Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review
Abstract
:1. Introduction
2. Attention Mechanism in Deep Learning
- (i)
- The softness of attention: the initial attention mechanism proposed by [20] is a soft version, which is also known as deterministic attention. This network considers all input elements (computes the average for each weight) to compute the final context vector. The context vector is the high-dimensional vector representation of the input elements or sequences of the input elements and in general the attention mechanism aims to add more contextual information to compute the final context vector. However, hard attention, which is also known as stochastic attention, randomly selects from the sample elements to compute the final context vector [40]. This, therefore, reduces the computational time. Furthermore, there is another categorization that is frequently used in computer vision tasks and RS image processing, i.e., global and local attentions [41,42]. Global attention is similar to soft attention since it also considers all input elements. However, global attention simplifies soft attention by using the output of the current time step rather than the prior one, while local attention is a combination of soft and hard attentions. This approach considers a subset of input elements at a time, and thus, overcomes the limitation of hard attention, i.e., being nondifferentiable, and in the meantime is less computationally expensive.
- (ii)
- Forms of input features: attention mechanisms can be grouped based on their input requirements: item-wise and location-wise. Item-wise attention requires inputs that are known to the model explicitly or produced with a preprocess [43,44,45]. However, location-wise attention does not necessarily require known inputs, in this case, the model needs to deal with input items that are difficult to distinguish. Due to the characteristics and features of the RS images and targeted tasks, location-wise attention is commonly used for RS image processing [42,46,47,48].
- (iii)
- Input representations: there are single-input and multi-input attention models [49,50]. In addition, the general processing procedure of the inputs also varies between the developed models. Most of the current attention networks work with single-input, and the model processes them in two independent sequences (i.e., distinctive model). The co-attention model is a multi-input attention network that parallelly implements the attention mechanism on two different sources but finally merges them [50]. This makes it suitable for change detection from RS images [51]. A self-attention network computes attentions only based on the model inputs, and thus, it decreases the dependence on external information [52,53,54]. This allows the model to perform better in images with complex background by focusing more on targeted areas [55]. Hierarchical attention mechanism computes weights from the original input and different levels/scales of the inputs [56]. This attention mechanism is also known as fine-grained attention for image classification [57].
- (iv)
- Output representations: single-output is the commonly used output representation in attention mechanisms. It processes a single feature at a time and computes weight scores. There are also two other multidimensional and multi-head attention mechanisms [21]. Multi-head attention processes the inputs linearly in multiple subsets, and finally merges them to compute the final attention weights [58], and is especially useful when employing the attention mechanism in conjunction with CNN methods [59,60,61]. Multidimensional attention, which is mostly employed for natural language processing, computes weights based on matrix representation of the features instead of vectors [62,63].
3. Deep Neural Network Architectures with Attention for RS Image Processing
4. Methodology
4.1. Research Questions
4.2. Search Strategy
- Search string:
4.3. Study Selection Criteria
4.4. Data Extraction
4.5. Data Synthesis
5. Results and Discussion
5.1. Overview of the Reviewed Papers
5.2. RQ1. What Are the Specific Objectives in Remote Sensing Image Processing That Are Addressed with Attention-Based Deep Learning?
- (i)
- Image classification: refers to labeling a group of pixels (objects or patches) in the RS images using training samples (e.g., land cover and land use classification). This is one of the most frequently used RS image processing tasks in various application domains as the starting point of the process [87,88,89]. Image classification is also called scene classification [88] or land cover and land use classifications [90] in the literature, depending on the aim and the data used in the studies. About half of the papers in At-DL addressed the image classification tasks for images acquired from different sensors such as multispectral satellites [67,91,92], hyperspectral [71,93], and unmanned aerial vehicles (UAV) [34,94] images. The large amount of the freely available benchmark data sets and organized competitions in this regard attracts researchers to develop DL methods in this subject area.
- (ii)
- Object detection: refers to the detection of different objects in an image. It is the second most popular task that is addressed using At-DL including general object/target detection from RS images [46,60,95] or detection of the specific objects and features such as buildings [74,96], ships [97,98], landslides [99], clouds [53,100], airports [101], roads [72] and trees [102].
- (iii)
- (iv)
- Image fusion: is mostly known as a fundamental preprocess in the RS field, and aims to produce higher spectral and spatial resolutions. There are two main image fusion tasks that were addressed using At-DL in 13 papers. One is pan-sharpening that aims to fuse a coarse resolution multispectral image with a correspondingly high-resolution panchromatic image to produce a high-resolution multispectral image [106,107,108]. Another one is image super-resolution which refers to enhancing the resolution of the original image using At-DL methods [106,107,109].
