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Abstract: Sea ice distribution is an important indicator of ice conditions and regional climate change
in the Bohai Sea (China). In this study, we monitored the spatiotemporal distribution of the Bohai
Sea ice in the winter of 2017–2018 by developing sea ice information indexes using 300 m resolution
Sentinel-3 Ocean and Land Color Instrument (OLCI) images. We assessed and validated the index
performance using Sentinel-2 MultiSpectral Instrument (MSI) images with higher spatial resolution.
The results indicate that the proposed Normalized Difference Sea Ice Information Index (NDSIIIOLCI),
which is based on OLCI Bands 20 and 21, can be used to rapidly and effectively detect sea ice but is
somewhat affected by the turbidity of the seawater in the southern Bohai Sea. The novel Enhanced
Normalized Difference Sea Ice Information Index (ENDSIIIOLCI), which builds on NDSIIIOLCI by
also considering OLCI Bands 12 and 16, can monitor sea ice more accurately and effectively than
NDSIIIOLCI and suffers less from interference from turbidity. The spatiotemporal evolution of the
Bohai Sea ice in the winter of 2017–2018 was successfully monitored by ENDSIIIOLCI. The results
show that this sea ice information index based on OLCI data can effectively extract sea ice extent for
sediment-laden water and is well suited for monitoring the evolution of Bohai Sea ice in winter.
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1. Introduction

The Bohai Sea is a semi-enclosed sea in China and is the southernmost area of the frozen sea
in the Northern Hemisphere. Seasonal sea ice occurs there every winter from December to March
and severely influences maritime activities and the marine economy of the surrounding areas when
accumulated sea ice blockades ports and obstructs sea routes. In a particularly cold winter, sea ice can
destroy marine facilities, coastal ports, and mariculture and lead to substantial property damage [1–4].
Therefore, monitoring the distribution and spatiotemporal pattern of sea ice is crucial for disaster
prevention and maritime management [5]. The distribution of the sea ice is also a key climatic indicator
as it can reflect regional climate change and is essential for studying long-term climatic changes in
response to recent global warming.

Large-scale monitoring and evaluation of sea ice in high-latitude frozen zones have been carried
out by means of remote-sensing technology, including microwave and optical remote sensing. Passive
microwave and synthetic aperture radar (SAR) imagery are the main data sources for ice detection as
they have all-day and almost all-weather imaging capability [6–8]. The operational sea ice concentration
products, such as OSI-450, SICCI-25km, and so forth, were provided by passive microwave data,
and can help us better understand the evolution of the Earth’s ice cover [9]. Ice extent is most
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commonly estimated on the basis of the sea ice concentration retrieved from passive microwave
data. For example, the contour corresponding to an ice concentration of 15% is commonly used to
define the ice extent [10]. However, owing to the coarse spatial resolution of ice concentration data
derived from passive microwave imagery (5–25 km), the sea ice concentration is underestimated
when the floe size is small or ice cover is sparse. Near coastlines, passive microwave datasets with
a large footprint are subject to land contamination, resulting in a mixed land–sea signal being received.
This land contamination can cause the extent of sea ice to be overestimated [11]. High-spatial-resolution
space-borne SAR datasets such as Radarsat-2 and Sentinel-1A/B can be used to monitor sea ice more
subtly. The sea ice concentration can be estimated from single-band SAR data either directly or via
a classification scheme [7,12,13]. Space-borne SAR can provide all-weather observations with a much
higher spatial resolution (5–100 m) than the passive microwave, but it is challenging to obtain because
of the high cost and the long revisit period for most of them.

Optical remote-sensing data have also been widely used to estimate the extent and concentration
of sea ice. Although the use of optical remote sensors is constrained by the weather conditions,
they have the merits of finer spatial resolution, low cost, and a short revisit period (one day
or less). Thus, optical remote sensors such as the Advanced Very High-Resolution Radiometer
(AVHRR) [14], Moderate Resolution Imaging Spectroradiometer (MODIS) [15–18], Geostationary
Ocean Color Imager (GOCI) [19–21], and FengYun-3 Medium Resolution Spectral Imager (MERSI) [22]
have been effectively employed to extract sea ice distribution information via a variety of methods.
For example, rapid and effective sea ice extraction has been achieved with a ratio-threshold segmentation
method based on the red and infrared bands of MODIS images [2,23]. Sea ice detectability in
coastal regions has been improved using texture features derived from MODIS images to accurately
detect sea ice in sediment-laden water [24]. The identification of sea ice and the accuracy of image
interpretation have also been improved by processing, respectively, optical and microwave images
by hue–intensity–saturation (HIS) adjustment and wavelet transformation and further fusing these
through principal component analysis (PCA) [5]. Different classifiers such as a decision tree and
a support vector machine have been used to directly distinguish sea ice on the basis of multispectral
remote-sensing imagery [25,26], in some cases combining multiple features like image texture and
surface temperature to improve the accuracy of sea ice extent estimation [27,28].

