A Blended Sea Ice Concentration Product from AMSR2 and VIIRS
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Case Study
3.2. Comparison to Landsat 8
3.3. Melting Ice Conditions
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kay, J.E.; Holland, M.; Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 2011, 38, L15708. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.; Meier, C.; Gersten, R. Variability and trends in the Arctic sea ice cover: Results from different techniques. J. Geophys. Res. Oceans 2017, 122, 6883–6900. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Comiso, J.C.; Hall, D.K. Climate trends in the Arctic as observed from space. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 389–409. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 2010, 37, L16707. [Google Scholar] [CrossRef] [Green Version]
- Villamil-Otero, G.A.; Zhang, J.; He, J.; Zhang, X. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean. Adv. Atmos. Sci. 2017, 35, 85–94. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.R. Recent Trends in Arctic Surface, Cloud, and Radiation Properties from Space. Science 2003, 299, 1725–1728. [Google Scholar] [CrossRef]
- Bintanja, R.; van der Linden, E.C.; Hazeleger, W. Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Clim. Dyn. 2012, 39, 2659–2673. [Google Scholar] [CrossRef]
- Jung, E.; Jeong, J.H.; Woo, S.H.; Kim, B.M.; Yoon, J.H.; Lim, G.H. Impacts of Arctic-midlatitude teleconnection on wintertime seasonal forecasts. Environ. Res. Lett. 2020, 15, 094045. [Google Scholar] [CrossRef]
- Francis, J.A.; Vavrus, S.J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 2015, 10, 014005. [Google Scholar] [CrossRef]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Cavalieri, D.J. An enhancement of the NASA Team sea ice algorithm. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, N.; Johannessen, O.M.; Pedersen, L.T.; Tonboe, R.T. Retrieval of arctic sea ice parameters by satellite passive microwave sensors: A comparison of eleven sea ice concentration algorithms. Geosci. Remote Sens. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7233–7246. [Google Scholar] [CrossRef]
- Comiso, J.C.; Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P. Passive microwave algorithms for sea ice concentration: A comparison of two techniques. Remote Sens. Environ. 1997, 60, 357–384. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea Ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res. 2008, 113, C02S03. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Ivanoff, A. Intercalibration of AMSR2 NASA Team 2 algorithm sea ice concentrations with AMSR-E slow rotation data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3923–3933. [Google Scholar] [CrossRef]
- Baldwin, D.; Tschudi, M.; Pacifici, M.; Liu, Y. Validation of Suomi-NPP VIIRS sea ice concentration with very high-resolution satellite and airborne camera imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 122–138. [Google Scholar] [CrossRef]
- Liu, Y.; Key, J.; Mahoney, R. Sea and freshwater ice concentration from VIIRS on Suomi NPP and the future JPSS satellites. Remote Sens. 2016, 8, 523. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Key, J.; Dworak, R.; Tschudi, M.; Mahoney, R.; Baldwin, D. Validation of the Suomi NPP VIIRS Ice Surface Temperature Environmental Data Record. Remote Sens. 2015, 7, 17258–17271. [Google Scholar] [CrossRef] [Green Version]
- Key, J.; Mahoney, R.; Liu, Y.; Ramanov, P.; Tshudi, M.; Appel, I.; Maslanik, J.; Baldwin, D.; Wang, J.; Meade, P. Snow and ice products from Suomi NPP VIIRS. J. Geophys. Res. Atmos. 2013, 118, 23. [Google Scholar] [CrossRef]
- Wang, X.; Key, J.; Liu, Y.; Dworak, R.; Tschudi, M.; Letterly, A.; Helfrich, S. Ice Products from NOAA Operational LEO and GEO Satellites. In Proceedings of the 2020 JPSS GOES Proving Ground/Risk Reduction Summit, College Park, MD, USA, 24–28 February 2020. [Google Scholar]
- Zhou, L.; Divakarla, M.; Liu, X.; Layns, A.; Goldberg, M. An Overview of the Science Performance and Calibration/Validation of Joint Polar Satellite System Operational Products. Remote Sens. 2019, 11, 698. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Cavalieri, D.J. The AMSR-E NT2 sea ice concentration algorithm: Its basis and implementation. J. Remote Sens. Soc. Jpn. 2009, 29, 216–225. [Google Scholar]
