Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS
2.1.1. Operational MODIS Datasets
2.1.2. Algorithmic Framework for Estimating the Additional Aerosol Parameters
2.1.3. Updating the Algorithm for the Amazon Rainforest Region
2.2. AERONET
2.2.1. AERONET AOD and Inversions
2.2.2. Estimating the BC Volumetric Fractions from AERONET
2.3. Direct Radiative Forcing Simulation
3. Results
3.1. Comparing Satellite Aerosol Datasets with AERONET
3.2. Absorbing Aerosols Emitted during the 2019 Amazon Wildfire
4. Discussion
4.1. Variations in Aerosol Properties during the Transport of Polluted Air Masses
4.2. Year-to-Year Comparison of the Same Periods in 2018 and 2019
4.3. Direct Radiative Forcing Enhanced by the 2019 Amazonian Wildfire
5. Conclusions
- The aerosol dataset was established based on our previously proposed algorithm [27] for BC estimation, which took advantage of the high-quality MODIS AOD dataset and estimated the proportion of BC components in the smoke by refining the mixing states of BC and non-BC aerosols. For the extremely high biomass-burning event in the Amazon rainforest, we further calculated the spectral SSA and AAOD of the smoke plumes using MG-EMA and an MIE scattering model. The new aerosol dataset allowed for more robust aerosol monitoring than would have been possible with the previously available aerosol database for polar-orbiting satellites;
- To make the algorithm usable in Amazonia, we updated the ambient aerosol microphysical features (non-strongly absorbing BC) by clustering the AERONET records over the region, which were updated and used as an input of the retrieval algorithm. The validation showed that the MODIS aerosol dataset was in good agreement with the data from the AERONET distributed in and around the rainforest. With the help of the high-quality MODIS AOD, the MODIS retrievals for AAOD, SSA, and BC exhibited low biases compared to the AERONET inversions (Level 2.0). Such satellite datasets with more parameters and full coverage are of great importance in detecting pollution processes, radiative-forcing estimation, and simulation of environmental climate effects for major events;
- At the peak of this pollution event, the distribution of thick smoke with a high AOD and high absorption characteristics was very similar to anomalous fire counts. The AOD peaked above 1.0, emitting a large amount of BC (>3%) at the source. These particles simultaneously led to a very strong absorption, with SSA0.55μm < 0.85 and AAOD0.55μm > 0.1. In addition, we successively selected three subregions for full-time monitoring based on the air-mass trajectories simulated by HYSPLIT. Significant enhancements in various aerosol properties were found during the pollution event. However, significant differences in the first detection, the duration, and the level of detected pollution could be recognized in the three selected regions due to the distance from the emission source, BC aging, and dynamics conditions. Accurately acquiring the changes and trends of the entire pollution event is important for studying the aging of aerosol particles from strong emission events;
- The year-to-year comparison with 2018 showed that the 2019 Amazon rainforest wildfire visually showed a significant enhancement in the aerosol properties. The map-averaged AOD0.55μm increased by 150%, and the AAOD0.55μm by 200%, at the pollution peak. Small changes in absorption and BC content were also found, with more BC being emitted (map-averaged close to 2%), causing the aerosol to change toward absorbing compounds (map-averaged SSA0.55μm < 0.9). These enhancements continued to deteriorate the atmospheric environment over the Amazon rainforest and even all of South America;
- Further simulations of the ARF showed that the massive absorption emitted during the 2019 Amazon fires forced a change in the radiative balance, which not only produced a more significant heating effect on the atmospheric column through solid absorption, but also reduced the radiation reaching the TOA and surface levels at the same time. The mean values of negative radiative forcing at the TOA and surface levels were −12 W/m2 and −38 W/m2, respectively, and thus the ARF in the atmosphere was +26 W/m2. All three ARF indicators increased by ~30% compared to 2018, and more than doubled compared to the pure background aerosol environment over the Amazonia, which may accelerate the deterioration cycle of drought and fire, most likely by reducing the rainfall due to the cooling surface and enhanced thermodynamic stability of atmosphere due to the atmospheric heating effect.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Houghton, R.A.; Skole, D.L.; Nobre, C.A.; Hackler, J.L.; Lawrence, K.T.; Chomentowski, W.H. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 2000, 403, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.V.K.; Moore, B.; Vörösmarty, C.J. Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 1998, 396, 664–667. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Schulze, M.D. Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon: Effects on Forest Structure, Biomass, and Species Composition1. Biotropica 1999, 31, 2–16. [Google Scholar] [CrossRef]