Data are now available from a new-generation sensor called the Ocean and Land Color Instrument
(OLCI), which is carried on the Sentinel-3 satellite. This sensor has relatively high spectral resolution
and spatiotemporal resolution in the visible and near-infrared spectra and thus is well suited to the
requirements of large-scale coastal environmental monitoring. OLCI data have already been used to
monitor and evaluate water quality [29–31] but have as yet rarely been used to study sea ice. In this
study, sea ice information indexes based on OLCI multispectral imagery are developed to detect the
extent of sea ice and then employed to monitor the spatial and temporal variation of sea ice in the
Bohai Sea in the winter of 2017–2018.

2. Study Area and Data

The Bohai Sea (37◦07′–41◦0′N, 117◦35′–121◦10′E), located on the northeast of China, borders three
land areas and one sea (Figure 1). It covers a total area of 73,686 km2 and has an average depth of
18 m. It comprises three bays: the Liaodong Bay in the north, the Bohai Bay in the west, and the
Laizhou Bay in the south. Over 40 tributaries flow into the sea, the largest four of which are the Yellow
River, Haihe River, Luanhe River, and Liaohe River, which carry large quantities of freshwater and
sediment into the sea from the land. The salinity of the seawater is only about 30 PSU, making it the
least saline of China’s coastal waters. Seasonal sea ice usually first occurs at the coast in late December
then accumulates along the shoreline and gradually expands into the central basin. Ice coverage finally
comes to an end in March of the next year. The thickness of the ice can reach up to 40 cm in extremely
cold winters [23], and it usually reaches its maximum extent at the midpoint of the sea ice evolutionary
process in late January to early February.
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Figure 1. The study area of the Bohai Sea, including the Liaodong Bay, Bohai Bay, and Laizhou Bay. 

The new-generation optical sensor OLCI is the successor of ENVISAT’s MERIS, having higher 
spectral resolution and more spectral channels. The OLCI dataset is composed of 21 distinctive 
spectral bands spanning the spectral range 400–1020 nm across the visible and near-infrared spectra. 
These multispectral data are very well suited to studying coastal sea ice. An overview of the OLCI 
bands is given in Table 1. Full-resolution (300 m) OLCI images (OLCI level 1b) acquired from the 
European Space Agency (ESA) data hub (https://scihub.copernicus.eu/) are employed for Bohai Sea 
ice detection in this study. Image preprocessing, including subsetting, reprojecting, and radiance-to-
reflectance transformation, is conducted using the SNAP 6.0 toolbox (Sentinel Application Platform, 
http://step.esa.int/main/toolboxes/snap/), which was designed for processing and analyzing Sentinel 
satellite products. 

Table 1. OLCI band characteristics. 
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Band 15 767.5 2.5 330 
Band 16 778.75 15 812 
Band 17 865 20 666 
Band 18 885 10 395 
Band 19 900 10 308 

Figure 1. The study area of the Bohai Sea, including the Liaodong Bay, Bohai Bay, and Laizhou Bay.

The new-generation optical sensor OLCI is the successor of ENVISAT’s MERIS, having higher
spectral resolution and more spectral channels. The OLCI dataset is composed of 21 distinctive
spectral bands spanning the spectral range 400–1020 nm across the visible and near-infrared spectra.
These multispectral data are very well suited to studying coastal sea ice. An overview of the
OLCI bands is given in Table 1. Full-resolution (300 m) OLCI images (OLCI level 1b) acquired
from the European Space Agency (ESA) data hub (https://scihub.copernicus.eu/) are employed for
Bohai Sea ice detection in this study. Image preprocessing, including subsetting, reprojecting,
and radiance-to-reflectance transformation, is conducted using the SNAP 6.0 toolbox (Sentinel
Application Platform, http://step.esa.int/main/toolboxes/snap/), which was designed for processing
and analyzing Sentinel satellite products.

Table 1. OLCI band characteristics.

Band Number Central Wavelength
(nm)

Full Width at Half Maximum
(nm) Signal-to-Noise Ratio

Band 1 400 15 2188
Band 2 412.5 10 2061
Band 3 442.5 10 1811
Band 4 490 10 1541
Band 5 510 10 1488
Band 6 560 10 1280
Band 7 620 10 997
Band 8 665 10 883
Band 9 673.75 7.5 707
Band 10 681.25 7.5 745
Band 11 708.75 10 785
Band 12 753.75 7.5 605
Band 13 761.25 2.5 232
Band 14 764.375 3.75 305
Band 15 767.5 2.5 330
Band 16 778.75 15 812
Band 17 865 20 666
Band 18 885 10 395
Band 19 900 10 308
Band 20 940 20 203
Band 21 1020 40 152