- Brucker, L.; Cavalieri, D.J.; Markus, T.; Ivanoff, A. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty. IEEE Trans. Geosci. Remote Sens. 2014, 11, 7336–7352. [Google Scholar] [CrossRef]
- Kaleschke, L.; Lupkes, C.; Vihma, T.; Haarpaintner, J.; Bochert, A.; Hartmann, J.; Heygster, G. SSM/I Sea Ice Remote Sensing for Mesoscale Ocean-Atmosphere Interaction Analysis. Can. J. Remote Sens. 2001, 27, 526–537. [Google Scholar] [CrossRef]
- Fuhrer, O.; Chadha, T.; Hoefler, T.; Kwasniewski, G.; Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Osuna, C.; Schär, C.; Schulthess, T.C.; et al. Near-global climate simulation at 1 km resolution: Establishing a performance baseline on 4888 GPUs with COSMO 5.0. Geosci. Model Dev. 2018, 11, 1665–1681. [Google Scholar] [CrossRef] [Green Version]
- Dueben, P.D.; Wedi, N.; Saarinen, S.; Zeman, C. Global simulations of the atmosphere at 1.45 km grid-spacing with the integrated forecasting system. J. Meteorol. Soc. Jpn. Ser. II 2020, 98, 551–572. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.; Fetterer, F.; Stewart, J.; Helfrich, S. How do sea-ice concentrations from operational data compare with passive microwave estimates? Implications for improved model evaluations and forecasting. Ann. Glaciol. 2015, 56, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, V.; Spreen, G.; Pedersen, L.T. Evaluation of a New Merged Sea-Ice Concentration Dataset at 1 km Resolution from Thermal Infrared and Passive Microwave Satellite Data in the Arctic. Remote Sens. 2020, 12, 3183. [Google Scholar] [CrossRef]
- Kern, S.; Lavergne, T.; Notz, D.; Pedersen, L.T.; Tonboe, R.T.; Saldo, R.; Sørensen, A.M. Satellite passive microwave sea-ice concentration data set intercomparison: Closed ice and ship-based observations. Cryosphere 2019, 13, 3261–3307. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.N.; Stewart, J.S.; Liu, Y.; Key, J.; Miller, J.A. Operational Implementation of Sea Ice Concentration Estimates from the AMSR2 Sensor. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3904–3911. [Google Scholar] [CrossRef]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS Int. J. Geo-Inf. 2012, 1, 32–45. [Google Scholar] [CrossRef] [Green Version]
- Brodzik, M.J.; Billingsley, B.; Haran, T.; Raup, B.; Savoie, M.H. Correction: Brodzik, M.J. et al. EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets. ISPRS International Journal of Geo-Information 2012. ISPRS Int. J. Geo-Inf. 2014, 3, 1154–1156. [Google Scholar]
- Ivanova, N.; Pedersen, L.T.; Tonboe, R.T.; Kern, S.; Heygster, G.; Lavergne, T.; Sørensen, A.; Saldo, R.; Dybkjær, G.; Brucker, L. Inter-comparison and evaluation of sea ice algorithms: Towards further identification of challenges and optimal approach using passive microwave observations. Cryosphere 2015, 9, 1797–1815. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.; Tonboe, R.; Kaleschke, L.; Heygster, G.; Pedersen, L.T. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration arctic sea ice. J. Geophys. Res. Oceans 2007, 112, C08004. [Google Scholar] [CrossRef]
- Agnew, T.; Howell, S. The use of operational ice charts for evaluating passive microwave ice concentration data. Atmosphere-Ocean 2003, 41, 317–331. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Markus, T.; Hall, D.K.; Gasiewski, A.J.; Klein, M.; Ivanoff, A. Assessment of eos aqua amsr-e arctic sea ice concentrations using landsat-7 and airborne microwave imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3057–3069. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The Spectral Response of the Landsat-8 Operational Land Imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Theil, H. Best Linear Unbiased Estimation and Prediction. In Principles of Econometrics; John Wiley & Sons: New York, NY, USA, 1971; pp. 119–124. [Google Scholar]
- Cao, C.; Xiong, J.; Wolfe, R.; DeLuccia, F.; Liu, Q.; Blonski, S.; Lin, G.; Nishihama, M.; Pogorzala, D.; Oudrari, H. NOAA Technical Report NESDIS 142 Visible/Infrared Imager Radiometer Suite (VIIRS) Sensor Data Record (SDR) User’s Guide; U.S. Department of Commerce NOAA NESDIS: Washington, DC, USA, 2013.
