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Abstract: Jointly using spectral and spatial information has become a mainstream strategy in the field
of hyperspectral image (HSI) processing, especially for classification. However, due to the existence
of noisy or correlated spectral bands in the spectral domain and inhomogeneous pixels in the spatial
neighborhood, HSI classification results are often degraded and unsatisfactory. Motivated by the
attention mechanism, this paper proposes a spatial–spectral squeeze-and-excitation (SSSE) module
to adaptively learn the weights for different spectral bands and for different neighboring pixels.
The SSSE structure can suppress or motivate features at a certain position, which can effectively
resist noise interference and improve the classification results. Furthermore, we embed several SSSE
modules into a residual network architecture and generate an SSSE-based residual network (SSSERN)
model for HSI classification. The proposed SSSERN method is compared with several existing deep
learning networks on two benchmark hyperspectral data sets. Experimental results demonstrate the
effectiveness of our proposed network.

Keywords: hyperspectral images; classification; convolutional neural networks; spectral–spatial
feature extraction; squeeze and excitation

1. Introduction

Hyperspectral sensors collect information as a series of images, represented by hundreds of
narrow and contiguous spectral bands across a wide range of the spectrum, which allows detailed
spectral signatures to be identified for different imaged materials [1–3]. The resulting hyperspectral
image (HSI) can be used to find objects, identify specific materials and detect processes in different
application fields [1,3], such as military, agriculture, and mineralogy. Among these applications,
classification is a basic problem which aims to assign a class label to each pixel in a HSI [4]. Due to the
discriminative characteristics of spectral curves, traditional HSI classification models are often based
on spectral information. Typical spectral-based classifiers [2] include support vector machines (SVM),
bayesian models, random forests (RF), and artificial neural networks.

However, the intrinsic complexity of hyperspectral images usually makes these traditional
methods unsuitable for consistently providing satisfactory classification results. Compared with
the large number of spectral bands, in practice the number of labeled training samples is usually quite
limited. This high dimensionality-small sample problem makes classification much more difficult and
can lead to the Hughes phenomenon [5]. In addition, due to the effects of the acquisition condition and
imaging mechanism, there often exist redundant or even noisy spectral bands in the HSI. By performing
feature extraction, the above two problems can be alleviated, to a certain extent [6,7]. One of key
problems is how to effectively extract features of the HSI. Currently, spectral–spatial features are
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widely used, and HSI classification performance has gradually improved from the use of only spectral
features to the joint use of spectral–spatial features [8–11].

To extract spectral–spatial features, deep learning models have been introduced for the purpose
of HSI classification [12–19]. The main idea of deep learning is to extract more abstract features from
raw data, by means of multi-layer superimposed representation [20–22]. Chen et al. [12] proposed
the use of a stacked auto-encoder (SAE) model to extract high-level features of a HSI by using
spatial–spectral joint information. Zhao et al. [16] used a stacked sparse auto-encoder to extract
more abstract and deep-seated features from spectral feature sets, spatial feature sets, and spectral
space vectors. Li et al. [17] introduced the deep belief network (DBN) for spectral–spatial feature
extraction and classification of HSIs. Zhong et al. [18] introduced a diversity-promoting prior to the
pre-training and fine-tuning of the DBN model in order to enhance the HSI classification performance.
These earlier deep learning-based HSI classification models were generally based on mature deep
learning frameworks, such as SAE and DBN. SAE and DBN could extract high-level features and
usually showed better classification performance than traditional methods. However, due to the full
connection of different layers, they demand the training of a lot of parameters [19]. In addition, they
suffer from spatial information loss, as they require flat spatial HSI patches (in one dimension as
a vector) to satisfy their input requirements. Differing from SAE and DBN, a convolutional neural
network (CNN) uses local connections to effectively extract the spatial information and uses shared
weights to significantly reduce the number of parameters [19]. Mei et al. [23] proposed a five-layer
CNN model that fused spectral and spatial features, where these features were obtained by calculating
the mean and standard deviation per spectral band of the spatial neighborhood. Yang et al. [24]
proposed a two-channel CNN model, where each channel learned features from the spectral domain
and spatial domain, respectively. Zhang et al. [25] proposed a dual-channel CNN model, where a
one-dimensional CNN was utilized to automatically extract the hierarchical spectral features and a
two-dimensional CNN was applied to extract the hierarchical space-related features. To fully use the
spatial–spectral joint information of a HSI, 3D-CNN models (instead of 2D-CNN) have been proposed
for HSI classification [19,26,27]. A 3D-CNN model directly processes a 3D data cube in the original HSI,
which contains the central target pixel, its spatial neighbors and corresponding spectral information.
Therefore, it can fully capture both spatial and spectral information.