https://scihub.copernicus.eu/
http://step.esa.int/main/toolboxes/snap/
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The Sentinel-2 MultiSpectral Instrument (MSI) provides multispectral, high-resolution imagery
in 13 spectral bands: four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial
resolution. The instrument’s imaging bands cover visible, near-infrared (NIR), and short-wave infrared
(SWIR) spectra. In this study, six MSI images (MSI level 1C) acquired by Sentinel-2B over the Bohai
Sea on February 1, 2018, were obtained from the ESA data hub (https://scihub.copernicus.eu/) and
were processed as comparison and validation data. These images were first preprocessed by the
atmospheric correction software [32] (Sen2Cor-02.05.05-win64, http://step.esa.int/main/third-party-
plugins-2/sen2cor/sen2cor_v2-5-5/) and were resampled at 60 m resolution to obtain L2A products
with all bands of imagery. In addition, MSI data were employed to derive the Normalized Difference
Snow Index (NDSI), which was useful for sea ice detection [26,33], as a comparison.

3. Methods

3.1. Normalized Difference Sea Ice Information Index

A total of 10,570 pixels were manually selected as samples and classified as sea ice, seawater,
turbid seawater, land, snow and cloud by visual interpretation. The samples were distributed across
four different OLCI images in the Bohai Sea on 24 January, 28 January, 1 February, and 12 February,
2018. Descriptive statistics were computed for these samples for characteristic bands to obtain the
mean and standard deviation of the top of the atmosphere (TOA) reflectance values.

The TOA reflectance of sea ice in Band 20 (930–950 nm) is higher than that in Band 21 (1000–1040 nm)
in OLCI imagery; the opposite is true for all other objects, such as land and cloud cover (Figure 2a).
Significant differences such as this in the spectral characteristics of land cover types are the basis for
remote-sensing detection, and this particular characteristic is utilized to detect sea ice using the band
ratio strategy. The Normalized Difference Sea Ice Information Index (NDSIIIOLCI) is the normalization
of this band ratio so that its value ranges between −1 and 1. The NDSIIIOLCI feature was extracted
using the following equation:

NDSIIIOLCI = (B20 − B21)/(B20 + B21), (1)

where B20 and B21 are the TOA reflectances of Band 20 and Band 21 in OLCI images, respectively.
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Figure 2. TOA reflectance values in OLCI all bands (a) and NDSIIIOLCI values (b) for sea ice, seawater,
turbid seawater, land, snow, and cloud cover in the Bohai Sea. The whiskers in (a) depict the standard
deviations of the TOA reflectance samples. The whiskers in (b) indicate the maximum and minimum
ratio values of the sample. The box is determined by the 25th and 75th percentiles of the ratio values of
the sample. The median value is marked as the line within the box.
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The box plot in Figure 2b indicates that sea ice information is emphasized in the NDSIIIOLCI
feature, and other cover types present in the OLCI images are de-emphasized. Sea ice has the most
significant feature with the highest index value among all types of coverage. This enhancement of
sea ice information and suppression of other surfaces can effectively reduce the interferences in sea
ice information extraction in the Bohai Sea. Particularly, the values for sea ice are positive because its
numerator is greater than zero, and the values of other cover types are negative (Figure 2b). This figure
also indicates that over 75% percent of the ratio value of sea ice was greater than 0. Therefore, sea ice,
which has the brightest pixels, can be directly segmented out from an NDSIIIOLCI feature image with
a single threshold value of 0. According to the distribution of the box plot, turbid seawater is most
likely to interfere with sea ice detection, as it might not be easy to separate from sea ice in NDSIIIOLCI.

3.2. Enhanced Normalized Difference Sea Ice Information Index

The complex water environment of the Bohai Sea makes it challenging to extract sea ice precisely
using traditional remote-sensing technology. The main reason for the incomplete separation of seawater
and sea ice in remote-sensing images is spectral confusion between sea ice and the suspended sediment
in turbid seawater [24,27,28]. To distinguish them better, we have developed the Enhanced Normalized
Difference Sea Ice Information Index (ENDSIIIOLCI) by adding consideration of Band 12 (750–757.5 nm)
and Band 16 (771.25–786.25 nm) to the NDSIIIOLCI.

The TOA reflectance characteristics of sea ice and turbid seawater in Bands 12, 16, 20, and 21 in
OLCI imagery are shown in Figure 3. It shows subtle differences in TOA reflectance between Band 12
and Band 16 and between Band 20 and Band 21 for turbid seawater but a more visible reduction in
TOA reflectance between these bands for sea ice. These spectral characteristics indicate that sea ice and
turbid seawater can be separated using a spectral feature that combines these band ratios. Therefore,
the discriminant for identifying sea ice in turbid seawater is expressed as follows:{

B12− B16 > 0
B20− B21 > 0

(2)

Linear summation was utilized to combine these two discriminants. The discrimination condition is
expressed as follows:

B12 − B16 + B20 − B21 > 0 (3)

The difference between sea ice and turbid seawater is further emphasized by summing the terms in the
discrimination condition (3) to construct the Enhanced Normalized Difference Sea Ice Information
Index (ENDSIIIOLCI) as follows:

ENDSIIIOLCI =
B12− B16 + B20− B21
B12 + B16 + B20 + B21

(4)

where B12, B16, B20, and B21 correspond to the TOA reflectance values of Bands 12, 16, 20, and 21 in
OLCI images, respectively.