- Laurance, W.F.; Albernaz, A.K.M.; Schroth, G.; Fearnside, P.M.; Bergen, S.; Venticinque, E.M.; Da Costa, C. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 2002, 29, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Siegert, F.; Ruecker, G.; Hinrichs, A.; Hoffmann, A.A. Increased damage from fires in logged forests during droughts caused by El Niño. Nature 2001, 414, 437–440. [Google Scholar] [CrossRef]
- Achard, F.; Eva, H.D.; Stibig, H.-J.; Mayaux, P.; Gallego, J.; Richards, T.; Malingreau, J.-P. Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 2002, 297, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Skole, D.; Tucker, C. Tropical Deforestation and Habitat Fragmentation in the Amazon: Satellite Data from 1978 to 1988. Science 1993, 260, 1905–1910. [Google Scholar] [CrossRef] [Green Version]
- De Bem, P.P.; de Carvalho Junior, O.A.; Fontes Guimarães, R.; Trancoso Gomes, R.A. Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef] [Green Version]
- De Area Leão Pereira, E.J.; de Santana Ribeiro, L.C.; da Silva Freitas, L.F.; de Barros Pereira, H.B. Brazilian policy and agribusiness damage the Amazon rainforest. Land Use Policy 2020, 92, 104491. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.-M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. Temporal Anomalies in Burned Area Trends: Satellite Estimations of the Amazonian 2019 Fire Crisis. Remote Sens. 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.E.; Ramanathan, V.; Decremer, D. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc. Natl. Acad. Sci. USA 2012, 109, 11624–11629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Ten Hoeve, J.E.; Remer, L.A.; Jacobson, M.Z. Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: Impacts of water vapor and land cover. Atmos. Chem. Phys. 2011, 11, 3021–3036. [Google Scholar] [CrossRef] [Green Version]
- Procopio, A.S.; Artaxo, P.; Kaufman, Y.J.; Remer, L.A.; Schafer, J.S.; Holben, B.N. Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate. Geophys. Res. Lett. 2004, 31, L03108. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, R.; Yu, H.; Dickinson, R.E.; Juarez, R.N.; Chin, M.; Wang, H. A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon. J. Geophys. Res. Atmos. 2008, 113, D144S15. [Google Scholar] [CrossRef] [Green Version]
- Kolusu, S.R.; Marsham, J.H.; Mulcahy, J.; Johnson, B.; Dunning, C.; Bush, M.; Spracklen, D.V. Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmos. Chem. Phys. 2015, 15, 12251–12266. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Palácios, R.; Romera, K.S.; Curado, L.F.A.; Banga, N.M.; Rothmund, L.D.; da Silva Sallo, F.; Morais, D.; Santos, A.C.A.; Moraes, T.J.; Morais, F.G.; et al. Long Term Analysis of Optical and Radiative Properties of Aerosols in the Amazon Basin. Aerosol Air Qual. Res. 2020, 20, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Sena, E.T.; Artaxo, P. A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols. Atmos. Chem. Phys. 2015, 15, 5471–5483. [Google Scholar] [CrossRef] [Green Version]
- Feingold, G.; Jiang, H.; Harrington, J.Y. On smoke suppression of clouds in Amazonia. Geophys. Res. Lett. 2005, 32, L02804. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Cheng, Y.; Wang, S.; Wei, C.; Pöhlker, M.L.; Pöhlker, C.; Artaxo, P.; Shrivastava, M.; Andreae, M.O.; Pöschl, U.; et al. Impact of biomass burning aerosols on radiation, clouds, and precipitation over the Amazon: Relative importance of aerosol–cloud and aerosol–radiation interactions. Atmos. Chem. Phys. 2020, 20, 13283–13301. [Google Scholar] [CrossRef]
- Ten Hoeve, J.E.; Jacobson, M.Z.; Remer, L.A. Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds. J. Geophys. Res. Atmos. 2012, 117, D08203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fu, R.; Yu, H.; Qian, Y.; Dickinson, R.; Silva Dias, M.A.F.; da Silva Dias, P.L.; Fernandes, K. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia. Geophys. Res. Lett. 2009, 36, L10814. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.-C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Geosci. Remote. Sens. Lett. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2988–3034. [Google Scholar] [CrossRef] [Green Version]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Bao, F.; Li, Y.; Cheng, T.; Gao, J.; Yuan, S. Estimating the Columnar Concentrations of Black Carbon Aerosols in China Using MODIS Products. Environ. Sci. Technol. 2020, 54, 11025–11036. [Google Scholar] [CrossRef]