The central building block of a CNN is the convolution operator, which enables networks to
construct informative features by fusing both spatial and channel-wise information within local
receptive fields at each layer [28]. In this operation, the relationship between channels should be
carefully investigated [28]. From the viewpoint of feature re-calibration, a squeeze and excitation (SE)
structure has been proposed to model the interdependencies between the channels of convolutional
features [28]. The SE block contains two operations: squeeze and excitation. The squeeze operation
produces a channel descriptor for global information embedding, by aggregating feature maps
across their spatial dimensions; and the excitation operation produces channel-specific weights.
By performing feature re-calibration, a SE block can selectively emphasise informative features and
suppress less-useful ones. The SE block can be integrated into standard deep learning architectures,
such as residual networks. A supervised spectral–spatial residual network (SSRN) has been previously
proposed for HSI classification [29]. A SSRN contains spectral and spatial residual blocks, which can
be used to extract finer spectral and spatial features from the HSI, and has achieved state-of-the-art
HSI classification accuracy in a wide range of applications [29]. However, the design of spectral and
spatial residual blocks hasn’t taken full consideration of the characteristics of a HSI.

A HSI usually contains a large number of spectral bands, where some bands are correlated
(redundant) or even noisy, as shown in Figure 1a,b. Figure 1a shows the correlation coefficient between
different bands of the Indian Pines hyperspectral image. It can be seen that adjacent bands are highly
correlated. Figure 1b shows a noisy band of Indian Pines, where the ground objects are almost covered
by noise. In addition, the pixels in a spatial neighborhood may also be inhomogeneous, especially
for boundary pixels. For each pixel z, we define an 11× 11 spatial neighborhood, centered at z, and
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compute the ratio of the number of inhomogeneous pixels (the pixels whose labels are different from
the central pixel z) to the number of total pixels in the spatial neighborhood. Figure 1c shows the ratio
for each pixel. It can be clearly seen that the pixels around the boundary usually have high ratio values,
which means that their spatial neighborhoods contain a large number of inhomogeneous pixels. Both
the redundant or noisy bands and inhomogeneous neighboring pixels will produce negative effects in
the classification.

(a) (b) (c)

Figure 1. Data characteristics of the Indian Pines hyperspectral image: (a) Spectral band correlation
matrix; (b) a noisy spectral band; and (c) spatial inhomogeneous pixel distribution.

In this paper, motivated by the idea of attention mechanisms, we construct a spatial–spectral
squeeze-and-excitation (SSSE) structure to adaptively learn the weights for different spectral bands
and for different neighboring pixels at the same time. SSSE can learn to train the network to suppress
or motivate features at certain spectral bands or spatial positions, which can effectively overcome
the redundancy in the spectral channels and the pixel inconsistency in the spatial neighborhood.
Furthermore, we embed several SSSE modules into a residual network architecture and generate an
SSSE based-residual network (SSSERN) model for HSI classification.

The rest of this paper is organized as follows. Section 2 introduces the residual network and
SE structure, and then describes our proposed method. The experimental results and analysis are
provided in Section 3. Section 4 gives a discussion. Finally, Section 5 draws the conclusions.

2. Spatial-Spectral Squeeze-and-Excitation Residual Network

For spectral-based classifiers, hundreds of spectral bands in the hyperspectral data will lead to a
large degree of feature redundancy and noise, which dramatically affects the classification performance;
especially when the number of training samples is small. For the spatial-neighborhood-based
classification methods, neighboring pixels which are too far from the center pixel usually provide
limited contributions to the classification of the central target pixel, especially when the neighborhood
window is large. To overcome the redundancy in the spectral channels and the pixel inconsistency
in the spatial neighborhoods, we propose a spatial–spectral squeeze-and-excitation (SSSE) structure,
which can adaptively learn the weights for different spectral bands and for different neighboring pixels
at the same time. Motivated by the idea of recalibration of the SE structure, the SSSE trains the network
to suppress or motivate features at a certain position, which can effectively resist noise interference
and improve the classification result.