- (v)
- Change detection: refers to detecting and quantifying the changes in multi-temporal RS images. This is one of the challenging tasks and with the increasing amount of multi-temporal RS images has become more popular. At-DL was used in 7 papers to detect changes in general [110,111], in buildings [51], or any other objects [81,112].
- (vi)
5.3. RQ2. What Are the Deep Learning Algorithms That Are Improved with Attention Mechanism for Remote Sensing Image Processing?
5.4. RQ3. Which Types of Attention Mechanisms Were Used in Deep Learning Methods for Remote Sensing Image Processing?
5.5. RQ4. What Are the Used Data Sets/Types in Attention-Based Deep Learning Methods for Remote Sensing Image Processing?
5.6. RQ5. What Are the Effects of the Attention Mechanism in the Performance of the Deep Learning Methods in Remote Sensing Image Processing?
5.7. Threats to Validity of This Review
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Data Extraction Form
# | Extraction Element | Contents |
---|---|---|
General information | ||
1 | ID | Unique ID for the study |
2 | Title | Full title of the article |
3 | Authors | The authors of the article |
4 | Year | The publication year |
5 | Journal name | The journal name (e.g., Journal of Dairy Science) |
Study description | ||
6 | Study target | ☐Image classification ☐Image segmentation ☐Object detection ☐Image fusion ☐Change detection ☐Other |
7 | Details about the study | E.g., any interesting findings or problems |
8 | Directly address RS image processing | ☐Yes ☐No |
9 | Deep learning algorithm | ☐CNN ☐RNN ☐GAN ☐GNN ☐Other |
10 | Attention type | ☐Spatial ☐Channel ☐Combined |
11 | Remote sensing image type | ☐MS Satellite ☐Aerial ☐Hyperspectral ☐SAR ☐UAV ☐Other |
12 | Remote sensing image spatial resolution | ☐High (<10 m) ☐Medium (10–30 m) ☐Low (>30 m) |
13 | Overall accuracy (%) | The overall accuracy of the produced results using At-DL method |
14 | Effect of attention mechanism (%) | The increased rate of the overall accuracy when used attention mechanism. |
15 | Additional notes | E.g., the opinions of the reviewer about the study |
References
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Turker, M. An improved cluster-based snake model for automatic agricultural field boundary extraction from high spatial resolution imagery. Int. J. Remote Sens. 2019, 40, 1217–1247. [Google Scholar] [CrossRef]
- Valente, J.; Sari, B.; Kooistra, L.; Kramer, H.; Mücher, S. Automated crop plant counting from very high-resolution aerial imagery. Precis. Agric. 2020, 21, 1366–1384. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precis. Agric. 2021. [Google Scholar] [CrossRef]
- Nielsen, M.M. Remote sensing for urban planning and management: The use of window-independent context segmentation to extract urban features in Stockholm. Comput. Environ. Urban Syst. 2015, 52, 1–9. [Google Scholar] [CrossRef]
- Kadhim, N.; Mourshed, M.; Bray, M. Advances in remote sensing applications for urban sustainability. Euro-Mediterr. J. Environ. Integr. 2016, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarian, S.; Ghaffarian, S. Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google Earth images. ISPRS J. Photogramm. Remote Sens. 2014, 97, 152–159. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Kerle, N.; Filatova, T. Remote Sensing-Based Proxies for Urban Disaster Risk Management and Resilience: A Review. Remote Sens. 2018, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarian, S.; Rezaie Farhadabad, A.; Kerle, N. Post-Disaster Recovery Monitoring with Google Earth Engine. Appl. Sci. 2020, 10, 4574. [Google Scholar] [CrossRef]
- Ghaffarian, S.; Emtehani, S. Monitoring Urban Deprived Areas with Remote Sensing and Machine Learning in Case of Disaster Recovery. Climate 2021, 9, 58. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef] [Green Version]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Ghanbari, H.; Mahdianpari, M.; Homayouni, S.; Mohammadimanesh, F. A Meta-Analysis of Convolutional Neural Networks for Remote Sensing Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3602–3613. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liu, Q. Psgan: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 873–877. [Google Scholar]
