissivity that can be approximated by cosθz, DOY is the day of year, Lp is the
atmospheric radiation, Lmin is the radiance computed using the minimum radiance in band λ, L1% is
the blackbody radiation.

http://cresda.spacechina.com
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Table 2. ESUNλ of HJ-1A/1B (W·m–2 µm−1).

Image Type Band 1 Band 2 Band 3 Band 4

HJ-1A
CCD1 1914.32 1825.42 1542.66 1073.83
CCD2 1929.81 1831.14 1549.82 1078.32

HJ-1B
CCD1 1902.19 1833.63 1566.71 1077.09
CCD2 1922.90 1823.99 1553.20 1074.54

The geometric correction was completed using the TIMES module embedded in the
ArcGIS software.

2.4. Other Dataset

Daily climate data for the study area were available at China Meteorology Data Sharing Service
System (http://cdc.cma.gov.cn/).

DEM data (SRTM) with spatial resolution of 90 m were downloaded from http://srtm.csi.cgiar.
org/ (Figure 1).

Land use map (1:100,000) of the study area for the year of 2005 was provided by National Data
Sharing Infrastructure of Earth System Science (http://spacescience.data.ac.cn), where land uses were
integrated into 8 types shown in Figure 2.

Statistical data of planting area of the major crops were available at the Bayannur Agricultural
Information Network (http://www.bmagri.gov.cn).

3. Phenology-Based Crop Identification

3.1. Derivation of Phenological Metrics

The NDVI was used to derive the phenological metrics of crops. The NDVI is the ratio of the
differences in reflectivity for the near-infrared band and the red band to their sum [48]. In case of
HJ-1A/1B satellite, the corresponding bands are bands 4 and 3, and NDVI can be calculated from

NDVI =
(ρt,4 − ρt,3)

(ρt,4 + ρt,3)
(6)

where ρt,3 and ρt,4 are the reflectivity of the near-infrared and the red band, respectively. Generally,
NDVI > 0 indicates soil or vegetation, while NDVI ≤ 0 indicates water or snow.

The NDVI has been used to monitor vegetation dynamics for over twenty years [42,49].
Recent studies have paid more attention to the relationship between NDVI series and vegetation
phenology [26,29], which confirmed the effectiveness of NDVI series in identifying crop phenology
parameters. Thus, we calculated NDVI from the preprocessed images according to Equation (6).
In order to decrease the effects of noise of existing data, the resulting HJ-1A/1B NDVI time series was
further fitted with an asymmetric logistic curve [50] (Figure 4), which was also used by Jiang et al. [11]
in crop identification. The fitting curve equation is

NDVI = a + (b/k) · (1 + n)−(k+1)/k · n · (k + 1)(k+1)/k (7)

n = exp[(t + d · ln(k)− c)/d] (8)

where t is DOY; a, b, c, d and k are curve parameters (Figure 4) to be estimated from NDVI series by the
least-squares method.

The characteristic points of the asymmetric logistic curve (i.e., phenological metrics) can be
computed from the zeroes of the first and second derivatives of Equation (7). The derivatives are

http://cdc.cma.gov.cn/
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://spacescience.data.ac.cn
http://www.bmagri.gov.cn
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d(NDVI)
dt

= (b/k) · [(k + 1)/(1 + n)](k+1)/k · [(k − n)/(1 + n)] · (n/d) (9)

d(NDVI)2

dt2 = (b/k2) · (k + 1)(k+1)/k · (n/d2) · (1 + n)−[(k+1)/k]−2 · [(n2/k)− n(k + 3) + k] (10)

Letting d(NDVI)/dt = 0, we can obtain t_max = c. If d(NDVI)2/dt2 > 0 at this point, then we can
obtain the peak value of NDVI, NDVI_max = a + b, at t_max = c. Letting d(NDVI)2/dt2 = 0, we can
obtain two inflection points of the NDVI curve, t_inf = c + d ln [(k + 3 ± (k2 + 6k + 5)0.5/2] (“−” for the
left and “+” for the right inflection points). The NDVI values corresponding to t_inf, NDVI_inf, can be
calculated by replacing t with t_inf in Equation (7).
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Figure 4. The asymmetric logistic curve and characteristic points.