2.1. Residual Connections

It has been demonstrated, in previous studies, that skip-connections can take advantage of the
multi-level features of a CNN and are effective for various visual tasks [29–32]. Here, we briefly
introduce the concept of residual connectivity [31,32]. A residual connection adds a shortcut by
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identity mapping, forcing the network to learn the residual function to restore the original non-linear
transformation. The residual connection can be obtained by the following formula:

X l = h(X l−1) = f (X l−1) + X l−1, (1)

where X l−1 and X l refer to the input and output of the l-th layer, and h(·) is the original mapping.
The desired underlying mapping h can be recovered by training the residual function f (·) indirectly,
which can be a composite transformation of conventional CNN operations. A typical residual module
structure, called a bottleneck residual block, is shown in Figure 2.

Figure 2. Schema of residual connections.

Residual connections can effectively enhance the flow of information between the top and bottom
of the network and can alleviate the over-fitting problem. In addition, the extra mapping structure
almost does not increase the parameter consumption of the network, and the residual networks are
easier to optimize [30].

2.2. SpectralSE: Squeeze Spatial Information and Excite Spectral Features

In order to deal with hyperspectral images, we define a SpectralSE structure which squeezes
spatial information and excites spectral features. Similar to the traditional squeeze-and-excitation
(SE) module [28], SpectralSE aims to recalibrate the channel-wise feature responses by modelling
interdependencies between the channels. Let U = [u1, u2, . . . , uC] denote the input of the SE module,
where uk ∈ RH×W is the feature map of the k-th channel. As each element in uk corresponds to only
one local area, this blind defect will result in a severe lack of global information in the bottom layer,
with a less-receptive field [28]. In order to alleviate this problem, we propose to squeeze the global
spatial information into a channel descriptor. This is achieved by using the global average operation
over the spatial dimension, which generates a channel-wise statistic z ∈ RC, with elements

zk = Fsq(uk) =
1

H ×W

H

∑
i=1

W

∑
j=1

uk(i, j), k = 1, · · · , C, (2)

where Fsq(·) is called the squeeze operator.
To fully capture the channel-wise dependencies, in the process of excitation, a simple gating

mechanism with a sigmoid activation σ(·) is used to get the final stimulus value:

s = Fex(z, W) = σ(W1(δ(W2z))), (3)

where δ(·) is the ReLU function. In order to limit the complexity of the model, a bottleneck with two
fully-connected (FC) layers is used to parameterize the excitation operation, and W1 ∈ RC× C

2 and
W2 ∈ R C

2 ×C are the weight matrices of the two fully-connected layers.
After the squeeze and excitation operations, the final output of the block is:

USpectralSE = [s1u1, s2u2, . . . , sCuC] . (4)

Figure 3a depicts the schema of SpectralSE.
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(a) (b)

(c) (d)

Figure 3. Mechanism of the proposed structure: (a) SpectralSE; (b) SpatialSE; (c) spatial–spectral
squeeze-and-excitation (SSSE); and (d) key.

2.3. SpatialSE: Squeeze Spectral Information and Excite Spatial Features

Similar to SpectralSE, we also define a SpatialSE module, which transforms the dimensions
of the SpectralSE operation from spectra to space. The feature maps of U are squeezed along the
channel to compress the information of all channels. Then, we excite it and scale by the original spatial
information. Let U =

[
u1,1, u1,2, . . . , ui,j, . . . , uW,H] denote the slice on the spatial dimension, where

ui,j ∈ R1×1×C refers to the feature at the spatial position (i, j). Squeeze and excitation operations are
completed by performing the following convolution and sigmoid activation transformations:

q = Fex(Fsq(U)) = σ(W ⊗U), (5)

where W ∈ R1×1×C and q ∈ RW×H . Each qi,j refers to an excited linear combination of all channels of
U at position (i, j).