- Yan, X.; Ai, T.; Yang, M.; Yin, H. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS J. Photogramm. Remote Sens. 2019, 150, 259–273. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Wu, J.; Wang, Y.C.; Wang, H.; Li, Y.S.; Chai, Y.Z.; Liu, Y. A Cloud Detection Method Using Convolutional Neural Network Based on Gabor Transform and Attention Mechanism with Dark Channel Subnet for Remote Sensing Image. Remote Sens. 2020, 12, 3261. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Ritz, C.; Zhao, J.H.; Lan, J.H. Attention-Based Residual Network with Scattering Transform Features for Hyperspectral Unmixing with Limited Training Samples. Remote Sens. 2020, 12, 400. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Li, X.; Liu, F. Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 519–531. [Google Scholar] [CrossRef]
- Gao, F.; He, Y.S.; Wang, J.; Hussain, A.; Zhou, H.Y. Anchor-free Convolutional Network with Dense Attention Feature Aggregation for Ship Detection in SAR Images. Remote Sens. 2020, 12, 2619. [Google Scholar] [CrossRef]
- Li, F.; Feng, R.; Han, W.; Wang, L. High-Resolution Remote Sensing Image Scene Classification via Key Filter Bank Based on Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8077–8092. [Google Scholar] [CrossRef]
- Yang, H.; Wu, P.H.; Yao, X.D.; Wu, Y.L.; Wang, B.; Xu, Y.Y. Building Extraction in Very High Resolution Imagery by Dense-Attention Networks. Remote Sens. 2018, 10, 1768. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017, 33, 100–112. [Google Scholar] [CrossRef]
- Galassi, A.; Lippi, M.; Torroni, P. Attention in Natural Language Processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Koščević, K.; Subašić, M.; Lončarić, S. Attention-based Convolutional Neural Network for Computer Vision Color Constancy. In Proceedings of the 2019 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 23–25 September 2019; pp. 372–377. [Google Scholar]
- Li, W.; Liu, K.; Zhang, L.; Cheng, F. Object detection based on an adaptive attention mechanism. Sci. Rep. 2020, 10, 11307. [Google Scholar] [CrossRef]
- Cui, W.; Wang, F.; He, X.; Zhang, D.Y.; Xu, X.X.; Yao, M.; Wang, Z.W.; Huang, J.J. Multi-Scale Semantic Segmentation and Spatial Relationship Recognition of Remote Sensing Images Based on an Attention Model. Remote Sens. 2019, 11, 1044. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, A.; Bazi, Y.; Ammour, N.; Almubarak, H.; Alajlan, N. Deep Attention Neural Network for Multi-Label Classification in Unmanned Aerial Vehicle Imagery. IEEE Access 2019, 7, 119873–119880. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, X.; Lu, X.; Wu, S. Spectral-Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3232–3245. [Google Scholar] [CrossRef]
- Feng, J.; Wu, X.; Shang, R.; Sui, C.; Li, J.; Jiao, L.; Zhang, X. Attention Multibranch Convolutional Neural Network for Hyperspectral Image Classification Based on Adaptive Region Search. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Yu, X. Spectral-Spatial Graph Attention Network for Semisupervised Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- Censi, A.M.; Ienco, D.; Gbodjo, Y.J.E.; Pensa, R.G.; Interdonato, R.; Gaetano, R. Attentive Spatial Temporal Graph CNN for Land Cover Mapping from Multi Temporal Remote Sensing Data. IEEE Access 2021, 9, 23070–23082. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learning, Proceedings of Machine Learning Research, Lille, France, 7–9 July 2015; pp. 2048–2057. [Google Scholar]
- Guo, Y.; Ji, J.; Lu, X.; Huo, H.; Fang, T.; Li, D. Global-Local Attention Network for Aerial Scene Classification. IEEE Access 2019, 7, 67200–67212. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Q.; Tang, X.; Zhang, X.; Zhu, C.; Peng, Q.; Jiao, L. Remote Sensing Scene Classification Based on Global and Local Consistent Network. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2020; pp. 537–540. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Peng, J.T.; Sun, W.W. Spatial-Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Alswayed, A.S.; Alhichri, H.S.; Bazi, Y. SqueezeNet with Attention for Remote Sensing Scene Classification. In Proceedings of the ICCAIS 2020—3rd International Conference on Computer Applications and Information Security, Riyadh, Saudi Arabia, 19–21 March 2020. [Google Scholar]
- Li, C.Y.; Luo, B.; Hong, H.L.; Su, X.; Wang, Y.J.; Liu, J.; Wang, C.J.; Zhang, J.; Wei, L.H. Object Detection Based on Global-Local Saliency Constraint in Aerial Images. Remote Sens. 2020, 12, 1435. [Google Scholar] [CrossRef]
