Exploring the Use of PlanetScope Data for Particulate Matter Air Quality Research
Abstract
:1. Introduction
1.1. PlanetScope in the Context of Earth Observing Satellite Remote Sensing
1.2. Current State of PlanetScope Data
1.2.1. PlanetScope Radiometric Quality
1.2.2. PlanetScope Geolocation Accuracy
1.3. PlanetScope Data for Air Quality Applications
2. Materials and Methods
2.1. PlanetScope Data
2.2. MODIS Data
2.3. PM2.5 Data
2.4. AOD Data
2.5. Geolocation Comparison
2.6. Comparison of PlanetScope and MODIS Spectral Signatures over Different Land Cover Types
2.7. Analysis of PlanetScope and MODIS Spectral Response to Varying Surface PM2.5 Conditions
2.8. Analysis of PlanetScope and MODIS Spectral Response to AOD
3. Results
3.1. Geolocation Comparison
3.2. Comparison of PlanetScope and MODIS Spectral Signatures over Different Land Cover Types
3.3. Analysis of PlanetScope and MODIS Spectral Response to Varying Surface PM2.5 Conditions
3.4. PlanetScope and MODIS Spectral Response to AOD
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Area | Base Map Imagery Source | Date Acquired | Resolution (m) | Accuracy (m) |
---|---|---|---|---|
Baltimore | Maxar (WorldView-2) | 9/28/2017 | 0.5 | 4.06 |
Baltimore | Maxar (WorldView-2) | 8/21/2017 | 0.5 | 4.06 |
Baltimore | Maxar (GeoEye-1) | 9/16/2017 | 0.46 | 4.06 |
Birmingham | Maxar (WorldView-2) | 3/20/2019 | 0.5 | 5 |
Birmingham | Shelby County GIS/ALDOT/USGS | 1/19/2020 | 0.0762 | 0.15 |
Birmingham | Maxar (WorldView-3) | 11/19/2019 | 0.31 | 4.06 |
Birmingham | Maxar (GeoEye-1) | 11/19/2019 | 0.46 | 4.06 |
Bismarck | Maxar (GeoEye-1) | 9/22/2019 | 0.46 | 5 |
Bismarck | Maxar (WorldView-3) | 9/2/2019 | 0.31 | 5 |
Bismarck | Maxar (WorldView-2) | 9/18/2019 | 0.5 | 5 |
Chicago | Maxar (WorldView-2) | 8/5/2018 | 0.5 | 4.06 |
Chicago | Maxar (WorldView-3) | 3/3/2018 | 0.31 | 4.06 |
Chicago | Maxar (WorldView-3) | 10/16/2017 | 0.31 | 4.06 |
Chicago | Maxar (WorldView-3) | 4/29/2018 | 0.31 | 4.06 |
Chicago | Maxar (GeoEye-1) | 8/19/2017 | 0.46 | 10.16 |
Chicago | Lake County, IL GIS | 3/20/2018 | 0.07 | 0.73 |
Fresno | Maxar (WorldView-2) | 9/22/2019 | 0.5 | 5 |
Fresno | Maxar (WorldView-2) | 5/10/2020 | 0.5 | 4.06 |
Fresno | Maxar (WorldView-2) | 8/20/2019 | 0.5 | 5 |
Los Angeles | Maxar (WorldView-2) | 9/26/2018 | 0.5 | 5 |
Los Angeles | Maxar (WorldView-2) | 7/6/2019 | 0.5 | 5 |
Los Angeles | Maxar (WorldView-2) | 1/6/2020 | 0.5 | 4.06 |
Los Angeles | Maxar (WorldView-3) | 4/15/2020 | 0.31 | 4.06 |
Los Angeles | Port of Long Beach | 12/16/2017 | 0.07 | n/a |
Los Angeles | Maxar (WorldView-3) | 2/4/2020 | 0.31 | 4.06 |
Los Angeles | Maxar (GeoEye-1) | 7/20/2019 | 0.46 | 4.06 |
Phoenix | Maxar (WorldView-4) | 6/19/2018 | 0.31 | 5 |
Phoenix | Maxar (WorldView-4) | 11/16/2018 | 0.31 | 5 |
Phoenix | Maxar (WorldView-2) | 1/18/2020 | 0.5 | 4.06 |
References
- Valinia, A.; Burt, J.; Pham, T.; Ganel, O. The role of smallsats in scientific exploration and commercialization of space. In Proceedings of the SPIE Defense & Commercial Sensing, Baltimore, MD, USA, 4–18 April 2019; p. 72. [Google Scholar] [CrossRef] [Green Version]
- Wekerle, T.; Filho, J.B.P.; da Costa, L.E.V.L.; Trabasso, L.G. Status and trends of smallsats and their launch vehicles—An up-to-date review. J. Aerosp. Technol. Manag. 2017, 9, 269–286. [Google Scholar] [CrossRef]
- Martin, L.K.; Jones, W.H.; Shiroma, W.A. Small-satellite projects offer big rewards. IEEE Potentials 2014, 33, 24–30. [Google Scholar] [CrossRef]
- The CubeSat Program, Cal Poly SLO. CubeSat Design Specification Rev. 13. 2014. Available online: https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf (accessed on 29 September 2020).