The final recalibration result is obtained by multiplying U with the activation value:

USpatialSE =
[
q1,1u1,1, . . . , qi,jui,j, . . . , qH,WuH,W

]
. (6)

Figure 3b shows the framework of the SpatialSE module.

2.4. SSSE: Combination of SpectralSE and SpatialSE

Finally, we combine the spectralSE and SpatialSE modules to get the spatial–spectral
squeeze-and-excitation (SSSE) structure:

USSSE = α ·USpectralSE + (1− α) ·USpatialSE, (7)

where α is a trainable variable, allowing the network to learn the proportions of channel excitation and
spatial excitation, respectively. When the value at position (i, j, c) in U is highly important, it will have
a high activation value in the recalibration of the channel dimension and the spatial dimension. This
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recalibration encourages the network to learn more meaningful feature maps that are spectrally and
spatially related. The SSSE structure is shown in Figure 3c.

2.5. SSSERN: Spatial-Spectral Squeeze-and-Excitation Residual Network

Now, we propose a new residual network that includes the SSSE structure, as shown in Figure 4.
In the proposed SSSERN, batch normalization is used to correct the distribution of each layer and speed
up the training [33]. The Xavier initialization method is used to initialize the network weights [34] and
the Adam optimizer is used to minimize cross-entropy loss [35].

Figure 4. The procedure of the SSSE-based redisual network (SSSERN) method.

The details of the layers of the proposed SSSERN method are described in Table 1. The proposed
network has four SSSE residual blocks. At the beginning, we use a 1× 1 convolution kernel to extract
features. Taking the Indian Pines data set as an example, the hyperspectral cube with size 11× 11× 200
is compressed to 11× 11× 128 by performing convolution with 128 filters of size 1× 1× 200. Here,
the number of residual blocks and compression channels are adjustable. Following the SSSE residual
blocks, a global pooling is used to transform the feature map into a one-dimensional vector. Finally,
through softmax regression, the prediction labels corresponding to each category are obtained.

Table 1. Network architecture details of SSSERN for the Indian Pines Dataset.

Name Details Kernel Size

Input - -
Conv1 - 1, 1, 200, 128

SSSE-resBlock resBlock 1, 1, 128, 32
3, 3, 32, 32

1, 1, 32, 128
SpectralSE 128, 32

32, 128
SpatialSE 128, 1

· · · Repeat the Block 4 Times
Global pooling - -

Softmax Reg - 128, 16
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3. Experiments Results

3.1. Datasets

To evaluate the performance of the proposed method in HSI classification, we use the following
two benchmark hyperspectral data sets:

(1) Indian Pines: This data was taken by the airborne visible/infrared imaging spectrometer
(AVIRIS) sensor. The image scene contains 145× 145 pixels and 220 spectral bands, from 0.4–2.5 µm,
where 20 bands were discarded because of atmospheric affection. The spatial resolution of the Indian
Pines data was 20 m. There are 16 classes in the data, as shown in Figure 5. The number of samples in
each class is shown in Table 2.

Figure 5. Color coding for the Indian Pines data set.

Table 2. Sample size for the Indian Pines scene.

Class Samples

Number Name Number of Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-min 830
4 Corn 237
5 Grass/Pasture 483
6 Grass/Trees 730
7 Grass/Pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20

10 Soybeans-notill 972
11 Soybeans-min 2455
12 Soybeans-clean 593
13 Wheat 205
14 Woods 1265
15 Building-Grass-Trees-Drives 386
16 Stone-steel Towers 93

Total 10,249
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(2) University of Pavia: This data was acquired by the Reflective Optical System Imaging
Spectrometer (ROSIS) sensor. The ROSIS sensor generates 115 bands, ranging from 0.43–0.86 µm, in
which 12 noisy bands were deleted and the remaining 103 bands are used for the experimental analysis.
The spatial resolution is 1.3 m. The scene has the size of 610× 340, and contains 9 ground categories,
as shown in Figure 6. The number of samples in each class is shown in Table 3.

Figure 6. Color coding for the Pavia University data set.