- Zhou, M.; Zou, Z.; Shi, Z.; Zeng, W.J.; Gui, J. Local Attention Networks for Occluded Airplane Detection in Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 381–385. [Google Scholar] [CrossRef]
- Ding, L.; Tang, H.; Bruzzone, L. LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 426–435. [Google Scholar] [CrossRef]
- Chaudhari, S.; Mithal, V.; Polatkan, G.; Ramanath, R. An attentive survey of attention models. arXiv 2019, arXiv:1904.02874. [Google Scholar]
- Lu, J.; Yang, J.; Batra, D.; Parikh, D. Hierarchical question-image co-attention for visual question answering. In Proceedings of the NIPS, Barcelona, Spain, 5–10 December 2016; pp. 289–297. [Google Scholar]
- Jiang, H.W.; Hu, X.Y.; Li, K.; Zhang, J.M.; Gong, J.Q.; Zhang, M. PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection. Remote Sens. 2020, 12, 484. [Google Scholar] [CrossRef] [Green Version]
- He, N.; Fang, L.; Li, Y.; Plaza, A. High-Order Self-Attention Network for Remote Sensing Scene Classification. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–2 August 2019; pp. 3013–3016. [Google Scholar]
- Wu, Z.C.; Li, J.; Wang, Y.S.; Hu, Z.W.; Molinier, M. Self-Attentive Generative Adversarial Network for Cloud Detection in High Resolution Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1792–1796. [Google Scholar] [CrossRef]
- Cao, R.; Fang, L.; Lu, T.; He, N. Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2021, 18, 43–47. [Google Scholar] [CrossRef]
- Wu, H.L.; Zhao, S.Z.; Li, L.; Lu, C.Q.; Chen, W. Self-Attention Network With Joint Loss for Remote Sensing Image Scene Classification. IEEE Access 2020, 8, 210347–210359. [Google Scholar] [CrossRef]
- Xiao, T.; Xu, Y.; Yang, K.; Zhang, J.; Peng, Y.; Zhang, Z. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In Proceedings of the CVPR, IEEE Computer Society, Boston, MA, USA, 7–12 June 2015; pp. 842–850. [Google Scholar]
- Sumbul, G.; Cinbis, R.G.; Aksoy, S. Multisource Region Attention Network for Fine-Grained Object Recognition in Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4929–4937. [Google Scholar] [CrossRef]
- Li, J.; Tu, Z.; Yang, B.; Lyu, M.R.; Zhang, T. Multi-Head Attention with Disagreement Regularization. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2897–2903. [Google Scholar]
- Zhang, S.Y.; Li, C.R.; Qiu, S.; Gao, C.X.; Zhang, F.; Du, Z.H.; Liu, R.Y. EMMCNN: An ETPS-Based Multi-Scale and Multi-Feature Method Using CNN for High Spatial Resolution Image Land-Cover Classification. Remote Sens. 2020, 12, 66. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Li, Z.Z.; Xu, B.T.; Yao, X.; Ding, Z.Q.; Qin, T.Q. Structured Object-Level Relational Reasoning CNN-Based Target Detection Algorithm in a Remote Sensing Image. Remote Sens. 2021, 13, 281. [Google Scholar] [CrossRef]
- Wu, Z.; Hou, B.; Jiao, L. Multiscale CNN with Autoencoder Regularization Joint Contextual Attention Network for SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1200–1213. [Google Scholar] [CrossRef]
- Shen, T.; Zhou, T.; Long, G.; Jiang, J.; Pan, S.; Zhang, C. DiSAN: Directional Self-Attention Network for RNN/CNN-free Language Understanding. In Proceedings of the AAAI, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Du, J.; Han, J.; Way, A.; Wan, D. Multi-Level Structured Self-Attentions for Distantly Supervised Relation Extraction. In Proceedings of the EMNLP, Brussels, Belgium, 31 October–4 November 2018. [Google Scholar]
- Carrasco, M. Visual attention: The past 25 years. Vis. Res. 2011, 51, 1484–1525. [Google Scholar] [CrossRef] [Green Version]
- Beuth, F.; Hamker, F.H. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vis. Res. 2015, 116, 241–257. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.P.; Zhao, J.L.; Zhu, H.; Shen, J.C.; Jiao, L.C.; Wu, Y.; Hou, B.A. A Spatial-Channel Collaborative Attention Network for Enhancement of Multiresolution Classification. Remote Sens. 2021, 13, 106. [Google Scholar] [CrossRef]
- Tong, W.; Chen, W.; Han, W.; Li, X.; Wang, L. Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4121–4132. [Google Scholar] [CrossRef]
- Guo, D.; Xia, Y.; Luo, X. Scene Classification of Remote Sensing Images Based on Saliency Dual Attention Residual Network. IEEE Access 2020, 8, 6344–6357. [Google Scholar] [CrossRef]