- Tschudi, M.A.; Meier, W.N.; Stewart, J.S. An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC). Cryosphere 2020, 14, 1519–1536. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Evan, A.T.; Foster, M.J.; Walther, A. A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x. J. Appl. Meteorol. Climatol. 2012, 51, 1129–1144. [Google Scholar] [CrossRef]
- Liu, Y.; Helfrich, S.; Meier, W.N.; Dworak, R. Assessment of AMSR2 Ice Extent and Ice Edge in the Arctic Using IMS. Remote Sens. 2020, 12, 1582. [Google Scholar] [CrossRef]
- Pang, X.; Pu, J.; Zhao, X.; Ji, Q.; Qu, M.; Cheng, Z. Comparison between AMSR2 Sea Ice Concentration Products and Pseudo-Ship Observations of the Arctic and Antarctic Sea Ice Edge on Cloud-Free Days. Remote Sens. 2018, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Ji, B.; Wang, Y. Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data. Remote Sens. 2019, 11, 2436. [Google Scholar] [CrossRef] [Green Version]
- Dierking, W. Sea Ice Monitoring by Synthetic Aperture Radar. Oceanography 2013, 26, 100–111. [Google Scholar] [CrossRef]
- Fetterer, F.; Stewart, J.S.; Meier, W.N. 2015, Updated Daily. In MASAM2: Daily 4 km Arctic Sea Ice Concentration, Version 1 [Indicate Subset Used]; NSIDC: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- Key, J.R.; Collins, J.B.; Fowler, C.; Stone, R.S. High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ. 1997, 61, 302–309. [Google Scholar] [CrossRef]
- Liu, Y.; Dworak, R.; Key, J. Ice Surface Temperature Retrieval from a Single Satellite Imager Band. Remote Sens. 2018, 10, 1909. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Key, J.; Kwok, R.; Zhang, J. Comparison of Arctic Sea Ice Thickness from Satellites, Aircraft, and PIOMAS Data. Remote Sens. 2016, 8, 713. [Google Scholar] [CrossRef] [Green Version]
- Long, D.G.; Brodzik, M.J. Optimum Image Formation for Spaceborne Microwave Radiometer Products. IEEE Trans. Geosci. Remote Sens. 2016, 54, 52763–52779. [Google Scholar] [CrossRef] [Green Version]
- Brodzik, M.J.; Long, D.G.; Hardman, M.A.; Paget, A.; Armstrong, R. MEaSUREs Calibrated Enhanced-Resolution Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016; (Updated 2020).
- Meier, W.N.; Stewart, J.S. Assessing the potential of enhanced resolution gridded passive microwave brightness temperatures for retrieval of sea ice parameters. Remote Sens. 2020, 12, 2552. [Google Scholar] [CrossRef]
(a) Warm (≥274.15 K and ≤275 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −25.64 | −11.81 | −6.86 | −7.87 | −12.06 | −11.29 | −7.0 | −1.11 | 5.03 |
VIIRS Prec. | 25.98 | 20.11 | 20.70 | 24.17 | 24.13 | 22.74 | 20.93 | 19.27 | 15.82 |
AMSR2 Acc. | −39.91 | −23.87 | −27.39 | −26.45 | −23.62 | −21.06 | −14.92 | −5.86 | 5.57 |
AMSR Prec. | 23.86 | 26.48 | 28.37 | 26.66 | 23.80 | 19.93 | 17.31 | 18.10 | 19.24 |