Table 3. Sample size for the Pavia University scene.

Class Samples

Number Name Number of Samples

1 Asphalt 6631
2 Meadows 18,649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947

Total 42,776

3.2. Classification Performance on Indian Pines and University of Pavia Data Sets

In this paper, the TensorFlow deep learning framework was used to build and train the proposed
SSSERN. We compare the proposed method with six available classification methods in the literature:
(1) Support Vector Machine (SVM) with a radial basis function kernel; (2) Random Forest (RF);
(3) Multi-Layer Perceptron (MLP); (4) 2D-CNN [25]; (5) 3D-CNN [12]; and (6) SSRN [29]. Among
these methods, SVM, RF, and MLP are spectral classifiers, and 2D-CNN can be considered as a spatial
method which uses PCA to reduce the dimensionality of hyperspectral data and extracts only one
principal component. Finally, 3D-CNN, SSRN, and the proposed SSSERN are spatial–spectral methods.

In the experiments, we randomly selected 15% samples from each class to form the training set
and the test set consisted of the remaining samples. The experiment was repeated five times with
randomly-chosen training samples, and the results of five runs were averaged. The class accuracy
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(CA), overall accuracy (OA), average accuracy (AA), and kappa coefficient (κ) on the testing set were
recorded to assess the performance of the different classification methods. In 2D-CNN, 3D-CNN, and
our proposed algorithm, the neighborhood window was set as 11× 11. The classification results on
the two data sets are shown in Tables 4 and 5, respectively.

Table 4. Overall, average, and individual class accuracies and κ statistics in the form of mean ± standard
deviation for the Indian Pines data set. The best results are highlighted in bold typeface.

Class SVM RF MLP 2D-CNN 3D-CNN SSRN SSSERN

1 85.19 ± 3.02 73.15 ± 9.26 83.76 ± 9.00 70.94 ± 10.68 95.14 ± 7.98 97.53 ± 1.39 98.12 ± 0.97
2 82.68 ± 0.78 73.22 ± 1.74 71.78 ± 5.63 73.40 ± 3.19 96.96 ± 1.58 98.45 ± 0.26 99.63 ± 0.56
3 71.53 ± 2.21 72.13 ± 2.21 69.93 ± 1.13 74.85 ± 0.94 97.05 ± 1.90 97.70 ± 0.33 99.57 ± 0.54
4 65.67 ± 5.28 69.01 ± 5.98 74.96 ± 2.74 88.56 ± 5.24 89.68 ± 2.46 89.46 ± 2.78 99.41 ± 0.72
5 94.03 ± 1.53 90.92 ± 1.28 88.94 ± 2.03 69.35 ± 1.49 96.95 ± 1.65 99.16 ± 0.54 100.00 ± 0.00
6 97.54 ± 0.88 97.43 ± 0.51 94.89 ± 2.28 92.10 ± 3.52 98.71 ± 1.02 99.80 ± 0.29 99.74 ± 0.28
7 82.81 ± 9.38 73.44 ± 16.44 94.20 ± 2.51 65.22 ± 15.06 97.73 ± 4.55 100.00 ± 0.00 100.00 ± 0.00
8 98.08 ± 1.29 99.13 ± 0.45 97.29 ± 2.26 97.29 ± 1.37 99.21 ± 1.25 99.80 ± 0.25 100.00 ± 0.00
9 70.45 ± 13.64 72.73 ± 7.42 75.00 ± 6.25 81.25 ± 12.50 78.57 ± 24.74 94.64 ± 6.84 100.00 ± 0.00