ENDSIIIOLCI, which considers Band 12 and Band 16, is a further extension of NDSIIIOLCI. Sea ice
can be distinguished from turbid seawater in ENDSIIIOLCI by combining the two-criterion equations
(2). After normalization, the index performed stably in sea ice detection from OLCI images.

3.3. Determinaton of Threshold Values

To obtain optimal threshold values for sea ice separation, the segmentation thresholds were
identified through sampling of index values for NDSIIIOLCI and ENDSIIIOLCI during the three main
stages of the Bohai Sea ice: the freezing stage (early January), the stable stage (late January to early
February), and the melting stage (late February to early March) in the winter of 2017–2018 (Figure 4).
While the background coverage types, such as land, snow, and cloud, were significantly suppressed in
our index and can be easily distinguished from sea ice, this was not the case for seawater, particularly
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turbid seawater. To address this, a total of 389 points were manually selected from nine images that
included the freezing stage (1, 5 and 20 January 2018), the stable stage (28 and 31 January and 4
February 2018) and the melting stage (16 and 20 February and 21 March 2018), and classified as either
sea ice or seawater by visual interpretation. Thresholds were determined from the sampling histogram
using the Jenks natural break method [34], which maximizes interclass variance while minimizing
intraclass variance by iteratively comparing clusters of data.
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Figure 4 shows the threshold values, TNDSIII for NDSIIIOLCI and TENDSIII for ENDSIIIOLCI, obtained
from the sampling dataset for sea ice extraction. According to the sampling, the threshold values of
NDSIIIOLCI and ENDSIIIOLCI are not fixed and vary somewhat depending on the samples and ice stages.
The thresholds obtained using the Jenks method performed fine in the freezing stage (Figure 4a,d),
where 97% and 98% of sea ice values were above TNDSIII and TENDSIII respectively, and also acceptably
performs in the stable stage (Figure 4b,e) and the melting stage (Figure 4c,f). Exceedance was still 94%
and 98% of sea ice in the stable stage, and 89% and 97% of sea ice in the melting stage for the TNDSIII

and TENDSIII thresholds, respectively. The sea ice can be extracted more completely using TENDSIII

instead of TNDSIII.
The TNDSIII and TENDSIII were determined using the samples from the winter of 2017–2018.

They were suitable for the ice detection during the 2017–2018 winter, but they may vary year by
year depending on the ice conditions, such as ice developing stages, ice thickness and snow-covered
situations. It is better to reset the threshold values when applying the indexes for sea ice detection in
other years because the ice conditions vary with the years. The threshold values varied a little for sea
ice detection in different ice stages in the 2017–2018 winter, however, the relatively stable values can
provide a valuable reference for the threshold determinations of the ice extraction in other years.

3.4. Normalized Difference Snow Index

In polar and high-latitude regions, snow detection is intimately linked to sea ice detection, as the
sea ice cover is mostly covered by snow. The Normalized Difference Snow Index (NDSI) has been used
by many studies to detect the presence of sea ice in open water (Equation (5)) [35].

NDSI = (Green − SWIR)/(Green + SWIR) (5)

The NDSI takes advantage of the contrasting spectral behaviors of snow and sea ice cover in the
visible and short-wave infrared parts of the spectrum. Snow and sea ice will have a high NDSI value
because they exhibit a large contrast in reflectance between the shot-wave infrared band (SWIR Band
11: 1.613 µm) and the visible band (Green Band 3: 0.56 µm). However, the OLCI instrument lacks the
short-wave infrared bands required to derive NDSI. In this study, we used the MSI images (resampled
from 60 to 300 m spatial resolution) to extract the NDSI feature, and we compared this with our efforts
to detect sea ice in the Bohai Sea.

3.5. Support Vector Machine Classifier

The support vector machine (SVM) is a machine learning method based on statistical learning
theory. Supervised classification using the SVM method has been widely used in image analysis to
identify the class affiliated with each pixel. The basic idea of SVM classification is to use the kernel
function to map linearly indivisible points in a low-dimensional space into linearly separable points
in a high-dimensional space [36–38]. The goal of SVM classification is to find the optimal separating
hyperplane that maximizes the margins between different classes. The output of SVM classification is
a decision value of each pixel for each class, and it can extract good classification results from complex
and noisy data.

We chose a radial basis function (RBF) to build the SVM classifier because it performs well in most
cases [39]. The parameter of the Gamma (G) and penalty (C) in the kernel function were quantitatively
analyzed and set to the following empirically optimized values: G = 1/feature number and C = 100 [27].