The area of the sampling point is at least 100 m × 100 m, which includes at least 9 pixels. Generally,
one to three pixels were selected corresponding to each sampling point, and we finally got 160 and
140 pixels representing maize and sunflower, respectively. The NDVI series of each sampling pixel
in 2012 were calculated based on HJ-1A/1B CCD images, and the average NDVI values of those 160
and 140 pixels were obtained as the representative NDVI series of maize and sunflower, respectively.
Then the maize and sunflower NDVI time series were fitted with the asymmetric logistic curve
(Figure 5). The curve fitting was also performed for NDVI time series of each pixel in the study area to
obtain phenological metrics of each pixel to monitor the growth regime of crops.
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The coefficient of determination (R2) for the fitting were both over 0.9 for maize and sunflower,
which indicated that this asymmetric logistic curve fitted the crop phenological cycle in the Hetao
Irrigation District fairly well. Comparison of the fitting curves for maize and sunflower showed that
the two curves were distinct in the left side (crop growth period), while almost coinciding in the right
side (crop senescence period). Therefore, three key NDVI characteristics, NDVI values at the left
inflection point with maximum growth rate and the peak point and their difference, and corresponding
phenological metrics were selected as possible indexes to differentiate maize and sunflower (Table 3).

Table 3. Selected NDVI and phenological indexes.

No. NDVI Characteristics Phenological Metrics

1 NDVI_max, maximum value of NDVI t_max, time corresponding to NDVI_max

2 NDVI_inf, NDVI value of the left inflection
point with maximum growth rate t_inf, time corresponding to NDVI_inf

3 ∆NDVI, difference between NDVI_max and
NDVI_inf

FGP = t_max − t_inf, duration from the left inflection
point to the peak point (Fast growth phase)

From Figure 5, the maize NDVI reached its maximum value of 0.54 at the 224th day in the year
(t_max), and achieved its maximum growth rate at the 190th day (t_inf) with the corresponding NDVI
of 0.38 (NDVI_inf), while for sunflower, NDVI reached its maximum value of 0.52 at the 227th day,
and achieved its maximum growth rate at the 203th day with NDVI_inf = 0.37. There was no clear
difference between t_max of maize and sunflower, but t_inf of maize was almost half a month earlier
than the sunflower. Accordingly, maize had a longer fast growth period (FGP) than sunflower, with
FGP of maize and sunflower of 34 days and 25 days, respectively. Consequently, a combination of
appropriate NDVI characteristics and FGP would be effective to identify maize and sunflower in the
Hetao Irrigation District.

3.2. Crop Identification Model of Characteristic Ellipses

The phenology-based crop identification is a combination of phenology and vegetation indexes,
which had been effectively applied to multi-year maize classification in the Hetao Irrigation District [11].
This method considered the differences of growth stage and growth condition to identify crops.

Phenological metrics represent the growth stage of crops, such as the time of sowing, harvesting,
etc. Although the sowing time of the same crop may be different, the growth cycle of the same crop
is usually stable. Therefore, the intervals between two phenological phases were applied instead of
a single phenological phase to represent the growth stage of crops. We also used the fast growth phase
(FGP = t_max − t_inf) as a typical phenological metric as Jiang et al. [11].

The NDVI characteristics indicate the growth condition of crops, and three NDVI characteristics
(Table 3) were compared to find the most appropriate index. The vegetation growth condition varied
among different years due to variation of meteorological conditions. In order to reduce the impact of
meteorological conditions on crop growth in different years, it is preferable to normalize the above
indexes. Jiang et al. [11] normalized each index using the corresponding average value of all farmland
pixels. Considering that the spatial distribution and planting structure of crops changed in different
years, we also used the average values of grassland pixels and forest pixels in the normalization.
The mean values of NDVI characteristics and phenological metrics for farmland, grassland and forest
were calculated as the reference values for normalization (Table 4), and the ratio of the above indexes
to their corresponding reference values were used as the normalized indexes.
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Table 4. Mean values of NDVI characteristics and phenological metrics from 2009 to 2015.