- Laufer, R.; Pelton, J.N. The Smallest Classes of Small Satellites Including Femtosats, Picosats, Nanosats, and CubeSats. In Handbook of Small Satellites; Pelton, J., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Martin, S. Modern Small Satellites—Changing the Economics of Space. Proc. IEEE 2018, 106, 343–361. [Google Scholar] [CrossRef]
- NASA.gov. The Emerging Commercial Marketplace in Low-Earth Orbit. Available online: https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/ev-emerging-commercial-market-in-leo (accessed on 29 September 2020).
- Nanosats.eu. Nanosatellite Launches by Organisations. Available online: https://www.nanosats.eu/img/fig/Nanosats_years_organisations_2020-04-20.svg (accessed on 29 September 2020).
- Planet.com. Available online: https://www.planet.com/company (accessed on 29 September 2020).
- Salomonson, V.V.; Barnes, W.L.; Maymon, P.W.; Montgomery, H.E.; Ostrow, H. MODIS—Advanced Facility Instrument for Studies of the Earth as a System. IEEE Trans. Geosci. Remote Sens. 1989, 27, 145–153. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- USGS.gov. USGS EROS Archive-Sentinel-2-Comparison of Sentinel-2 and Landsat. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-sentinel-2-comparison-sentinel-2-and-landsat?qt-science_center_objects=0#qt-science_center_objects (accessed on 29 September 2020).
- ESA.int. ESA–NASA Collaboration Fosters Comparable Land Imagery. 2013. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/ESA_NASA_collaboration_fosters_comparable_land_imagery (accessed on 29 September 2020).
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Planet.com, 2021. Planet Imagery Product Specifications February. 2021. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 6 April 2021).
- EOportal.org. Dove-1 and Dove-2 Nanosatellites. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/dove (accessed on 29 September 2020).
- Safyan, M. Planet To Launch Record-Breaking 88 Satellites. 2017. Available online: https://www.planet.com/pulse/record-breaking-88-satellites/ (accessed on 29 September 2020).
- The White House, 2016. Harnessing the Small Satellite Revolution. 2016. Available online: https://obamawhitehouse.archives.gov/the-press-office/2016/10/21/harnessing-small-satellite-revolution-promote-innovation-and (accessed on 8 October 2020).
- Earthdata.nasa.gov. Commercial Smallsat Data Acquisition Program. Available online: https://earthdata.nasa.gov/esds/csdap (accessed on 6 April 2021).
- NASA Earth Science Division. Commercial SmallSat Data Acquisition Program Pilot Evaluation Report. 2020. Available online: https://cdn.earthdata.nasa.gov/conduit/upload/14180/CSDAPEvaluationReport_Apr20.pdf (accessed on 8 October 2020).
- Planet.com/pulse. Available online: https://www.planet.com/pulse/ (accessed on 8 October 2020).
- Ephemerides.planet-labs.com. Monthly Planet Satellite Operational Report. 2020. Available online: https://ephemerides.planet-labs.com/operational_status.txt (accessed on 8 October 2020).
- Planet.com. Planet Imagery Product Specification: Planetscope & Rapideye. 2016. Available online: https://www.harrisgeospatial.com/Portals/0/pdfs/PlanetScope-RapidEye-Spec-Sheet.pdf (accessed on 29 September 2020).
- Planet.com, 2015. Planet Labs Specifications: Spacecraft Operations & Ground Systems. Available online: http://content.satimagingcorp.com.s3.amazonaws.com/media/pdf/Dove-PDF-Download#:~:text=Planet%20Labs%20satellites%20are%20designed,operational%20lifetime%20of%203%20years (accessed on 30 September 2020).
