Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Phenological In-Situ Data
2.3. Processing Sentinel-2 Data—Cloud Removal and Interpolation
2.4. Mapping the Onset of Growth
3. Results
3.1. A Clear-Sky Daily NDVI Dataset
3.2. Timing of the Onset of Growth
3.3. Onset of Growth
4. Discussion
5. Conclusions
- In Svalbard, cloud, fog, and haze, in combination with a low sun elevation angle during the short growing season, hinders the acquisition of time-series of ground reflectance data. Cloud detection is hence the most crucial step during the pre-processing of time-series of optical satellite images from such areas.
- Cloud detection algorithms in S2 data have proven to perform poorly in sparsely vegetated areas (bright surfaces) which are widespread in the study area, and when thin semi-transparent clouds or cloud shadows are present. Thus, additional visual inspection of the visible and SWIR bands was applied to mask-out cloud-free data and ensure as few errors as possible.
- Normalized Difference Vegetation Index (NDVI) values were calculated for the cloud-free pixels, and interpolated to daily data. A close to complete time-series of daily cloud-free S2 NDVI data could be processed for the 2019 season. For the other years studied (2016–2018) there are several gaps in the time-series. The removal of these pixels resulted in spatial gaps in the onset of growth map.
- Ground based time-lapse cameras (phenocams) were used within seven vegetation types, and the date of a precisely defined phenophase “onset of growth” with an accurate botanical definition (BBCH code 15) was extracted from the phenocam images.
- By applying an NDVI threshold method on the clear-sky time-series of S2 data, the mapping of “onset of growth”, shows a significant correlation (r2 = 0.47, n = 38, p < 0.0001) with timing of onset of growth as defined from the phenocam images.
- However, in moss tundra where vascular plants play an insignificant role for the NDVI value, this correlation showed large bias; hence, a separate definition of growth season stages should be defined for the moss tundra.
- The S2 NDVI-based mapping of onset of growth reveals large differences between the years. In 2018, the onset of growth was more than 10 days earlier compared with 2017, except at higher altitudes. The data presented in this paper are not sufficient to explain these differences, but a future study will examine the relationship between the timing of snowmelt and early growing season temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Isaksen, K.; Nordli, Ø.; Førland, E.J.; Lupikasza, E.; Eastwood, S.; Niedźwiedź, T. Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Vikhamar-Schuler, D.; Isaksen, K.; Haugen, J.E.; Tømmervik, H.; Luks, B.; Schuler, T.; Bjerke, J. Changes in Winter Warming Events in the Nordic Arctic Region. J. Clim. 2016, 29, 6223–6244. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Førland, E.; Hisdal, H.; Mayer, S.; Sandø, A.; Sorteberg, A. Climate in Svalbard 2100—A Knowledge Base for Climate Adaptation; NCCS Report no.1/2019; Norwegian Meteorological Institute: Oslo, Norway, 2019. [Google Scholar]
- Park, T.; Ganguly, S.; Tømmervik, H.; Euskirchen, E.S.; Høgda, K.-A.; Karlsen, S.R.; Brovkin, V.; Nemani, R.R.; Myneni, R. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 2016, 11, 084001. [Google Scholar] [CrossRef]
- Park, T.; Chen, C.; Macias-Fauria, M.; Tømmervik, H.; Choi, S.; Winkler, A.J.; Bhatt, U.; Walker, D.A.; Piao, S.; Brovkin, V.; et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Chang. Biol. 2019, 25, 2382–2395. [Google Scholar] [CrossRef] [Green Version]
- Vickers, H.; Karlsen, S.R.; Malnes, E. A 20-Year MODIS-Based Snow Cover Dataset for Svalbard and Its Link to Phenological Timing and Sea Ice Variability. Remote. Sens. 2020, 12, 1123. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, S.R.; Elvebakk, A.; Høgda, K.A.; Grydeland, T. Spatial and Temporal Variability in the Onset of the Growing Season on Svalbard, Arctic Norway Measured by MODIS-NDVI Satellite Data. Remote. Sens. 2014, 6, 8088–8106. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, S.R.; Anderson, H.B.; Van Der Wal, R.; Hansen, B. A new NDVI measure that overcomes data sparsity in cloud-covered regions predicts annual variation in ground-based estimates of high arctic plant productivity. Environ. Res. Lett. 2018, 13, 025011. [Google Scholar] [CrossRef]