10 73.20 ± 2.58 79.89 ± 3.44 84.42 ± 1.10 77.12 ± 4.97 95.52 ± 1.41 96.75 ± 0.37 99.52 ± 0.77
11 80.79 ± 1.16 90.23 ± 1.13 86.31 ± 2.78 86.19 ± 1.05 97.33 ± 1.02 98.13 ± 0.23 99.85 ± 0.69
12 78.17 ± 1.53 76.34 ± 2.10 74.21 ± 6.15 74.27 ± 1.27 97.46 ± 4.10 99.00 ± 0.61 96.54 ± 0.68
13 97.54 ± 1.50 96.72 ± 1.50 97.32 ± 0.33 98.85 ± 0.57 100.00 ± 0.00 100.00 ± 0.00 97.45 ± 0.82
14 94.82 ± 1.34 96.17 ± 0.81 96.16 ± 1.11 94.82 ± 2.07 99.38 ± 0.09 99.23 ± 0.28 99.91 ± 0.13
15 73.38 ± 2.93 58.87 ± 2.94 58.43 ± 2.83 80.89 ± 13.29 90.18 ± 3.76 94.07 ± 2.26 100.00 ± 0.00
16 93.64 ± 3.48 88.18 ± 5.65 90.72 ± 1.46 76.62 ± 4.10 89.73 ± 7.46 88.36 ± 4.26 95.94 ± 0.63

OA 83.61 ± 0.69 84.59 ± 0.55 83.48 ± 0.33 82.98 ± 0.78 97.01 ± 1.29 98.07 ± 0.17 99.44 ± 0.14

AA 83.72 ± 0.31 81.72 ± 1.24 83.64 ± 0.61 80.95 ± 1.54 96.98 ± 1.95 97.07 ± 0.68 98.89 ± 0.11

κ 81.29 ± 0.79 82.31 ± 0.63 81.09 ± 0.41 80.54 ± 0.90 96.59 ± 1.47 97.79 ± 0.19 99.03 ± 0.21

Table 5. Overall, average, and individual class accuracies and κ statistics in the form of mean ±
standard deviation for the University of Pavia data set. The best results are highlighted in bold typeface.

Class SVM RF MLP 2D-CNN 3D-CNN SSRN SSSERN

1 90.72 ± 0.69 89.45 ± 0.01 89.91 ± 1.09 91.83 ± 0.33 99.10 ± 0.49 99.74 ± 0.11 100.00 ± 0.00
2 94.42 ± 0.63 97.83 ± 0.27 96.67 ± 0.75 97.11 ± 0.99 98.29 ± 0.68 99.35 ± 0.37 100.00 ± 0.00
3 70.34 ± 0.93 64.65 ± 0.83 79.32 ± 1.05 89.46 ± 0.68 90.01 ± 0.35 97.50 ± 0.50 98.39 ± 0.31
4 92.20 ± 0.56 90.52 ± 0.90 91.54 ± 0.58 91.89 ± 1.08 94.58 ± 0.16 98.68 ± 0.09 98.38 ± 0.11
5 98.87 ± 0.97 98.94 ± 0.89 98.87 ± 0.72 97.45 ± 0.70 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
6 57.71 ± 0.78 63.39 ± 2.77 77.85 ± 1.09 68.09 ± 0.76 97.06 ± 0.26 98.50 ± 0.26 100.00 ± 0.00
7 77.73 ± 0.85 70.33 ± 0.97 81.77 ± 0.88 96.14 ± 0.74 89.54 ± 0.46 98.61 ± 0.18 99.74 ± 0.26
8 80.44 ± 0.69 86.36 ± 0.45 78.70 ± 0.98 95.27 ± 0.29 90.25 ± 0.28 95.76 ± 0.44 99.43 ± 0.35
9 92.39 ± 0.80 92.05 ± 0.51 93.87 ± 0.82 86.16 ± 0.14 99.51 ± 0.46 99.81 ± 0.54 96.19 ± 0.89

OA 86.17 ± 0.93 87.59 ± 0.35 90.64 ± 0.11 92.20 ± 0.16 96.59 ± 0.52 98.79 ± 0.26 99.62 ± 0.31

AA 83.78 ± 0.73 83.48 ± 0.21 87.61 ± 0.17 90.96 ± 0.70 95.12 ± 0.09 98.58 ± 0.26 99.13 ± 0.19

κ 81.63 ± 0.60 83.91 ± 0.33 87.36 ± 0.07 89.79 ± 1.02 95.37 ± 0.39 98.76 ± 0.54 99.35 ± 0.32

From the classification results, we can see that:
(1) The proposed SSSERN provided the best classification results on the two data sets.
(2) By jointly using the spectral and spatial information in a deep network architecture, the

spatial–spectral methods (i.e., 3D-CNN, SSRN, and the proposed SSSERN) dramatically improved the
spectral-based and spatial-based methods.