- Hang, R.L.; Li, Z.; Liu, Q.S.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral Image Classification With Attention-Aided CNNs. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2281–2293. [Google Scholar] [CrossRef]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual Spectral-Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 449–462. [Google Scholar] [CrossRef]
- Ren, Y.F.; Yu, Y.T.; Guan, H.Y. DA-CapsUNet: A Dual-Attention Capsule U-Net for Road Extraction from Remote Sensing Imagery. Remote Sens. 2020, 12, 2866. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X.; Yang, X.; Xu, H. Development of a Dual-Attention U-Net Model for Sea Ice and Open Water Classification on SAR Images. IEEE Geosci. Remote Sens. Lett. 2021. [Google Scholar] [CrossRef]
- He, N.; Fang, L.; Plaza, A. Hybrid first and second order attention Unet for building segmentation in remote sensing images. Sci. China Inf. Sci. 2020, 63. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Yang, F.; Gao, L.; Chen, Z.; Zhang, B.; Fan, H.; Ren, J. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms. Remote Sens. 2019, 11, 966. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.C.; Cheng, Z.H.; Zhang, L.L.; Li, J.X. Remote Sensing Image Change Detection Based on Information Transmission and Attention Mechanism. IEEE Access 2019, 7, 156349–156359. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.T.; Chanussot, J.; Li, X.L. Scene Classification With Recurrent Attention of VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1155–1167. [Google Scholar] [CrossRef]
- Li, Z.T.; Chen, G.K.; Zhang, T.X. Temporal Attention Networks for Multitemporal Multisensor Crop Classification. IEEE Access 2019, 7, 134677–134690. [Google Scholar] [CrossRef]
- Mei, X.G.; Pan, E.T.; Ma, Y.; Dai, X.B.; Huang, J.; Fan, F.; Du, Q.L.; Zheng, H.; Ma, J.Y. Spectral-Spatial Attention Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Gao, F.; Sun, J.P.; Zhou, H.Y.; Hussain, A. Attention Graph Convolution Network for Image Segmentation in Big SAR Imagery Data. Remote Sens. 2019, 11, 2586. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, X.; Wu, Y.; Hou, W.; Wang, M.; Jin, Y.; Xu, W. Research on Change Detection Method of High-Resolution Remote Sensing Images Based on Subpixel Convolution. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1447–1457. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Zhang, Y.; Zhang, M.; Chen, L. Multi-label remote sensing image scene classification by combining a convolutional neural network and a graph neural network. Remote Sens. 2020, 12, 4003. [Google Scholar] [CrossRef]
- Kitchenham, B.; Pearl Brereton, O.; Budgen, D.; Turner, M.; Bailey, J.; Linkman, S. Systematic literature reviews in software engineering—A systematic literature review. Inf. Softw. Technol. 2009, 51, 7–15. [Google Scholar] [CrossRef]
- Chen, L.F.; Zhang, P.; Xing, J.; Li, Z.H.; Xing, X.M.; Yuan, Z.H. A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas. Remote Sens. 2020, 12, 3205. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, C.; Zeng, T. A method of water change monitoring in remote image time series based on long short time memory. Remote Sens. Lett. 2021, 12, 67–76. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Chen, G.; Vukomanovic, J.; Singh, K.K.; Liu, Y.; Holden, S.; Meentemeyer, R.K. Recurrent Shadow Attention Model (RSAM) for shadow removal in high-resolution urban land-cover mapping. Remote Sens. Environ. 2020, 247, 111945. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zang, S.; Zhang, B.; Li, S.; Wu, C. A Review of Remote Sensing Image Classification Techniques: The Role of Spatio-contextual Information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Alem, A.; Kumar, S. Deep Learning Methods for Land Cover and Land Use Classification in Remote Sensing: A Review. In Proceedings of the 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 4–5 June 2020; pp. 903–908. [Google Scholar]
- Sang, Q.; Zhuang, Y.; Dong, S.; Wang, G.; Chen, H. FRF-Net: Land Cover Classification from Large-Scale VHR Optical Remote Sensing Images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1057–1061. [Google Scholar] [CrossRef]
- Ienco, D.; Gbodjo, Y.J.E.; Gaetano, R.; Interdonato, R. Weakly Supervised Learning for Land Cover Mapping of Satellite Image Time Series via Attention-Based CNN. IEEE Access 2020, 8, 179547–179560. [Google Scholar] [CrossRef]
- Tang, X.; Meng, F.; Zhang, X.; Cheung, Y.M.; Ma, J.; Liu, F.; Jiao, L. Hyperspectral Image Classification Based on 3-D Octave Convolution with Spatial-Spectral Attention Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2430–2447. [Google Scholar] [CrossRef]