4. Results

4.1. Sea Ice Detection and Validation

Finally, the feature images based on NDSIIIOLCI and ENDSIIIOLCI were obtained from OLCI
data, which significantly enhanced the sea ice information. We also added a feature image which
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considered the normalized ratio of Bands 12 and 16 as an important transition factor from NDSIIIOLCI
to ENDSIIIOLCI. Samples from the feature images were classified into the types of land cover as sea
ice, seawater, turbid seawater, land, snow, and cloud through visual interpretation of OLCI true-color
composite imagery. In Figure 5, sea ice is the brightest feature among the different types of land
covers, suggesting its extent can be easily extracted from the feature images via threshold segmentation.
The feature distribution histogram, which is a statistical representation of pixel values in feature images,
was also considered for determining an appropriate threshold. In principle, sea ice information (shown
in red) has the highest value of the two feature types in both normalized ratio histograms.

An additional feature of the normalized band ratio of B12 and B16 was given in response to the
important role that Bands 12 and 16 play in the reduction of interference of sea ice detection in turbid
seawater areas. Sea ice with bright pixels can be visually distinguished from turbid seawater with its
darker pixels in the southern Bohai Sea (Figure 5c). The statistical histograms (Figure 5f) of sea ice
(shown in red) and turbid seawater (shown in green) which were sampled from (B12−B16)/(B12+B16)
feature image distribute separately with a boundary. This significant difference between sea ice and
turbid seawater in the feature can enable us to separate them easily, but this feature could not be used
to distinguish sea ice from seawater when they have approximated brightness in the feature image.

Land and cloud cover, which will be masked with great care when using other approaches,
were not major sources of contamination error for sea ice identification using these OLCI imagery-based
sea ice information indexes. The spectral characteristics of land and cloud enable them to be clearly
identified from optical remote-sensing datasets containing rich spectral information. In the sea ice
information indexes, their signals were attenuated by considering the normalized ratio of characteristic
bands and were centered around −0.2 (land) and −0.3 (cloud) in NDSIIIOLCI and −0.125 (land and
cloud) in ENDSIIIOLCI (Figure 5b,d). The obvious visible separation between the normalized ratios
of these two types of cover and that of sea ice meets the condition of sea ice extraction using optical
images without masking by land or cloud.

Another cover type that will impact the accuracy of sea ice mapping with optical images is snow,
which has high reflectance at visible and near-infrared wavelengths. Snow-covered ice will be confused
with snow-covered land when using optical data to detect sea ice. Little snow-covered ice occurs
in the Bohai Sea region in winter [40]. Furthermore, the region covered by snow on land has a low
normalized ratio in the sea ice information index, generally well below the value for sea ice.

The most difficult step in sea ice extraction is to divide sea ice cover from turbid seawater. The high
concentration of suspended sediment in turbid seawater leads to spectral confusion and affects sea
ice identification. In the feature histogram of NDSIIIOLCI in Figure 5e, the normalized ratio of Band
20 to Band 21 for the area covered by sea ice is greater than 0, and those for seawater, land, snow,
and cloud are less than TNDSIII which is 0.001 in the stable stage. It is noteworthy that the normalized
ratio for some turbid seawater areas is also greater than TNDSIII, giving NDSIIIOLCI insufficient ability
to distinguish sea ice from turbid seawater with a high sediment concentration. Seawater and turbid
seawater may be extracted with sea ice in NDSIIIOLCI when a lower threshold value is used for
segmentation. The misclassification caused by spectral confusion did not appear with ENDSIIIOLCI,
which also considers OLCI Bands 12 and 16. The normalized ratio for the area covered by sea ice is
greater than TENDSIII which is 0.024 in the stable stage, and that of other land cover types is less than
this value, including seawater and turbid seawater. Sea ice information can therefore be extracted
accurately from sediment-laden water using threshold segmentation in ENDSIIIOLCI feature images.
On the basis of these results, regions with sea ice were extracted in this study by threshold segmentation
of NDSIIIOLCI and ENDSIIIOLCI feature images using certain thresholds.
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Figure 5. An example of true-color (a), NDSIIIOLCI (b), (b12−b16)/(b12+b16) (c), and ENDSIIIOLCI (d)
feature extraction from OLCI imagery on 24 January 2018. A statistical histogram of the main types of
surface cover (sea ice, seawater, turbid seawater, land, snow, and cloud) in each image is displayed
alongside the corresponding image (e–g).
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After sea ice extent extraction from OLCI imagery on the basis of threshold segmentation which
was established using the Jenks natural break method from different stages of sea ice, the extraction
results were compared with NDSI and SVM methods and validated using a simultaneously acquired
high-resolution Sentinel-2 MSI image with a spatial resolution of 60 m after preprocessing (Figure 6).
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Figure 6. An image of sea ice extraction result for the entire Bohai Sea (top) on 1 February 2018 using
threshold segmentation from ENDSIIIOLCI. Three true-color images in the first column (a,f,k) are the
enlarged MSI validation images indicated by boxes I, II, and III in the top image, respectively. The next
four columns present the results of sea ice extent extraction using NDSIIIOLCI (b,g,l), ENDSIIIOLCI

(c,h,m), NDSI (d,i,n), and SVM (e,j,o).