(3) Compared with existing deep learning methods (i.e., 2D-CNN, 3D-CNN and SSRN), the
proposed SSSERN showed better results. This demonstrates that the proposed SSSE structure can
extract much more effective spectral–spatial features by highlighting important spectral bands or
neighboring pixels and suppressing noisy spectral bands or dissimilar neighboring pixels.

Figures 7 and 8 show the classification maps of SVM, RF, MLP, 2D-CNN, 3D-CNN, SSRN, and
our proposed SSSERN on the Indian Pines and University of Pavia data sets, respectively. The
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spectral-based classifiers, such as SVM and RF, generated noisy classification maps because they
only considered isolated spectral samples and did not use spatial information to enhance the spatial
neighborhood consistency. The spatial–spectral classifiers (i.e., 3D-CNN, SSRN, and SSSERN) provided
much better results than the spectral classifiers and generated maps with little noise and clear object
boundaries. Among all methods, our proposed SSSERN achieved a classification map that was the
closest to the actual ground-truth; that is to say, the class boundaries were better defined and the
background pixels were better classified.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Classification maps for the Indian Pines data set. (a) Ground-truth. (b) Training set. (c) Testing
set. Classification maps by: (d) SVM (83.77%); (e) RF (78.41%); (f) MLP (83.02%); (g) 2D-CNN (82.35%);
(h) 3D-CNN (97.82%); (i) SSRN (98.09%); (j) SSSERN (99.45%).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Classification maps for the University of Pavia data set. (a) Ground-truth; (b) training set; and
(c) testing set. Classification maps by: (d) SVM (87.14%); (e) RF (88.15%); (f) MLP (90.71%); (g) 2D-CNN
(92.65%); (h) 3D-CNN (97.01%); (i) SSRN (99.27%); and (j) SSSERN (99.70%).
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3.3. Investigation on the Effect of Network Parameters

Now, we investigate the effect of parameters on the classification performance of SSSERN.
The parameters are the width of input feature window ω (i.e., ω×ω is the window), the combination
coefficient α, and the number of residual blocks Nblock, where ω controls the size of the input features, α

is used to indicate the ratio of SpatialSE to SpectralSE, and Nblock decides the deepness of the network.
We also investigate the effect of the number of training samples, where 5% and 15% samples from each
class in Indian Pines are chosen for training.

We first fix α = 0.5 and Nblock = 4, and show the effect of ω. Six different values of ω (3, 5, 7, 9, 11,
and 13) were considered. The corresponding OA values of SSSERN, in the case of 5% and 15% training
samples, are shown in Figure 9. It can be clearly seen that the OA of SSSERN increased rapidly with
the increase of ω and achieved relatively stable results when ω ≥ 9. The optimal values of ω were 9
and 11 for 5% and 15% training samples, respectively. In the experiment, ω = 11 was used.
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Figure 9. OA versus the width of the input feature window ω: (a) 5% training samples; and (b) 15% training samples.

Next, we investigate the effect of α. From Equation (7), when α = 0, the SSSE module is reduced
to SpatialSE. When α = 1, SSSE is reduced to SpectralSE. When α = 0.5, SpatialSE and SpectralSE have
the same importance in the SSSE. For simplicity, we only considered these three values of α (i.e., 0,
1, and 0.5). The OA of SSSERN versus different α values is shown in Figure 10, where SpectralSE,
SpatialSE, and SSSE correspond to α = 1, α = 0, α = 0.5, respectively. It can be seen that the SSSE
module that combined SpatialSE and SpectralSE provided the best results.
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Figure 10. OA versus the combination coefficient α: (a) 5% training samples; and (b) 15% training samples.

To further investigate the effectiveness of SSSE, we show the results of SSSERN with and without
SSSE modules. As shown in Figure 4, the SSSE module is attached onto the residual block (resBlock).
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When the SSSE modules are deleted, SSSERN is reduced to a general residual network. Figure 11
shows the OA of SSSERN with and without SSSE modules. It can be clearly seen that SSSE modules
were more effective than traditional residual modules, and the optimal number of SSSE blocks was
either 3 or 4.
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Figure 11. OA versus the number of SSSE residual modules: (a) 5% training samples; and (b) 15% training samples.