- Feng, Q.L.; Yang, J.Y.; Liu, Y.M.; Ou, C.; Zhu, D.H.; Niu, B.W.; Liu, J.T.; Li, B.G. Multi-Temporal Unmanned Aerial Vehicle Remote Sensing for Vegetable Mapping Using an Attention-Based Recurrent Convolutional Neural Network. Remote Sens. 2020, 12, 1668. [Google Scholar] [CrossRef]
- Li, Y.Y.; Huang, Q.; Pei, X.; Jiao, L.C.; Shang, R.H. RADet: Refine Feature Pyramid Network and Multi-Layer Attention Network for Arbitrary-Oriented Object Detection of Remote Sensing Images. Remote Sens. 2020, 12, 389. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Wang, G.; He, G.; Long, T.; Yin, R.; Zhang, Z.; Chen, S.; Luo, B. Robust building extraction for high spatial resolution remote sensing images with self-attention network. Sensors 2020, 20, 7241. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, L.; Xiong, B.; Kuang, G. Attention receptive pyramid network for ship detection in SAR images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2738–2756. [Google Scholar] [CrossRef]
- Fu, J.; Sun, X.; Wang, Z.; Fu, K. An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [Google Scholar] [CrossRef]
- Ji, S.P.; Yu, D.W.; Shen, C.Y.; Li, W.L.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Yao, Z.; Jia, J.; Qian, Y. Mcnet: Multi-scale feature extraction and content-aware reassembly cloud detection model for remote sensing images. Symmetry 2021, 13, 28. [Google Scholar] [CrossRef]
- Tan, S.Y.; Chen, L.F.; Pan, Z.H.; Xing, J.; Li, Z.H.; Yuan, Z.H. Geospatial Contextual Attention Mechanism for Automatic and Fast Airport Detection in SAR Imagery. IEEE Access 2020, 8, 173627–173640. [Google Scholar] [CrossRef]
- Zheng, J.; Fu, H.; Li, W.; Wu, W.; Zhao, Y.; Dong, R.; Yu, L. Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network. ISPRS J. Photogramm. Remote Sens. 2020, 167, 154–177. [Google Scholar] [CrossRef]
- Qi, X.; Li, K.; Liu, P.; Zhou, X.; Sun, M. Deep Attention and Multi-Scale Networks for Accurate Remote Sensing Image Segmentation. IEEE Access 2020, 8, 146627–146639. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, Z.; Wu, Y.; Gao, X.; Sun, X. Terrain Segmentation in Polarimetric SAR Images Using Dual-Attention Fusion Network. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Li, J.L.; Xiu, J.P.; Yang, Z.Q.; Liu, C. Dual Path Attention Net for Remote Sensing Semantic Image Segmentation. Isprs Int. J. Geo-Inf. 2020, 9, 571. [Google Scholar] [CrossRef]
- Dong, X.; Sun, X.; Jia, X.; Xi, Z.; Gao, L.; Zhang, B. Remote Sensing Image Super-Resolution Using Novel Dense-Sampling Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1618–1633. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Q.; Wu, C.D.; Chi, J.N.; Yu, X.S. Non-Locally up-Down Convolutional Attention Network for Remote Sensing Image Super-Resolution. IEEE Access 2020, 8, 166304–166319. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Lyu, X.; Tong, Y.; Chen, Z.; Li, S.; Liu, D. A Remote-Sensing Image Pan-Sharpening Method Based on Multi-Scale Channel Attention Residual Network. IEEE Access 2020, 8, 27163–27177. [Google Scholar] [CrossRef]
- Li, J.J.; Cui, R.X.; Li, B.; Song, R.; Li, Y.S.; Du, Q. Hyperspectral Image Super-Resolution with 1D-2D Attentional Convolutional Neural Network. Remote Sens. 2019, 11, 2859. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, D.Z.; Li, P.; Lv, P. Change Detection of Remote Sensing Images Based on Attention Mechanism. Comput. Intell. Neurosci. 2020, 2020, 6430627. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1194–1206. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.Z.; Li, Y.; Zhang, Y.N. Coarse-to-Fine Satellite Images Change Detection Framework via Boundary-Aware Attentive Network. Sensors 2020, 20, 6735. [Google Scholar] [CrossRef]
- Gu, Z.Q.; Zhan, Z.Q.; Yuan, Q.Q.; Yan, L. Single Remote Sensing Image Dehazing Using a Prior-Based Dense Attentive Network. Remote Sens. 2019, 11, 3008. [Google Scholar] [CrossRef] [Green Version]
- Gavriil, K.; Muntingh, G.; Barrowclough, O.J.D. Void Filling of Digital Elevation Models with Deep Generative Models. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1645–1649. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, C.; Li, J.; Yuan, Q. SAR Image Despeckling Employing a Recursive Deep CNN Prior. IEEE Trans. Geosci. Remote Sens. 2021, 59, 273–286. [Google Scholar] [CrossRef]