- Safyan, M. Liftoff! 20 Next-Generation Dove Satellites Launch On ISRO’s PSLV. 2019. Available online: https://www.planet.com/pulse/liftoff-20-next-generation-dove-satellites-launch-on-isros-pslv/ (accessed on 29 September 2020).
- Doshi, S. Introducing Next-Generation PlanetScope Imagery. 2019. Available online: https://www.planet.com/pulse/introducing-next-generation-planetscope-monitoring/ (accessed on 29 September 2020).
- Breunig, F.M.; Galvão, L.S.; Dalagnol, R.; Dauve, C.E.; Parraga, A.; Santi, A.L.; Della Flora, D.P.; Chen, S. Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102004. [Google Scholar] [CrossRef]
- Planet News. Planet Announces More Spectral Bands, 50 Cm Resolution, Global Analytics, and Change Detection. 2019. Available online: https://www.planet.com/pulse/more-spectral-bands-50cm-global-analytics-change-detection/ (accessed on 29 September 2020).
- Wang, J.; Yang, D.; Detto, M.; Nelson, B.W.; Chen, M.; Guan, K.; Wu, S.; Yan, Z.; Wu, J. Multi-scale integration of satellite remote sensing improves characterization of dry-season green-up in an Amazon tropical evergreen forest. Remote Sens. Environ. 2020, 246, 111865. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Huang, W.; Xu, W.; Si, X.; Chen, H.; Li, X.; Song, Q. Onboard absolute radiometric calibration and validation of the satellite calibration spectrometer on HY-1C. Opt. Express 2020, 28, 30015–30034. [Google Scholar] [CrossRef] [PubMed]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Glaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Helder, D.; Anderson, C.; Beckett, K.; Houborg, R.; Zuleta, I.; Boccia, V.; Clerc, S.; Kuester, M.; Markham, B.; Paunutti, M. Observations and Recommendations for Coordinated Calibration Activities of Government and Commercial Optical Satellite Systems. Remote Sens. 2020, 12, 2468. [Google Scholar] [CrossRef]
- Aguilera, M.A.Z. Classication of Land-Cover through Machine Learning Algorithms for Fusion of Sentinel-2a and Planetscope Imagery. In Proceedings of the IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–27 March 2020; pp. 246–253. [Google Scholar] [CrossRef]
- Kaplan, G. Assessing the effectiveness of PlanetScope synthesized panchromatic bands for spatial enhancement of Sentinel-2 data. J. Appl. Remote Sens. 2020, 14, 036504. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.K.; Roy, D.P.; Yan, L.; Huang, H. Sharpening the Sentinel-2 10 and 20 m bands to planetscope-0 3 m resolution. Remote Sens. 2020, 12, 2406. [Google Scholar] [CrossRef]
- Planet.com. Planet Imagery Product Specifications January. 2018. Available online: https://www.planet.com/products/satellite-imagery/files/Planet_Combined_Imagery_Product_Specs_December2017.pdf (accessed on 29 September 2020).
- Jumpasut, A. Celebrate The Apollo 11 Moon Landing with These Stellar Moon Shots. 2019. Available online: https://www.planet.com/pulse/celebrate-the-apollo-11-moon-landing-with-these-stellar-moon-shots/ (accessed on 29 September 2020).
- Konidaris, N.; Krantz, W.; Warga, J. Pre-launch Calibration of the Planet PlanetScope Constellation. 2016. Available online: https://calval.cr.usgs.gov/apps/sites/default/files/jacie/JACIE-Presentation-Pre-launch-Calibration-of-the-Planet-Labs-PlanetScope-Constellation-1.pdf (accessed on 13 June 2021).
- Jumpasut, A.; Fukuzato, A.; Greenberg, J.; Wilson, N.; Lunar Radiometric Calibration on Planet Dove Satellites. Conference on Characterization and Radiometric Calibration for Remote Sensing (CALCON). 2017. Available online: https://digitalcommons.usu.edu/calcon/CALCON2017/All2017Content/27/ (accessed on 13 June 2021).