Figure 6 shows a comparison among the different methods of sea ice extraction from satellite
imagery in the Bohai Sea on February 1, 2018. Three representative scenes, including high concentration
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of ice (Figure 6a), low concentration of ice (Figure 6f), and sea ice in turbid water (Figure 6k), were selected
from the MSI images for detection validation. The MSI image was also employed in sea ice detection
via NDSI using threshold segmentation, so as to compensate for the deficiency in NDSI extraction
from OLCI images (Figure 6d,i,n). Sea ice extent was also extracted from OLCI images using the SVM
classification method as a comparison (Figure 6e,j,o).

Generally, the spectral-characteristic-based sea ice detection method was well capable of identifying
the Bohai Sea ice in OLCI images and enabled the details of its extent, such as the ice edges and ice
lanes, to be rapidly and precisely determined. The largest critical sea ice hazard, in Liaodong Bay
(Figure 6a), was extracted from OLCI images using NDSIIIOLCI (Figure 6b), ENDSIIIOLCI (Figure 6c),
NDSI (Figure 6d), and SVM (Figure 6e), and the first three distribution maps give similar depictions of
the sea ice, but omission of sea ice detection occurred when performing the SVM classifier. The three
indexes had consistently good performance in critical regions with thick, extensive sea ice cover in the
northern Bohai Sea. A comparison of the results shows that the sea ice area extracted by the NDSIIIOLCI
(Figure 6l) and NDSI (Figure 6n) are larger than that extracted by the ENDSIIIOLCI (Figure 6l) and
SVM (Figure 6o). This is mainly attributed to the complex seawater environment and different sea
ice features near the Yellow River estuary in Laizhou Bay (Figure 6k) where the concentration of
suspended sediment reaches 100 mg l−1 in winter. The NDSIIIOLCI and NDSI are likely to overestimate
the extent of sea ice in coastal waters where the sediment concentration is high. However, the results
of the ENDSIIIOLCI and SVM are not affected by turbid seawater contamination, and comparison with
the reference images indicate that they can accurately depict the outer edge of sea ice in areas of turbid
sea. In addition, omitted extraction in the extent of sea ice was observed in both indexes at the western
coast of the Bohai Sea where the floe size is small or the ice cover is sparse (Figure 6f). Validation
against the MSI image indicates that only thicker sea ice with higher brightness in the remote-sensing
image was well identified using these approaches. Thus, thin ice was not effectually detected when
extracting the Bohai Sea ice from OLCI imagery using the multispectral-bands ratio indexes employed
in this study.

Comparison of the results confirms that land and cloud do not contribute to the sea ice signal.
Threshold segmentation based on sea ice information indexes is efficiently capable of extracting sea ice
extent without masking by land and cloud. Additionally, snow-covered land cannot influence the sea
ice detection using our indexes, even though the snow was perceived to exist in the shore side region
beside sea-ice-covered areas.

The validation results clearly show that the different methods achieved different sea ice detection
accuracies. The accuracy of our ENDSIIIOLCI was high, with an overall accuracy of 94.83% and a Kappa
coefficient of 76.54%, close to the accuracy of SVM, and higher than NDSIIIOLCI or NDSI (Table 2).
The results indicate that the main source of error was the mislabeling of turbid seawater as sea ice.
Given the spectral confusion between sea ice and turbid seawater, the error was relatively significant in
double-bands ratio methods, such as NDSI and NDSIIIOLCI. The SVM method reached high detection
accuracy through image classification, but it needs sample training in the complex classifier, which is
relatively time-consuming and inefficient. However, the ENDSIIIOLCI has the advantage of rapid and
effective detection of sea ice while outperforming the other methods. These results suggest that our
ENDSIIIOLCI method is well suited for sea ice monitoring in the Bohai Sea, even with its complex
seawater environment during winter.

The sea ice extraction results via ENDSIIIOLCI were also validated using another two simultaneous
MSI images on different dates (29 January 2018 (Figure 7a) at ice stable stage and 16 February 2018
(Figure 7c) at ice melting stage) which are available. The sea ice extraction results from ENDSIIIOLCI
(Figure 7) show that the method can effectively extract sea ice extent at different ice stages. A few areas
with high reflectance in the image were not extracted as sea ice, which may be caused by the snow
cover. The snow cover area was small and had little effect on the sea ice extraction.
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Table 2. Contingency table for accuracy validation of sea ice detection based on different methods on 1
February 2018.