- Li, J.; Lin, D.Y.; Wang, Y.; Xu, G.L.; Zhang, Y.Y.; Ding, C.B.; Zhou, Y.H. Deep Discriminative Representation Learning with Attention Map for Scene Classification. Remote Sens. 2020, 12, 1366. [Google Scholar] [CrossRef]
- Bahri, A.; Majelan, S.G.; Mohammadi, S.; Noori, M.; Mohammadi, K. Remote Sensing Image Classification via Improved Cross-Entropy Loss and Transfer Learning Strategy Based on Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1087–1091. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, J.; Qin, Q. Global prototypical network for few-shot hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4748–4759. [Google Scholar] [CrossRef]
- Lei, P.C.; Liu, C. Inception residual attention network for remote sensing image super-resolution. Int. J. Remote Sens. 2020, 41, 9565–9587. [Google Scholar] [CrossRef]
- Cheng, W.S.; Yang, W.; Wang, M.; Wang, G.; Chen, J.Y. Context Aggregation Network for Semantic Labeling in Aerial Images. Remote Sens. 2019, 11, 1158. [Google Scholar] [CrossRef] [Green Version]
- Gbodjo, Y.J.E.; Ienco, D.; Leroux, L.; Interdonato, R.; Gaetano, R.; Ndao, B. Object-based multi-temporal and multi-source land cover mapping leveraging hierarchical class relationships. Remote Sens. 2020, 12, 2814. [Google Scholar] [CrossRef]
- Liang, L.; Wang, G. Efficient recurrent attention network for remote sensing scene classification. IET Image Process. 2021. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zou, C.; Cai, W.W. Small Sample Classification of Hyperspectral Remote Sensing Images Based on Sequential Joint Deeping Learning Model. IEEE Access 2020, 8, 71353–71363. [Google Scholar] [CrossRef]
- You, H.; Tian, S.; Yu, L.; Lv, Y. Pixel-Level Remote Sensing Image Recognition Based on Bidirectional Word Vectors. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1281–1293. [Google Scholar] [CrossRef]
- Zhang, X.K.; Pun, M.O.; Liu, M. Semi-Supervised Multi-Temporal Deep Representation Fusion Network for Landslide Mapping from Aerial Orthophotos. Remote Sens. 2021, 13, 548. [Google Scholar] [CrossRef]
- Wong, R.; Zhang, Z.J.; Wang, Y.M.; Chen, F.S.; Zeng, D. HSI-IPNet: Hyperspectral Imagery Inpainting by Deep Learning With Adaptive Spectral Extraction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4369–4380. [Google Scholar] [CrossRef]
- Xu, R.D.; Tao, Y.T.; Lu, Z.Y.; Zhong, Y.F. Attention-Mechanism-Containing Neural Networks for High-Resolution Remote Sensing Image Classification. Remote Sens. 2018, 10, 1602. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Cao, L.; Yu, D.; Xiong, X.; Cao, M. Semantic Segmentation of Marine Remote Sensing Based on a Cross Direction Attention Mechanism. IEEE Access 2020, 8, 142483–142494. [Google Scholar] [CrossRef]
- Zheng, J.; Feng, Y.; Bai, C.; Zhang, J. Hyperspectral Image Classification Using Mixed Convolutions and Covariance Pooling. IEEE Trans. Geosci. Remote Sens. 2021, 59, 522–534. [Google Scholar] [CrossRef]
- Zhao, L.; Yi, J.; Li, X.; Hu, W.; Wu, J.; Zhang, G. Compact Band Weighting Module Based on Attention-Driven for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Ghamisi, P. Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3246–3263. [Google Scholar] [CrossRef]
- Chen, H.; Chen, R.; Li, N.N. Attentive generative adversarial network for removing thin cloud from a single remote sensing image. IET Image Process. 2021, 15, 856–867. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, H.; Chen, L.; Xing, J.; Pan, Z.; Luo, R.; Cai, X. Integrating weighted feature fusion and the spatial attention module with convolutional neural networks for automatic aircraft detection from sar images. Remote Sens. 2021, 13, 910. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, J.; Chen, C.; Tian, X. NDVI-Net: A fusion network for generating high-resolution normalized difference vegetation index in remote sensing. ISPRS J. Photogramm. Remote Sens. 2020, 168, 182–196. [Google Scholar] [CrossRef]
- Haut, J.M.; Fernandez-Beltran, R.; Paoletti, M.E.; Plaza, J.; Plaza, A. Remote Sensing Image Superresolution Using Deep Residual Channel Attention. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9277–9289. [Google Scholar] [CrossRef]
- Dong, X.; Xi, Z.; Sun, X.; Yang, L. Remote Sensing Image Super-Resolution via Enhanced Back-Projection Networks. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1480–1483. [Google Scholar]