- Jumpasut, A.; Fukuzato, A.; Zuleta, I.; Using the Moon as a Calibration Source for a Fleet of Satellites. Conference on Characterization and Radiometric Calibration for Remote Sensing (CALCON). 2018. Available online: https://digitalcommons.usu.edu/calcon/CALCON2018/all2018content/20/ (accessed on 13 June 2021).
- Wilson, N.; Greenberg, J.; Jumpasut, A.; Collison, A.; Weichelt, H. Absolute Radiometric Calibration of Planet Dove Satellites, Flocks 2p & 2e 13. 2017. Available online: https://support.planet.com/hc/en-us/articles/360012629353-Absolute-Radiometric-Calibration-of-Planet-Dove-Satellites-Flocks-2p-2e (accessed on 8 October 2020).
- Liu, Y.; Ma, L.; Wang, N.; Qian, Y.; Qiu, S.; Li, C.; Tang, L. Vicarious radiometric calibration/validation of Landsat-8 operational land imager using a ground reflected radiance-based approach with Baotou site in China. J. Appl. Remote Sens. 2017, 11, 044004. [Google Scholar] [CrossRef]
- Townshed, J.R.G.; Justice, C.O.; Groney, C.; McManus, J. The Impact of Misregistration on Change Detection. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking dynamic northern surface water changes with high-frequency planet CubeSat imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Vrieling, A.; Fava, F.; Meroni, M.; Marshall, M.; Gachoki, S. Phenology of short vegetation cycles in a Kenyan rangeland from PlanetScope and Sentinel-2. Remote Sens. Environ. 2020, 248, 112004. [Google Scholar] [CrossRef]
- Pun, V.C.; Kazemiparkouhi, F.; Manjourides, J.; Suh, H.H. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017, 186, 961–969. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef] [PubMed]
- Christopher, S.; Gupta, P. Global distribution of column satellite aerosol optical depth to surface PM2.5 relationships. Remote Sens. 2020, 12, 1985. [Google Scholar] [CrossRef]
- Hoff, R.; Christopher, S. Remote Sensing of Particulate Pollution from Space: Have We Reached the Promised Land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, Y.J.; Tanré, D.; Bouche, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Lacis, A.A. How well do satellite AOD observations represent the spatial and temporal variability of PM2.5 concentration for the United States? Atmos. Environ. 2015, 102, 260–273. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30, 2–5. [Google Scholar] [CrossRef]
- Zhang, H.; Hoff, R.M.; Engel-Cox, J.A. The relation between moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: A geographical comparison by U.S. Environmental Protection Agency regions. J. Air Waste Manag. Assoc. 2009, 59, 1358–1369. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Liu, Y.; Coull, B.A.; Schwartz, J.; Koutrakis, P. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos. Chem. Phys. 2011, 11, 7991–8002. [Google Scholar] [CrossRef] [Green Version]
- van Donkelaar, A.; Martin, R.V.; Park, R.J. Estimating ground-level PM2.5 using aerosol optical depth determined from satellite remote sensing. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Paciorek, C.J.; Liu, Y. Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ. Health Perspect. 2009, 117, 904–909. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-coverage high-resolution daily PM2.5 estimation using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- He, Q.; Huang, B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environ. Pollut. 2018, 236, 1027–1037. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. Discuss. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chu, Y.; Wang, Y.; Zhang, K. Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth. Sci. Total Environ. 2018, 631–632, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Sun, L.; Peng, Y.; Wang, L.; Zhang, Z.; Bilal, M. An Improved High- Spatial-Resolution Aerosol Retrieval Algorithm for MODIS Images Over Land. J. Geophys. Res. Atmos. 2018, 123, 12291–12307. [Google Scholar] [CrossRef]
- Bai, Y.; Wu, L.; Qin, K.; Zhang, Y.; Shen, Y.; Zhou, Y. A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite- derived 500 m resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Bilal, M.; Dong, W. Mapping daily PM2.5 at 500m resolution over Beijing with improved hazy day performance. Sci. Total Environ. 2019, 659, 410–418. [Google Scholar] [CrossRef]
- Yao, F.; Wu, J.; Li, W.; Peng, J. Estimating daily PM2.5 concentrations in Beijing using 750-M VIIRS IP AOD retrievals and a nested spatiotemporal statistical model. Remote Sens. 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Chudnovsky, A.; Just, A.; Nordio, F.; Koutrakis, P.; Coull, B.; Lyapustin, A.; Wang, Y.; Schwartz, J. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos. Environ. 2014, 95, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhu, Z.; Gong, W.; Zhu, Z.; Sun, K.; Wang, L.; Huang, Y.; Mao, F.; Shen, H.; Li, Z. Estimation of ultrahigh resolution PM2.5 concentrations in urban areas using 160m Gaofen-1 AOD retrievals. Remote Sens. Environ. 2018, 216, 91–104. [Google Scholar] [CrossRef]
- Zheng, T.; Bergin, M.; Hu, S.; Miller, J.; Carlson, D. Estimating ground-level PM2.5 using micro-satellite images by a convolutional neural network and random forest approach. Atmos. Environ. 2020, 230, 117451. [Google Scholar] [CrossRef]
- Shen, H.; Li, T.; Yuan, Q.; Zhang, L. Estimating Regional Ground-Level PM2.5 Directly from Satellite Top-Of-Atmosphere Reflectance Using Deep Belief Networks. J. Geophys. Res. Atmos. 2018, 123, 875–13886. [Google Scholar] [CrossRef] [Green Version]
- Planet Team. Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA. Available online: https://api.planet.com (accessed on 28 October 2020).