- Chu, D.A.; Kaufman, Y.J.; Zibordi, G.; Chern, J.D.; Mao, J.; Li, C.; Holben, B.N. Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). J. Geophys. Res. Atmos. 2003, 108, 4661. [Google Scholar] [CrossRef]
- Koren, I.; Kaufman, Y.J.; Remer, L.A.; Martins, J.V. Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation. Science 2004, 303, 1342–1345. [Google Scholar] [CrossRef] [Green Version]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.-J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 965–989. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-3-527-61816-3. [Google Scholar]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Schuster, G.L.; Dubovik, O.; Holben, B.N. Angstrom exponent and bimodal aerosol size distributions. J. Geophys. Res. Atmos. 2006, 111, D7. [Google Scholar] [CrossRef] [Green Version]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Chang, H.; Charalampopoulos, T.T. Determination of the wavelength dependence of refractive indices of flame soot. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1990, 430, 577–591. [Google Scholar] [CrossRef]
- Ganguly, D.; Ginoux, P.; Ramaswamy, V.; Dubovik, O.; Welton, J.; Reid, E.A.; Holben, B.N. Inferring the composition and concentration of aerosols by combining AERONET and MPLNET data: Comparison with other measurements and utilization to evaluate GCM output. J. Geophys. Res. Atmos. 2009, 114, D16203. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Smirnov, A.; Sinyuk, A.; Schafer, J.; Giles, D.; Dubovik, O. Aeronet’s Version 2.0 Quality Assurance Criteria. In Remote Sensing of the Atmosphere and Clouds; SPIE: Goa, India, 2006; Volume 6408, pp. 134–147. [Google Scholar]
- Wang, L.; Li, Z.; Tian, Q.; Ma, Y.; Zhang, F.; Zhang, Y.; Li, D.; Li, K.; Li, L. Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers. J. Geophys. Res. Atmos. 2013, 118, 6534–6543. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A Research and Teaching Software Tool for Plane-Parallel Radiative Transfer in the Earth’s Atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Ramana, M.V.; Ramanathan, V.; Feng, Y.; Yoon, S.-C.; Kim, S.-W.; Carmichael, G.R.; Schauer, J.J. Warming influenced by the ratio of black carbon to sulphate and the black-carbon source. Nat. Geosci. 2010, 3, 542–545. [Google Scholar] [CrossRef]
- Saleh, R.; Robinson, E.S.; Tkacik, D.S.; Ahern, A.T.; Liu, S.; Aiken, A.C.; Sullivan, R.C.; Presto, A.A.; Dubey, M.K.; Yokelson, R.J.; et al. Brownness of organics in aerosols from biomass burning linked to their black carbon content. Nat. Geosci. 2014, 7, 647–650. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2007, 40, 1. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Chakraborty, M.; Dey, G.; Gupta, R.K.P. Satellite Based Study on Amazon Rain Forest Fires and Effect on Climate; Social Science Research Network: Rochester, NY, USA, 2019. [Google Scholar]
- Bandopadhyay, S.; Sánchez, D.A.C. Amazonian Fire Events Disturbed the Global Carbon Cycle: A Study from 2019 Amazon Wildfire Using Google Earth Engine. Environ. Sci. Proc. 2020, 3, 43. [Google Scholar] [CrossRef]
- Sena, E.T.; Artaxo, P.; Correia, A.L. Spatial variability of the direct radiative forcing of biomass burning aerosols and the effects of land use change in Amazonia. Atmos. Chem. Phys. 2013, 13, 1261–1275. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bao, F.; Cheng, T.; Li, Y.; Shi, S.; Guo, H.; Wu, Y. Single Scattering Albedo of High Loading Aerosol Estimated Across East Asia From S-NPP VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Ramanathan, V.; Crutzen, P.J.; Lelieveld, J.; Mitra, A.P.; Althausen, D.; Anderson, J.; Andreae, M.O.; Cantrell, W.; Cass, G.R.; Chung, C.E.; et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res. Atmos. 2001, 106, 28371–28398. [Google Scholar] [CrossRef]
- Bond, T.C.; Sun, H. Can Reducing Black Carbon Emissions Counteract Global Warming? Environ. Sci. Technol. 2005, 39, 5921–5926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobre, C.A.; Sampaio, G.; Borma, L.S.; Castilla-Rubio, J.C.; Silva, J.S.; Cardoso, M. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 2016, 113, 10759–10768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, F.S.; Pinto, J.A.; Maciel, F.M.; Horta, F.S.; de Almeida Albuquerque, T.T.; de Fátima Andrade, M. Avaliação da influência das condições meteorológicas na concentração de material particulado fino (MP2,5) em Belo Horizonte, MG. Eng. Sanit. Ambient. 2019, 24, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Mano, A.; Samora, R. Brazil on Drought Alert, Faces Worst Dry Spell in 91 Years. Reuters. 2021. Available online: https://www.reuters.com/business/environment/brazil-drought-alert-country-faces-worst-dry-spell-91-years-2021-05-28/ (accessed on 29 May 2021).