Land Use Type Indexes 2009 2010 2011 2012 2013 2014 2015

Farmland

NDVI_max 0.497 0.505 0.497 0.519 0.552 0.592 0.573
NDVI_inf 0.347 0.333 0.337 0.366 0.390 0.427 0.405

∆NDVI 0.150 0.172 0.159 0.153 0.162 0.164 0.167
FGP 39.23 35.00 32.96 33.47 31.42 27.36 32.88

Grassland

NDVI_max 0.472 0.467 0.453 0.487 0.508 0.547 0.537
NDVI_inf 0.333 0.312 0.310 0.345 0.361 0.398 0.387

∆NDVI 0.139 0.153 0.143 0.143 0.147 0.149 0.150
FGP 38.54 34.54 33.01 32.41 31.46 27.57 32.17

Forest

NDVI_max 0.481 0.476 0.466 0.496 0.519 0.554 0.542
NDVI_inf 0.339 0.315 0.320 0.351 0.368 0.403 0.387

∆NDVI 0.142 0.161 0.146 0.145 0.151 0.151 0.154
FGP 38.74 34.82 32.49 32.18 31.35 27.61 32.65

The normalized FGP was negatively correlated with normalized NDVI characteristics (Figure 6).
Each combination of the normalized FGP with one of the nine normalized NDVI characteristics formed
a phenology-based classifier for the identification of maize and sunflower (Figure 6). Consequently,
we have nine phenology-based classifiers, the name and details of the ellipses were shown in Table 5.
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Table 5. The name and details of nine phenology-based classifiers.

Classifier Normalization Way NDVI Index
Maize Sunflower

Fa Fb Fa Fb

a1 farmland NDVI_max 1.18 1.11 1.32 1.09
b1 farmland NDVI_inf 1.11 1.11 1.05 1.04
c1 farmland ∆NDVI 1.09 1.06 1.11 1.02
a2 grassland NDVI_max 1.18 1.12 1.22 1.00
b2 grassland NDVI_inf 1.14 1.02 1.04 1.02
c2 grassland ∆NDVI 1.19 1.04 1.06 1.00
a3 forest NDVI_max 1.18 1.11 1.09 1.00
b3 forest NDVI_inf 1.18 1.11 1.00 1.00
c3 forest ∆NDVI 1.22 1.11 1.04 1.00

From Figure 6, scatter points of normalized FGP vs. each normalized NDVI characteristic can be
approximately covered by an ellipse. Our intention was to find out the minimum ellipse that can cover
all sampling points. The standard equation of an ellipse with (0, 0) as the center and x and y axes as
principal axes can be expressed as

x2

a2 +
y2

b2 = 1 (a > b > 0) (11)

where a and b are semi-major and semi-minor axes, respectively. When the ellipse center moves from
(0, 0) to (m, n) and the ellipse has a rotation angle of θ, the standard equation can be expressed as

Ax2 + By2 + Cxy + Dx + Ey + F = 0 (12)

where A, B, C, D, E and F are parameters, which can be calculated from m, n, a, b, and θ [11].
The minimum ellipse was obtained by the least square method with the objective of minimizing

the ellipse area on the condition that all points fell into the ellipse. Due to the limited number of
sampling points, the minimum ellipse may not contain all the growth traits of maize or sunflower in
the whole irrigation district. Therefore, ellipses should be amplified by increasing the semi-major and
semi-minor axes to optimal values to achieve a smaller and acceptable relative error between identified
crop planting areas and official statistical data. The relative area is defined as

δ =
(Calculatedarea − Statisticalarea) ∗ 100

Statisticalarea
(13)

where Calculatedarea and Statisticalarea are crop planting areas calculated from the classification model
and from the official statistics, respectively. Furthermore, the Kappa coefficient was used to evaluate
the consistency of crop spatial distribution between the identification results and the actual planting
structure. The Kappa coefficient is calculated as [51]

κ =
Po − Pc

1 − Pc
(14)

where Po is the proportion of observed agreements and Pc is the proportion of agreements expected
by chance.

The years 2010, 2011 and 2013 were selected as training years, while 2009, 2012, 2014 and 2015
were the testing years. The amplification coefficients of a and b were defined as Fa and Fb and they
were set to be 1.00 to 1.35 and 1.00 to 1.15, respectively, with steps of 0.01. The amplification results of
a and b of the above nine ellipses were shown in Table 5.