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Smiley, B. The absolute and relative geolocation accuracies of QB02 and WV01. In Proceedings of the American Society for Photogrammetry and Remote Sensing Annual Conference, Baltimore, MD, USA, 9–13 March 2009; ASPRS: Bethesda, MD, USA, 2009; Volume 2, pp. 787–794. [Google Scholar]
- Fsa.usda.gov. National Agriculture Imagery Program (NAIP) Information Sheet. 2019. Available online: https://www.fsa.usda.gov/Internet/FSA_File/naip_2009_info_final.pdf (accessed on 28 October 2020).
- Suggula, L. What Does the “Ground_Control” Field in the Metadata Signify? 2018. Available online: https://support.planet.com/hc/en-us/articles/360016420313-What-does-the-ground-control-field-in-the-metadata-signify- (accessed on 26 October 2020).
- Schlundt, C.; Kokhanovsky, A.A.; Von Hoyningen-Huene, W.; Dinter, T.; Istomina, L.; Burrows, J.P. Synergetic cloud fraction determination for SCIAMACHY using MERIS. Atmos. Meas. Tech. 2011, 4, 319–337. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images. Remote Sens. 2015, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Chow, J.; Engelbrecht, J.; Watson, J.; Wilson, W.; Grank, N.; Zhu, T. Designing monitoring networks to represent outdoor human exposure. Chemosphere 2002, 49, 961–978. [Google Scholar] [CrossRef]
Characteristic | Dove-Classic (PS2) | Dove-R (PS2.SD) | SuperDove (PSB.SD) |
---|---|---|---|
Sensor Description | Four-band frame imager; split-frame visible + NIR filter | Four-band frame imager; butcher-block filter providing blue, green, red and NIR stripes | Eight-band frame imager; butcher block filter providing blue, green, red, red-edge, and NIR stripes |
Spectral Bands | Blue: 455–515 nm Green: 500–590 nm Red: 590–670 nm NIR: 780–860 nm | Blue: 464–517 nm Green: 547–585 nm Red: 650–682 nm NIR: 846–888 nm | Coastal Blue: 431–452 nm Blue: 465–515 nm Green I: 513–549 nm Green II: 547–583 nm Yellow: 600–620 nm Red: 650–680 nm Red-Edge: 697–713 nm NIR: 845–885 nm |
Coverage Area of Individual Scene (Approximate) | 24 × 8 km | 24 × 16 km | 32.5 × 19.6 km |
Study Area Location & Date | MODIS File Identifier | MODIS Acquisition Time (GMT) | Acquisition Time of Corresponding PlanetScope Scenes (GMT) | Approximate Temporal Offset |
---|---|---|---|---|
Baltimore, MD 3/22/2017 | MOD02HKM.A2 017081.1520.061. 2017313214630 | 15:20:00–15:25:00 | 15:09:28–15:09:38 | 11 min |
Baltimore, MD 7/14/2018 | MOD02HKM.A2 018195.1615.061. 2018196014137 | 16:15:00–16:20:00 | 15:17:32–15:23:50 | 2 min |
Birmingham, AL 1/10/2019 | MOD02HKM.A201 9010.1550.061.2019 011011549 | 15:50:00–15:55:00 | 16:05:25–16:05:39 | 15 min |
Birmingham, AL 9/3/2019 | MOD02HKM.A201 9246.1615.061.2019 247011649 | 16:15:00–16:20:00 | 16:07:56–16:07:59 | 8 min |