(b) Melt (≥273.15 and <274.15 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −20.69 | −15.20 | −8.54 | −10.23 | −13.45 | −10.53 | −5.2304 | 0.64 | 6.46 |
VIIRS Prec. | 21.52 | 22.73 | 23.27 | 26.26 | 25.29 | 23.31 | 21.37 | 19.28 | 15.42 |
AMSR2 Acc. | −50.24 | −45.34 | −34.51 | −30.63 | −25.40 | −18.69 | −10.53 | −4.62 | 3.06 |
AMSR Prec. | 29.73 | 28.51 | 28.36 | 26.14 | 23.48 | 21.85 | 19.78 | 17.20 | 13.10 |
(c) Near-Melt (≥272.15 and <273.15 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −23.85 | −15.94 | −15.57 | −12.66 | −9.29 | −6.34 | −2.28 | 1.85 | 6.47 |
VIIRS Prec. | 23.35 | 21.65 | 24.90 | 24.92 | 24.76 | 23.97 | 22.58 | 20.08 | 16.0 |
AMSR2 Acc. | −37.23 | −35.86 | −21.12 | −18.05 | −15.91 | −13.71 | −9.89 | −4.29 | 3.93 |
AMSR Prec. | 27.52 | 27.71 | 27.37 | 27.09 | 25.62 | 22.97 | 20.84 | 18.03 | 13.06 |
(d) Freezing (≥271.15 and <272.15 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −28.12 | −21.94 | −21.29 | −14.81 | −10.86 | −6.09 | 1.98 | 2.17 | 6.80 |
VIIRS Prec. | 24.93 | 24.54 | 26.86 | 25.71 | 24.77 | 24.08 | 22.35 | 20.06 | 16.13 |
AMSR2 Acc. | −34.89 | −30.73 | −19.15 | −15.92 | −13.38 | −11.05 | −7.61 | −2.49 | 5.56 |
AMSR Prec. | 22.06 | 26.37 | 25.70 | 26.43 | 25.70 | 23.99 | 21.93 | 19.31 | 14.16 |
(e) Mostly Frozen (≥270.15 and <271.15 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −25.50 | −21.86 | −24.11 | −15.27 | −10.17 | −5.56 | −1.37 | 3.25 | 8.19 |
VIIRS Prec. | 25.66 | 24.36 | 27.04 | 25.84 | 25.00 | 24.55 | 23.38 | 21.38 | 17.35 |
AMSR2 Acc. | −31.67 | −33.93 | −16.51 | −15.31 | −13.77 | −11.25 | −7.05 | −0.96 | 6.99 |
AMSR Prec. | 26.81 | 28.19 | 25.83 | 25.90 | 25.80 | 23.67 | 21.76 | 20.22 | 16.57 |
(f) Solid Frozen (<270.15 K) | |||||||||
SIC Bins | 10–20 | 20–30 | 30–40 | 40–50 | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
VIIRS Acc. | −4.77 | 3.62 | −2.59 | −4.45 | −1.72 | −1.86 | 0.22 | 1.91 | 2.12 |
VIIRS Prec. | 17.44 | 19.79 | 23.39 | 26.39 | 25.66 | 23.60 | 22.24 | 18.28 | 9.85 |
AMSR2 Acc. | −16.23 | −14.27 | −12.94 | −10.10 | −8.22 | −6.24 | −2.95 | −2.31 | 2.62 |
AMSR Prec. | 22.05 | 24.21 | 23.59 | 23.86 | 23.01 | 21.85 | 18.50 | 13.78 | 12.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dworak, R.; Liu, Y.; Key, J.; Meier, W.N. A Blended Sea Ice Concentration Product from AMSR2 and VIIRS. Remote Sens. 2021, 13, 2982. https://doi.org/10.3390/rs13152982
Dworak R, Liu Y, Key J, Meier WN. A Blended Sea Ice Concentration Product from AMSR2 and VIIRS. Remote Sensing. 2021; 13(15):2982. https://doi.org/10.3390/rs13152982
Chicago/Turabian StyleDworak, Richard, Yinghui Liu, Jeffrey Key, and Walter N. Meier. 2021. "A Blended Sea Ice Concentration Product from AMSR2 and VIIRS" Remote Sensing 13, no. 15: 2982. https://doi.org/10.3390/rs13152982
APA StyleDworak, R., Liu, Y., Key, J., & Meier, W. N. (2021). A Blended Sea Ice Concentration Product from AMSR2 and VIIRS. Remote Sensing, 13(15), 2982. https://doi.org/10.3390/rs13152982