- Amazon Fire Activity in 2020 Surpasses 2019—Global Fire Emissions Database. Available online: https://globalfiredata.org/pages/2020/09/22/amazon-fire-activity-in-2020-surpasses-2019/ (accessed on 22 September 2020).
0.441 µm | 0.674 µm | 0.871 µm | 1.02 µm | |
---|---|---|---|---|
1 | 1.462 ± 0.024 | 1.476 ± 0.014 | 1.484 ± 0.011 | 1.486 ± 0.009 |
2 | 0.0052 ± 0.0033 | 0.0048 ± 0.0033 | 0.0052 ± 0.0033 | 0.0054 ± 0.0032 |
0.938 ± 0.010 | 0.927 ± 0.013 | 0.911 ± 0.016 | 0.907 ± 0.018 | |
3 fine mode | 0.547 ± 0.103 | |||
4 fine mode | 0.422 ± 0.010 | |||
5 coarse mode | 3.117 ± 0.086 | |||
6 coarse mode | 0.654 ± 0.018 |
Region | Sources | Trajectory Changes |
---|---|---|
R1 | Local emission | Weak |
R2 | Local emission and transmitted aerosols | Weak |
R3 | Transmitted aerosols | Strong |
Region | AOD (0.55 μm) | AAOD (0.55 μm) | SSA (0.55 μm) | |
---|---|---|---|---|
R1 | 0.211 → 0.794 | 0.020 → 0.090 | 0.913 → 0.887 | 0.010 → 0.016 |
R2 | 0.170 → 0.661 | 0.012 → 0.072 | 0.931 → 0.897 | 0.007 → 0.014 |
R3 | 0.177 → 0.438 | 0.019 → 0.043 | 0.933 → 0.910 | 0.006 → 0.011 |
Reference | Data | |||
---|---|---|---|---|
Procopio et al. (2004) [15] | −5~−12 | −21~−74 | 16~62 | 1993~2002, 2 sites |
Sena et al. (2013) [50] | −4~−11 | / | / | 2000~2009, satellite retrievals |
Sena and Artaxo (2015) [19] | −1~−9 | / | / | 2000~2009, satellite retrievals |
Palacios et al. (2020) [18] | / | −41 | / | 2000~2017, 9 sites |
This study | −12 (−4~−20) | −38 (−9~−70) | 26 (3~50) | 2019, satellite retrievals |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Bao, F.; Zhang, X.; Li, Y. Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals. Remote Sens. 2022, 14, 2080. https://doi.org/10.3390/rs14092080
Yuan S, Bao F, Zhang X, Li Y. Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals. Remote Sensing. 2022; 14(9):2080. https://doi.org/10.3390/rs14092080
Chicago/Turabian StyleYuan, Shuyun, Fangwen Bao, Xiaochuan Zhang, and Ying Li. 2022. "Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals" Remote Sensing 14, no. 9: 2080. https://doi.org/10.3390/rs14092080
APA StyleYuan, S., Bao, F., Zhang, X., & Li, Y. (2022). Severe Biomass-Burning Aerosol Pollution during the 2019 Amazon Wildfire and Its Direct Radiative-Forcing Impact: A Space Perspective from MODIS Retrievals. Remote Sensing, 14(9), 2080. https://doi.org/10.3390/rs14092080