- Macias-Fauria, M.; Karlsen, S.R.; Forbes, B. Disentangling the coupling between sea ice and tundra productivity in Svalbard. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Anderson, H.B.; Nilsen, L.; Tømmervik, H.; Karlsen, S.R.; Nagai, S.; Cooper, E.J. Using Ordinary Digital Cameras in Place of Near-Infrared Sensors to Derive Vegetation Indices for Phenology Studies of High Arctic Vegetation. Remote. Sens. 2016, 8, 847. [Google Scholar] [CrossRef] [Green Version]
- Johansen, B.E.; Karlsen, S.R.; Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 2011, 48, 47–63. [Google Scholar] [CrossRef]
- Bjerke, J.W.; Treharne, R.; Vikhamar-Schuler, D.; Karlsen, S.R.; Ravolainen, V.; Bokhorst, S.; Phoenix, G.K.; Bochenek, Z.; Tømmervik, H. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: Insights from field surveys in the aftermath of damage. Sci. Total. Environ. 2017, 599–600, 1965–1976. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Stendardi, L.; Nilsen, L.; Malnes, E.; Eklundh, L.; Julitta, T.; Burkart, A.; Tømmervik, H. Sentinel Satellite-Based Mapping of Plant Productivity in Relation to Snow Duration and Time of Green-up (GROWTH). In SESS Report 2019 The State of Environmental Science in Svalbard—An Annual Report; Van den Heuvel, F., Hübner, C., Błaszczyk, M., Heimann, M., Lihavainen, H., Eds.; Svalbard Integrated Arctic Earth Observing System: Longyearbyen, Norway, 2020; pp. 42–54. [Google Scholar]
- Semenchuk, P.R.; Gillespie, M.A.K.; Rumpf, S.; Baggesen, N.; Elberling, B.; Cooper, E.J. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: An example of periodicity. Environ. Res. Lett. 2016, 11, 125006. [Google Scholar] [CrossRef] [Green Version]
- Oberbauer, S.F.; Elmendorf, S.; Troxler, T.G.; Hollister, R.; Rocha, A.V.; Bret-Harte, M.S.; Dawes, M.A.; Fosaa, A.M.; Henry, G.H.R.; Hoye, T.T.; et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R Soc. B Biol. Sci. 2013, 368, 20120481. [Google Scholar] [CrossRef] [PubMed]
- Prevéy, J.; Vellend, M.; Rüger, N.; Hollister, R.; Bjorkman, A.; Myers-Smith, I.H.; Elmendorf, S.; Clark, K.; Cooper, E.J.; Elberling, B.; et al. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Glob. Chang. Biol. 2017, 23, 2660–2671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevéy, J.S.; Rixen, C.; Rüger, N.; Høye, T.T.; Bjorkman, A.D.; Myers-Smith, I.H.; Elmendorf, S.; Ashton, I.W.; Cannone, N.; Chisholm, C.L.; et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 2018, 3, 45–52. [Google Scholar] [CrossRef]
- Parmentier, F.-J.; Nilsen, L.; Tømmervik, H.; Cooper, E. A Distributed Time-Lapse Camera Network to Track Vegetation Phenology with High Temporal Detail and at Varying Scales. Earth Syst. Sci. Data Discus. 2021, 13, 3593–3606. [Google Scholar] [CrossRef]
- Westergaard-Nielsen, A.; Lund, M.; Hansen, B.; Tamstorf, M. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area. ISPRS J. Photogramm. Remote. Sens. 2013, 86, 89–99. [Google Scholar] [CrossRef]
- Stendardi, L.; Karlsen, S.R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; Notarnicola, C. Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions. Remote. Sens. 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- Descals, A.; Verger, A.; Yin, G.; Peñuelas, J. Improved Estimates of Arctic Land Surface Phenology Using Sentinel-2 Time Series. Remote. Sens. 2020, 12, 3738. [Google Scholar] [CrossRef]
- Tian, F.; Cai, Z.; Jin, H.; Hufkens, K.; Scheifinger, H.; Tagesson, T.; Smets, B.; Van Hoolst, R.; Bonte, K.; Ivits, E.; et al. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote. Sens. Environ. 2021, 260, 112456. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote. Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Johansen, B.; Tømmervik, H. The relationship between phytomass, NDVI and vegetation communities on Svalbard. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 20–30. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono—And Dicotyledonous Plants, BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; pp. 1–204. [Google Scholar]
- Clerc, S. S2 MPC Level 2A Data Quality Report, PDGS-MPC-L2ADQR, 39th ed.; ESA Copernicus: Lima, Peru, 2021; pp. 1–28. [Google Scholar]
- Zupanc, A. Improving Cloud Detection with Machine Learning. Available online: https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13 (accessed on 4 May 2021).