Ground Truth

Sea Ice Other Total Commission Error

ENDSIIIOLCI Map

Sea Ice 89 11 100 11.00%
Other 35 754 789 4.44%
Total 124 765 889

Omission Error 28.23% 1.44% Overall Accuracy

Kappa 76.54% 94.83%

ENDSIIIOLCI Map

Sea Ice 94 35 129 27.13%
Other 30 730 760 3.95%
Total 124 765 889

Omission Error 24.19% 4.58% Overall Accuracy

Kappa 70.05% 92.69%

NDSI Map

Sea Ice 107 77 184 41.85%
Other 18 798 816 2.21%
Total 125 875 1000

Omission Error 14.40% 8.80% Overall Accuracy

Kappa 63.88% 90.50%

SVM Map

Sea Ice 97 19 116 16.38%
Other 28 762 790 3.54%
Total 125 781 906

Omission Error 22.40% 2.43% Overall Accuracy

Kappa 77.51% 94.81%
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Figure 7. Sea ice extraction results based on ENDSIIIOLCI from OLCI images with 300 m spatial
resolution on 29 January 2018 (b) and February 16, 2018 (d). Two true-color images in the first column
(a,c) are the MSI validation images with 60 m spatial resolution. The blue box in (b) represents the
boundary of the validation image (a).
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4.2. Spatiotemporal Evolution of the Bohai Sea Ice in the 2017–2018 Winter

Sea ice coverage significantly expanded in the Bohai Sea from December 2017 to January 2018.
The ENDSIIIOLCI, which efficiently reduces the interference of turbid seawater in the southern Bohai
Sea, was further applied to monitoring the variability in sea ice extent with 300 m spatial resolution in
the Bohai Sea during the winter of 2017–2018. Owing to the limits of cloud coverage and the revisit
cycle of the satellite, only 18 images were acquired by the Sentinel-3 OLCI instrument in the Bohai Sea
region from 1 January 2018 to 8 March 2018. All of the images were utilized for sea ice extent extraction
and determination of spatiotemporal change in sea ice coverage during the 2017–2018 winter season.
Several clear-sky scenes were acquired by Sentinel-3 OLCI prior to January 1, 2018, in December
2017. At that time, only sporadic sea ice coverage could be identified near the coastal region in the
Liaodong Bay (results not shown). In early January 2018, most of the sea ice was confined to the
northern part of the Liaodong Bay region. The average sea ice coverage from January 1 to January 20
(Figure 8a–e) was less than 1,400 km2; because of cloud contamination over the sea ice area, there was
some underestimation of the extent of sea ice on January 13 and 20.

A significant increase in sea ice coverage occurred in the Bohai Sea in mid-January 2018 (Figure 9),
with a particularly pronounced expansion occurring between 20 January 2018 (Figure 8e) and 24
January 2018 (Figure 8f). In those four days, the sea ice expanded to cover a large offshore area in
Liaodong Bay, as well as some areas in Bohai Bay and Laizhou Bay. On 24 January 2018, the total sea
ice coverage was 10,827 km2 (Figure 8f). By 28 January 2018, it had further expanded to both northern
and western Liaodong Bay, causing the total sea ice coverage in the Bohai Sea to jump to its peak value
for the entire winter season, 13,060 km2 (Figure 8g). The sea ice began its first retreat in late January
and early February. The sea ice coverages on January 29, January 31, and February 1 were 7,457 km2

(Figure 8h), 6,489 km2 (Figure 8i), and 5,963 km2 (Figure 8j), respectively.
The sea ice showed a notable resurgence in early February (Figure 9). Three days after the first

retreat, on February 4, 2018, the sea ice had again covered half of Liaodong Bay and had reached
a coverage of 10,497 km2 (Figure 8k). On 5 February 2018, the ice coverage was insistent, at 9,935 km2

(Figure 8l). After 12 February 2018, when the total coverage was 12,954 km2 (Figure 8m), into late
February, the sea ice coverage rapidly reduced and became more fragmented. The sea ice melted from
the south to the north, the opposite direction to its growth, with a gradual downward trend in the
ice coverage from 16 February 2018 to 8 March 2018, during which period successive images showed
coverages of 6,337, 4,820, 1,932, 3,063, and 1,470 km2 (Figure 8n–r, respectively). The remaining sea ice
was mainly concentrated in the north of Liaodong Bay and had drifted to and accumulated in the east
of Liaodong Bay under the action of external forces such as wind and waves. The sea ice had finally
completely melted away in mid-March.



Remote Sens. 2019, 11, 2436 14 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW   15 of 19 

 

 
Figure 8. Spatiotemporal evolution of the extent of Bohai Sea ice during the winter of 2017–2018 from 
OLCI images using the ENDSIIIOLCI method (a–r). Red areas depict sea ice coverage. 

Figure 8. Spatiotemporal evolution of the extent of Bohai Sea ice during the winter of 2017–2018 from
OLCI images using the ENDSIIIOLCI method (a–r). Red areas depict sea ice coverage.



Remote Sens. 2019, 11, 2436 15 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW   16 of 19 

 

 
Figure 9. The evolution of the Bohai Sea ice area extracted from OLCI images during the winter of 
2017–2018. 