Bismarck, ND 8/11/2018 | MOD02HKM.A2 018223.1815.061. 2018224074641 | 18:15:00–18:20:00 | 17:07:07–17:07:11 | 68 min |
Bismarck, ND 10/30/2018 | MOD02HKM.A2 018303.1815.061. 2018304073558 | 18:15:00–18:20:00 | 17:08:50–17:09:02 | 67 min |
Chicago, IL 3/22/2018 | MOD02HKM.A201 8081.1625.061.2018 082211719 | 16:25:00–16:30:00 | 16:06:21–16:14:08 | 19 min |
Chicago, IL 7/13/2018 | MOD02HKM.A201 8194.1710.061.2018 195020513 | 17:10:00–17:15:00 | 16:00:00–16:07:53 | 70 min |
Fresno, CA 8/7/2018 | MOD02HKM.A2 018219.1845.061. 2018220074514 | 18:45:00–18:50:00 | 18:08:38–18:16:46 | 37 min |
Fresno, CA 1/3/2019 | MOD02HKM.A2 019003.1900.061. 2019004073319 | 19:00:00–19:05:00 | 18:15:19–18:20:37 | 45 min |
Los Angeles, CA 8/4/2018 | MOD02HKM.A201 8216.1815.061.2018 217074026 | 18:15:00–18:20:00 | 18:01:40–18:06:21 | 14 min |
Los Angeles, CA 12/15/2019 | MOD02HKM.A201 9349.1800.061.2019 350071716 | 18:00:00–18:05:00 | 18:14:22–18:37:35 | 14 min |
Phoenix, AZ 9/7/2017 | MOD02HKM.A2 017250.1830.061. 2017261010116 | 18:30:00–18:35:00 | 17:25:41–18:29:17 | 65 min |
Phoenix, AZ 10/30/2018 | MOD02HKM.A2 018303.1820.061. 2018304073609 | 18:20:00–18:25:00 | 17:27:21–17:43:42 | 53 min |
Spokane, WA 4/19/2018 | MOD02HKM.A201 8109.1830.061.2018 110074415 | 18:30:00–18:35:00 | 18:10:55–18:10:59 | 20 min |
Spokane, WA 8/14/2018 | MOD02HKM.A201 8226.1845.061.2018 227075202 | 18:45:00–18:50:00 | 18:15:20–18:16:44 | 30 min |
AERONET Site Name | Coordinates | Date(s) | Study Area |
---|---|---|---|
NEON_SJER | 37.109N, 119.732W | 1/3/2019 | Fresno |
GSFC | 38.992N, 76.840W | 3/22/2017 & 7/14/2018 | Baltimore |
MD_Science_Center | 39.281N, 76.612W | 3/22/2017 & 7/14/2018 | Baltimore |
Sigma_Space_Corp | 38.953N, 76.836W | 3/22/2017 & 7/14/2018 | Baltimore |
UMBC | 39.255N, 76.709W | 3/22/2017 | Baltimore |
NEON_SERC | 38.890N, 76.560W | 7/14/2018 | Baltimore |
SERC | 38.889N, 76.556W | 7/14/2018 | Baltimore |
Bandwidth (nm) | |||
---|---|---|---|
Band Color | MODIS | PlanetScope (PS2) | AERONET |
Blue | 459–479 | 455–515 | 440 |
Green | 545–565 | 500–590 | 500 |
Red | 620–670 | 590–670 | 675 |
NIR | 841–876 | 780–860 | 870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
le Roux, J.; Christopher, S.; Maskey, M. Exploring the Use of PlanetScope Data for Particulate Matter Air Quality Research. Remote Sens. 2021, 13, 2981. https://doi.org/10.3390/rs13152981
le Roux J, Christopher S, Maskey M. Exploring the Use of PlanetScope Data for Particulate Matter Air Quality Research. Remote Sensing. 2021; 13(15):2981. https://doi.org/10.3390/rs13152981
Chicago/Turabian Stylele Roux, Jeanné, Sundar Christopher, and Manil Maskey. 2021. "Exploring the Use of PlanetScope Data for Particulate Matter Air Quality Research" Remote Sensing 13, no. 15: 2981. https://doi.org/10.3390/rs13152981