During the identification process, NDVI series of each pixel were fitted with the asymmetric
logistic curve. However, poor data of some pixels may result in unrealistic fitting results. According to
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field survey results, the FGP of maize and sunflower are usually between 20 and 60 days, respectively.
Therefore, a pixel with FGP outside this range is defined as an outlier. The outliers were processed
with k-Nearest Neighbor (kNN) algorithm with the window size of 3 × 3. If more than 4 pixels of the
8 pixels around an outlier belong to a particular crop, the outlier is also classified as this crop. If there
are more outliers, the effect of the kNN algorithm will be affected.

4. Results and Discussion

4.1. Comparison of Identification Results of Nine Classifiers

Figure 7 shows the relative errors of identified maize and sunflower planting areas from 2009
to 2015 using the above nine classifiers. For the training years, the mean relative errors of classifiers
normalized with mean values of farmland, grassland and forest are 6.18%, 6.70%, and 4.62% for maize,
and 5.32%, 3.35%, and 5.25% for sunflower, respectively. For the testing years, the corresponding mean
relative errors are 14.55%, 14.08% and 13.79% for maize, and 9.19%, 8.72% and 8.87% for sunflower,
respectively. Compared with the results of Jiang et al. [11] with the mean relative error for maize of
15.91%, our identification results of maize are significantly better. Moreover, we also obtained better
identification results of sunflower than maize. Consequently, our classifiers of maize and sunflower
are superior to Jiang et al. [11]. One possible reason for more precise identification results may be the
higher spatial resolution data of 30 m that can reduce the impact of mixed pixels and enhance the
capability in identifying small areas of maize and sunflower.

Considering the overall identification performance of maize and sunflower, the mean relative
errors of the above three normalization approaches are 5.75%, 4.85%, and 4.94% for the training years,
and 11.87%, 11.40%, and 11.33% for the testing years. Therefore, the relative errors of the second and
third normalization approaches were quite close, which are both smaller than the first one. This is
because the growth of farmland is not only affected by climatic factors, but also affected by plant
structure, irrigation conditions, and other factors, resulting in instability of its normalized results.
While the growth of grassland and forest are mainly affected by climatic factors, using grassland and
forest indexes can eliminate the influence of different meteorological conditions after normalization.
In addition, the forest area is relative small, while the area of grassland is the second largest and only
smaller than the farmland in the study area (Figure 2). Therefore, the mean values of grassland indexes
are more representative than forest, which was chosen for normalization.
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For three classifiers normalized with grassland indexes, the mean relative errors during the
training and testing years using the classifiers of NDVI_max~FGP, NDVI_inf~FGP and ∆NDVI~FGP
are 11.46%, 10.82% and 10.48% for maize, and 4.37%, 4.38% and 10.50% for sunflower, respectively.
The mean relative errors of maize and sunflower in the above three methods are 7.92%, 7.60%
and 10.49%, respectively. The relative error from the ∆NDVI~FGP classifier are higher than the
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NDVI_max~FGP and NDVI_inf~FGP classifiers, and the NDVI_inf~FGP classifier has slightly better
performance than the NDVI_max~FGP classifier. Consequently, the NDVI_inf~FGP classifier (b2)
based on the normalization of grassland indexes was selected as the optimal classifier, and the
corresponding ellipse equations of maize and sunflower are

895x2 + 673y2 + 484xy − 2821x − 1832y + 2608 = 0 (15)

940x2 + 426y2 − 292xy − 1939x − 1000y + 1298 = 0 (16)

4.2. Crop Identification Results Based on Optimal Classifier

Figure 8 compares the total area of maize and sunflower from official statistics and identified maps.
From 2009 to 2015, the identified planting area of maize and sunflower are increasing progressively in
general, which is consistent with statistical trends. This proves that this optimal classifier is suitable
for multi-year maize and sunflower identification. However, there are also some years with a slightly
large identification error. For 2012 and 2014, the areas of maize and sunflower are both underestimated.
Especially for maize, the relative errors are −18.09% and −21.17%, respectively. This may be attributed
to the less qualified remote sensing images in these two years, which both have fewer available images
during the growing season (from DOY 100 to 300) than other years. When images in the key growth
period missed, the fitting quality of the logistic curve and the extraction of phenological features will
be affected, which may lead to poorer identification results than other years.
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To further verify the accuracy of crop identification results, the correct identification percentage
of different crops and Kappa coefficient (Table 6) were calculated using the verification points in 2014
and 2015 (Figure 1). The correct identification rates of different crops were all greater than 70% and
the Kappa value of consistency test was 0.62, which indicated that the classifier performance was
acceptable [15].