5. Conclusions 

Two sea ice information indexes have been developed to quickly and accurately extract the 
extent of sea ice from OLCI remote-sensing data. Comparison of the extraction results with higher-
resolution Sentinel-2 MSI imagery verifies that these indexes enable sea ice mapping with OLCI data 
in the Bohai Sea. The Normalized Difference Sea Ice Information Index (NDSIIIOLCI), which is the 
normalized ratio of Band 20 to Band 21 in OLCI TOA reflectance images, and the Enhanced 
Normalized Difference Sea Ice Information Index ( ENDSIIIOLCI ), which is a modification of 
NDSIIIOLCI in which Bands 12 and 16 are also incorporated, can effectively detect sea ice information 
in the Bohai Sea and suppress most background information, such as coverage by land, cloud, and 
snow. Comparison between the results from our indexes, famous NDSI, and SVM methods indicates 
that sediment-laden water can interfere with sea ice extraction with the NDSIIIOLCI and NDSI but 
that the ENDSIIIOLCI and SVM suffer from less such interference. However, these four methods have 
poorer performance in detecting thin sea ice in the western Bohai Sea than they do in detecting thick 
sea ice. The accuracy evaluation suggests that our ENDSIIIOLCI index can rapidly and accurately 
detect and map the sea ice extent in the Bohai Sea during winter. The results also show our approach 
can extract most of the sea ice (including nilas ice, gray ice, and gray-white ice) in OLCI images, but 
the new ice which is small and thin is hard to interpret and detect from the medium-resolution OLCI 
images due to the limitation of the spatial resolution. Moreover, it would be better to reset the 
threshold values when employing our indexes to detect sea ice extent in other years because the ice 
conditions vary with the years. 

The spatiotemporal evolution of the Bohai Sea ice in the winter of 2017–2018 was monitored by 
applying the ENDSIIIOLCI to OLCI images. Two major increases were detected in the sea ice extent 
in mid-January and early February. The largest extent of the sea ice was 13,060 km2 on January 28. 
After reaching its peak in late January 2018, sea ice coverage remained high until early February, and 
the sea ice then gradually melted from south to north in mid-February. The whole period when there 
was ice coverage lasted for about four months, within which there was a significant expansion in 
mid-January and a final fading away in early March. Overall, our proposed method provides a 
convenient and effective technique for sea ice detection and evolution study in the Bohai Sea, which 
can help monitor the recent impacts of global warming. 
 

Author Contributions: H.S. and B.J. conceived and designed the experiments; B.J. performed the experiments; 
H.S. and B.J. analyzed the results; H.S. and B.J. wrote the paper; H.S. and Y.W. revised the paper. 

Figure 9. The evolution of the Bohai Sea ice area extracted from OLCI images during the winter
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5. Conclusions

Two sea ice information indexes have been developed to quickly and accurately extract the extent
of sea ice from OLCI remote-sensing data. Comparison of the extraction results with higher-resolution
Sentinel-2 MSI imagery verifies that these indexes enable sea ice mapping with OLCI data in the Bohai
Sea. The Normalized Difference Sea Ice Information Index (NDSIIIOLCI), which is the normalized ratio
of Band 20 to Band 21 in OLCI TOA reflectance images, and the Enhanced Normalized Difference Sea
Ice Information Index (ENDSIIIOLCI), which is a modification of NDSIIIOLCI in which Bands 12 and 16
are also incorporated, can effectively detect sea ice information in the Bohai Sea and suppress most
background information, such as coverage by land, cloud, and snow. Comparison between the results
from our indexes, famous NDSI, and SVM methods indicates that sediment-laden water can interfere
with sea ice extraction with the NDSIIIOLCI and NDSI but that the ENDSIIIOLCI and SVM suffer from
less such interference. However, these four methods have poorer performance in detecting thin sea ice
in the western Bohai Sea than they do in detecting thick sea ice. The accuracy evaluation suggests
that our ENDSIIIOLCI index can rapidly and accurately detect and map the sea ice extent in the Bohai
Sea during winter. The results also show our approach can extract most of the sea ice (including nilas
ice, gray ice, and gray-white ice) in OLCI images, but the new ice which is small and thin is hard to
interpret and detect from the medium-resolution OLCI images due to the limitation of the spatial
resolution. Moreover, it would be better to reset the threshold values when employing our indexes to
detect sea ice extent in other years because the ice conditions vary with the years.

The spatiotemporal evolution of the Bohai Sea ice in the winter of 2017–2018 was monitored by
applying the ENDSIIIOLCI to OLCI images. Two major increases were detected in the sea ice extent
in mid-January and early February. The largest extent of the sea ice was 13,060 km2 on January 28.
After reaching its peak in late January 2018, sea ice coverage remained high until early February,
and the sea ice then gradually melted from south to north in mid-February. The whole period when
there was ice coverage lasted for about four months, within which there was a significant expansion
in mid-January and a final fading away in early March. Overall, our proposed method provides
a convenient and effective technique for sea ice detection and evolution study in the Bohai Sea,
which can help monitor the recent impacts of global warming.
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