- Hollstein, A.; Segl, K.; Guanter, L.; Brell, M.; Enesco, M. Ready-to-Use Methods for the Detection of Clouds, Cirrus, Snow, Shadow, Water and Clear Sky Pixels in Sentinel-2 MSI Images. Remote. Sens. 2016, 8, 666. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote. Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Vickers, H.; Malnes, E.; Van Pelt, W.; Pohjola, V.; Killie, M.; Saloranta, T.; Karlsen, S. A Compilation of Snow Cover Datasets for Svalbard: A Multi-Sensor, Multi-Model Study. Remote. Sens. 2021, 13, 2002. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Elvebakk, A.; Høgda, K.A.; Johansen, B. Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Glob. Ecol. Biogeogr. 2006, 15, 416–430. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Solheim, I.; Beck, P.S.A.; Høgda, K.A.; Wielgolaski, F.E.; Tømmervik, H. Variability of the start of the growing season in Fennoscandia, 1982–2002. Int. J. Biometeorol. 2007, 51, 513–524. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Tolvanen, A.; Kubin, E.; Poikolainen, J.; Høgda, K.A.; Johansen, B.; Danks, F.S.; Aspholm, P.; Wielgolaski, F.E.; Makarova, O. MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 253–266. [Google Scholar] [CrossRef]
- Høgda, K.A.; Tømmervik, H.; Karlsen, S.R. Trends in the Start of the Growing Season in Fennoscandia 1982–2011. Remote. Sens. 2013, 5, 4304–4318. [Google Scholar] [CrossRef] [Green Version]
- Hogda, K.A.; Karlsen, S.R.; Solheim, I. Climatic change impact on growing season in Fennoscandia studied by a time series of NOAA AVHRR NDVI data. In IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217); IEEE: Piscataway, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Bolton, D.K.; Gray, J.; Melaas, E.K.; Moon, M.; Eklundh, L.; Friedl, M.A. Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery. Remote. Sens. Environ. 2020, 240, 111685. [Google Scholar] [CrossRef]
- Seong, N.-H.; Jung, D.; Kim, J.; Han, K.-S. Evaluation of NDVI Estimation Considering Atmospheric and BRDF Correction through Himawari-8/AHI. Asia Pac. J. Atmos. Sci. 2020, 56, 265–274. [Google Scholar] [CrossRef] [Green Version]
Month/Year | 2016 | 2017 | 2018 | 2019 | 1991–2020 |
---|---|---|---|---|---|
May | 1.4 | −3.9 | 1.8 | −2.3 | −2.2 |
June | 5.0 | 4.6 | 4.0 | 4.8 | 3.6 |
July | 9.0 | 6.9 | 7.2 | 8.4 | 7.0 |
Annual | −0.1 | −2.2 | −1.8 | −3.4 | −3.8 |
Vegetation Types/Species | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|
1. Mixed exposed tundra | ||||
Luzula confusa | 178/175 | 179/179 | 174/176 | |
2. Equsetum arvense snowbed | ||||
Equsetum arvense ssp. alpestre | 180/172 | 178/173 | ||
3. Dupontia fisheri marsh | ||||
Dupontia fisheri | 170/176 | |||
4. Dryas octopetala tundra | ||||
Dryas octopetala | 160/170 | 155/159 | 162/168 | |
Salix polaris | 170/170 | 172/168 | ||
5. Luzula confusa tundra | ||||
Luzula confusa | 168/172 | 168/180 | 164/161 | 168/172 |
Salix polaris | 169/172 | 173/180 | 166/161 | 169/172 |
6. Moss tundra | ||||
Dryas octopetala | 163/170 | 171/185 | 157/162 | 168/169 |
Salix polaris | 176/170 | 178/185 | 166/162 | |
7. Mixed D. octopetala–C. tetragona tundra | ||||
Dryas octopetala | 163/171 | 172/180 | 155/159 | 167/167 |
Betula nana | 169/171 | 179/184 | 168/159 | 171/167 |
Salix polaris | 176/171 | 180/184 | 163/159 | 172/167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlsen, S.R.; Stendardi, L.; Tømmervik, H.; Nilsen, L.; Arntzen, I.; Cooper, E.J. Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard. Remote Sens. 2021, 13, 3031. https://doi.org/10.3390/rs13153031
Karlsen SR, Stendardi L, Tømmervik H, Nilsen L, Arntzen I, Cooper EJ. Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard. Remote Sensing. 2021; 13(15):3031. https://doi.org/10.3390/rs13153031
Chicago/Turabian StyleKarlsen, Stein Rune, Laura Stendardi, Hans Tømmervik, Lennart Nilsen, Ingar Arntzen, and Elisabeth J. Cooper. 2021. "Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard" Remote Sensing 13, no. 15: 3031. https://doi.org/10.3390/rs13153031
APA StyleKarlsen, S. R., Stendardi, L., Tømmervik, H., Nilsen, L., Arntzen, I., & Cooper, E. J. (2021). Time-Series of Cloud-Free Sentinel-2 NDVI Data Used in Mapping the Onset of Growth of Central Spitsbergen, Svalbard. Remote Sensing, 13(15), 3031. https://doi.org/10.3390/rs13153031