Table 6. The confusion matrix of crop identification accuracy.

Identified Class
Actual Class

Maize Sunflower Others Total Correct Commission

Maize 23.6 3.6 3.6 30.9 76 24
Sunflower 9.1 36.4 3.6 49.1 74 26

Others 2.7 1.8 15.5 20.0 77 23

Total 35.5 41.8 22.7 100.0 Kappa = 0.62 N = 110
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We also selected a specific micro-scale area (19.36 ha) of Hetao Irrigation District to analyze the
classification results; the detailed description of this area can be referred to Ren et al. [4]. The crop
planting structure of this area is similar to the whole Hetao Irrigation District, the planting area of
maize and sunflower accounts for about half of the total area. According to the statistics data of
planting area in 2012 and 2013, the mean relative errors of classifiers for maize and sunflower are
14.00% and −24.49%, respectively. This shows that the classifier is also applicable to micro-scale areas.

4.3. Spatial and Temporal Distribution of Maize and Sunflower

Maize and sunflower distribution maps in the study area from 2009 to 2015 are shown in Figure 9.
Most large maize and sunflower fields are concentrated in the eastern three counties (Hangjinhouqi,
Linhe and Wuyuan), and fields are patchier in Dengkou where the terrain is mainly desert and
Gobi. Maize is mainly distributed in Hangjinhouqi and Linhe, while sunflower mainly in Wuyuan.
The distribution of maize and sunflower is coherent during the study years, which is in agreement
with official statistical results. This verifies the accuracy of the classifiers’ performance of this optimal
classifier again.
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According to the color depth in Figure 9, we can see that the planting areas of maize and sunflower
are increasing from 2009 to 2015. Especially for the sunflower, the planting sites are gradually expanded
from Wuyuan to the northern part of Hangjinhouqi and Linhe, and these results are in agreement with
the local economic policy. Sunflower seeds are the main raw material of sunflower oil and sunflower
is an important economic crop in the Hetao Irrigation District. Therefore, planting sunflower can
bring more benefit to farmers than other crops. Compared to wheat, local farmers prefer to plant
sunflower to get more profits, resulting in an increase in the planting area of sunflower and decrease of
wheat. Hence, it is more important to identify sunflower more accurately in Hetao Irrigation District.
External factors, such as economic factors, are the main reason for the change of crop plant structure.
This result is similar to Lunetta et al. [16], who reported that biofuel mandates led to a significant
increase in the planting area of maize in Laurentian Great Lakes Basin.

5. Conclusions

In this study, we presented a phenology-based classification method to map multi-year maize
and sunflower in Hetao Irrigation District from 2009 to 2015. The main feature of this study is that we
used NDVI time series based on HJ-1A/1B 30 m optical imagery as the identification of vegetation
parameters, and developed annual maize and sunflower map products with acceptable accuracy.
The main conclusions of this study are as follows:

1. The reconstructed NDVI time series based on HJ-1A/1BCCD images could represent the
phenological characteristics of maize and sunflower in the study area, and the phenological
characteristics of these two crops had significant differences in the NDVI increasing period.
The crop identification ellipse normalized with mean grassland NDVI_inf as the NDVI
characteristic and FGP as the phenological metric were proved to be the optimal identification
ellipse. In future studies, other vegetation indexes can also be used as classification factors for
comparative analysis.

2. The multi-year spatial distribution of maize and sunflower in the study area could be effectively
identified with the Kappa value of consistency test of 0.62. The sunflower classifier performed
better than maize.

3. The planting areas of maize and sunflower were increasing during the study years. Maize was
mainly distributed in Hangjinhouqi and Linhe, while sunflower mainly in Wuyuan, and the
planting sites of sunflower were gradually expanded from Wuyuan to the northern part of
Hangjinhouqi and Linhe, and these results were in agreement with the local economic policy.
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