- Guo, H.; Liu, J.; Yang, J.; Xiao, Z.; Wu, Z. Deep Collaborative Attention Network for Hyperspectral Image Classification by Combining 2-D CNN and 3-D CNN. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4789–4802. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.Y.; Duan, C.X.; Yang, Y.; Wang, X.Q. Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network. Remote Sens. 2020, 12, 582. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, R.; Guo, S.; Li, L.; Zhu, M.; Yang, S.; Jiao, L. NAS-Guided Lightweight Multiscale Attention Fusion Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, R.; Wang, W.; Zhang, J. Learning Slimming SAR Ship Object Detector through Network Pruning and Knowledge Distillation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1267–1282. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Wang, J.; Song, Y.; Lei, L. SAR Target Recognition Based on Efficient Fully Convolutional Attention Block CNN. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Qin, J.; Wang, B.; Wu, Y.L.; Lu, Q.; Zhu, H.C. Identifying Pine Wood Nematode Disease Using UAV Images and Deep Learning Algorithms. Remote Sens. 2021, 13, 162. [Google Scholar] [CrossRef]
- de Alwis Pitts, D.A.; So, E. Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites). Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Ghaffarian, S.; Kerle, N.; Pasolli, E.; Jokar Arsanjani, J. Post-Disaster Building Database Updating Using Automated Deep Learning: An Integration of Pre-Disaster OpenStreetMap and Multi-Temporal Satellite Data. Remote Sens. 2019, 11, 2427. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Anouncia, M.; Johnson, S.; Agarwal, A.; Dwivedi, P. Agriculture change detection model using remote sensing images and GIS: Study area Vellore. In Proceedings of the 2012 International Conference on Radar, Communication and Computing (ICRCC), Tiruvannamalai, India, 21–22 December 2012; pp. 54–57. [Google Scholar]
- Liu, Q.; Zhou, H.; Xu, Q.; Liu, X.; Wang, Y. PSGAN: A Generative Adversarial Network for Remote Sensing Image Pan-Sharpening. IEEE Trans. Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Web of Science. Available online: www.isiwebofknowledge.com (accessed on 17 March 2021).
- Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.W. StarGAN v2: Diverse Image Synthesis for Multiple Domains. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 8188–8197. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-Attention Generative Adversarial Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7354–7363. [Google Scholar]
ID | Criterion |
---|---|
EC1. | Papers in which the full text is unavailable |
EC2. | Papers are not written in English |
EC3. | Papers are not aiming to directly contribute to remote sensing image processing |
EC4. | Papers do not directly use attention mechanism within DL methods |
EC5. | Papers do not validate the proposed study |
EC6. | Papers that provide a general summary without a clear contribution |
EC7. | Review, conference, and editorial papers |
Journal Name | Number of Papers |
---|---|
Remote Sensing | 44 |
IEEE Transactions on Geoscience and Remote Sensing | 33 |
IEEE Access | 27 |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 17 |
IEEE Geoscience and Remote Sensing Letters | 14 |
Sensors | 6 |
ISPRS Journal of Photogrammetry and Remote Sensing | 5 |
International Journal of Remote Sensing | 3 |
IET Image Processing | 2 |
ISPRS International Journal of Geo-Information | 2 |
Journal of Applied Remote Sensing | 2 |
Remote Sensing of Environment | 2 |
Symmetry | 2 |
Other | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaffarian, S.; Valente, J.; van der Voort, M.; Tekinerdogan, B. Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sens. 2021, 13, 2965. https://doi.org/10.3390/rs13152965
Ghaffarian S, Valente J, van der Voort M, Tekinerdogan B. Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sensing. 2021; 13(15):2965. https://doi.org/10.3390/rs13152965
Chicago/Turabian StyleGhaffarian, Saman, João Valente, Mariska van der Voort, and Bedir Tekinerdogan. 2021. "Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review" Remote Sensing 13, no. 15: 2965. https://doi.org/10.3390/rs13152965
APA StyleGhaffarian, S., Valente, J., van der Voort, M., & Tekinerdogan, B. (2021). Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sensing, 13(15), 2965. https://doi.org/10.3390/rs13152965