3.4. Investigation on the Stimulus Values by the SSSE Structure

Although previous experiments have proven the effectiveness of SSSE blocks in improving the
network performance, we also want to understand how the automatic gating incentive mechanism
works in practice. In this subsection, to show the behavior of the SSSE structure more clearly, we
will study the activation outputs of individual samples in the model and check their distribution for
different classes on different residual modules. Specifically, we choose six different classes from the
Indian Pines data set (Classes 1, 3, 4, 11, 14, and 15), and select 50 samples from each class, and then
calculate the average of the SSSE module output of these samples in different layers.

As the activation value in the SSSE structure is composed of two parts—namely, the stimulus
value in the spectral and spatial dimensions—the visualization results of these two parts will be shown
below. Figure 12 shows the averaged spectral dimension stimulus value for each class. It can be seen
that different classes of samples had different stimulus values for each channel, in each SSSE structure.
In the third SSSE structure, Classes 1, 3, 4, and 14 showed synchronization suppression effects at the
36th channel, which demonstrates that the spectral characteristics of these classes were similar in
this channel.

(a) (b)

Figure 12. Continued.
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(c) (d)

Figure 12. Averaged spectral dimension stimulus value for the six classes in different SpectralSE blocks:
(a) SpectralSE 1; (b) SpectralSE 2; (c) SpectralSE 3; and (d) SpectralSE 4.

Figure 13 shows the activation values of the six classes in the spatial dimensions of different SSSE
layers. In the figure, the brighter part corresponds to higher activation values. It can be seen that the
features were almost always activated at the center position, and the positions around the boundary
were suppressed. The boundary pixels may have been background pixels or pixels from different
classes for a large window. In addition, they were far away from the central pixel and, hence, were less
important. By suppressing these boundary pixels, the SSSERN model can obtain better results.

(a) (b)

(c) (d)

Figure 13. Averaged spatial dimension stimulus value for the six classes in different SpatialSE blocks:
(a) SpatialSE 1; (b) SpatialSE 2; (c) SpatialSE 3; and (d) SpatialSE 4.
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4. Discussion

The SSSE structure can re-calibrate the spatial and spectral features by using learning methods
and has achieved the purpose of suppressing or stimulating certain features related to classification. In
the following, we will provide an example to display the effect of SSSE. Given a pixel from Class 11 of
the Indian Pines data set, we can construct an 11× 11 spatial neighborhood, as shown in Figure 14.
It is clear that the neighborhood contains background pixels with label 0, and pixels from the same
class 11, and from the (different) classes 5 and 6. We compute the simulation value of the first layer
SpatialSE structure, corresponding to the pixels in the neighborhood, and show the simulation values
as different colors in Figure 14. The brighter or darker colors correspond to larger or smaller excitation
values. It can be clearly seen that SpatialSE can generate a mask to stimulate the homogeneous pixels
which are helpful for classification and, meanwhile, suppress inhomogeneous pixels (i.e., background
pixels and pixels from classes 5 and 6) which have negative effects on the classification.

Figure 14. The first-layer SpatialSE simulation value for an 11× 11 spatial neighborhood.

5. Conclusions

In this paper, we have proposed a spatial–spectral squeeze-and-excitation residual network
(SSSERN) method for HSI classification. In the framework of a residual network, the proposed SSSERN
contains four SSSE blocks, which can excite or suppress features in the spectral and spatial dimensions,
simultaneously, by feature re-calibration. The proposed SSSERN is compared with some state-of-the-art
deep learning methods. The experimental results on the Indian Pines and University of Pavia data sets
have shown the effectiveness of SSSERN.
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Abbreviations

The following abbreviations are used in this manuscript:

HSI Hyperspectral image
SE Squeeze and excitation
SSSE Spatial–spectral squeeze and excitation
SSSERN Spatial–spectral squeeze and excitation residual network
CNN Convolutional neural network
SAE Stacked auto-encoder
DBN Deep belief network
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