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Abstract: Object detection has made significant progress in many real-world scenes. Despite this
remarkable progress, the common use case of detection in remote sensing images remains challenging
even for leading object detectors, due to the complex background, objects with arbitrary orientation,
and large difference in scale of objects. In this paper, we propose a novel rotation detector for
remote sensing images, mainly inspired by Mask R-CNN, namely RADet. RADet can obtain the
rotation bounding box of objects with shape mask predicted by the mask branch, which is a novel,
simple and effective way to get the rotation bounding box of objects. Specifically, a refine feature
pyramid network is devised with an improved building block constructing top-down feature maps,
to solve the problem of large difference in scales. Meanwhile, the position attention network and the
channel attention network are jointly explored by modeling the spatial position dependence between
global pixels and highlighting the object feature, for detecting small object surrounded by complex
background. Extensive experiments on two remote sensing public datasets, DOTA and NWPUVHR
-10, show our method to outperform existing leading object detectors in remote sensing field.

Keywords: remote sensing; arbitrary-oriented object detection; feature pyramid network; attention
mechanism; mask

1. Introduction

Remote sensing image processing is a hot issue, which includes many types of tasks, such as
image segmentation and object detection. Many scholars have proposed many methods, for example,
in [1–4], researchers have proposed a series of machine learning-based image segmentation methods to
improve SAR remote sensing image segmentation. In this paper, we mainly study the object detection
of optical remote sensing image based on deep learning.

With the development of Deep Neural Network, object detection has made great progress in
natural images in recent years. The object detection networks based on deep learning can be divided
into two types: two-stage object detection networks and single-stage object detection networks.
Most of the current two-stage object detectors are developed on the basis of region proposals with
CNNs (R-CNN) [5]. In a two-stage framework of object detection, such as Faster R-CNN [6],
category-independent region proposals generated from an image in the first stage. Based on the region
proposals, features are extracted individually from the feature maps obtained by a CNN backbone
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for each region of interest (RoI). Then, the features are used to achieve category-specific classification
and regression for the corresponding proposals. Finally, the final detection result is obtained through
post-processing, such as non-maximum suppression. Faster R-CNN is a classical two-stage object
detector, which is composed of Region Proposal Networks (RPN) and a detection network consists of
classifiers and regressors, and can detect objects quickly and accurately in an end-to-end manner. Based
on Faster R-CNN, more improved two-stage object detectors such as Region-based Fully Convolutional
Networks (R-FCN) [7] and Mask R-CNN [8] were proposed. To further improve the efficiency of the
object detector, Joseph Redmon et al. proposed a single stage target detector based on regression, called
YOLO [9]. For the simple structure, You Only Look Once (YOLO) is extremely fast, but its accuracy is
lower than that of the two-stage detector. Based on YOLO, YOLO v3 [10] and YOLO 9000 [11] were
proposed successively. To trade off the detection speed and accuracy, Single Shot MultiBox Detector
(SSD) [12] was proposed, whose speed and accuracy were between YOLO series algorithm and R-CNN
series algorithm.

However, the above-mentioned classical object detectors aforementioned assume that the objects
for detection are located along the horizontal line in images, which typically lead to misalignments
between the bounding box and the object, especially in the field of remote sensing where the objects
can be in any direction and position. To detect objects in any direction, several rotation object
detectors have been proposed. In the field of scene text detection, Jiang et al. [13] proposed a
Rotational Region Convolutional Neural Network (R2CNN), and achieved excellent results in scene
text detection. RRPN [14] used rotation Anchor to get better proposals. Nevertheless, Scene text
detection is a single-category object detection task, while there are often many different categories
of objects in remote sensing images to be detected. Therefore, in the field of remote sensing, many
multi-category arbitrary-oriented object detectors are proposed. Ref. [15] based on Faster R-CNN,
detect arbitrary-oriented objects in remote sensing image by adding a rotation branch. Rotation Dense
Feature Pyramid Networks (R-DFPN) [16] is an efficient multi-category rotation object detector due to
Dense Feature Pyramid Network (DFPN) and Rotational Non maximum Suppression (R-NMS). It is
worth noting that the above-mentioned rotation object detectors are realized by designing a rotation
Anchor and adding a rotation regression branch. In fact, using rotation Anchors will dramatically
increase the amount of computation of the model, while the method of rotation regression will reduce
the robustness of the bounding box regression. In this paper, we use the object shape mask predicted
by the instance segmentation branch of the network to obtain the rotation bounding box of the object,
which is a novel method for detecting targets in any direction in remote sensing images. Although
these rotation detectors have achieved target rotation bounding box predictions, the use of rotation
anchors or the addition of rotation branches has greatly increased the calculation amount of the model,
and has also made the model more complicated. In Table 1, we summarize the advantages and
disadvantages of existing object detection methods.

In fact, arbitrary-oriented object detection can be realized more easily based on instance
segmentation. Modern Instance segmentation methods, such as Mask R-CNN, are usually develop as a
multi-task learning problem, which can effectively separate the object from the background. However,
directly transfer Mask R-CNN to the remote sensing image object detection is likely to cause some
problems, because Mask R-CNN is designed for natural images and is not good at solving the following
three problems existing in remote sensing images: (1) Arbitrary orientations of objects. Due to the
special imaging perspective, the objects in the remote sensing image exist in any direction. (2) Scales of
objects vary greatly. Remote sensing image is taken from a long distance and wide angle. Therefore,
an image will contain objects with large scale differences, such as the baseball diamond and the small
vehicle shown in Figure 1a. (3) Complex background. Many objects of interest in large-scale remote
sensing images are often surrounded by complex backgrounds, such as the swimming pool shown in
Figure 1b. The complex background can seriously interfere with the detection of the object of interest.
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Table 1. The advantages and disadvantages of existing object detection methods.

Types Methods Advantages Disadvantages

Classical Detectors

Two-stage Detectors
(e.g. Faster R-CNN,

R-FCN, FPN,
Mask R-CNN, etc.)

High detection precision,
Low misdetection rate

Non-real-time detection,
Locate objects with

horizontal bounding box

One-stage Detectors
(e.g. YOLO, SSD,

YOLO v2,
YOLO v3, etc. )

Real-time detection,
Simple network structure

Low detection precision,
Locate objects with

horizontal bounding box,
Poor results for

small and dense objects,
Easy to mislocate

Rotation Detectors
e.g. R2CNN, RRPN,
RDFPN, FR-O, etc.

Locate objects with
rotation bounding box,
Using rotaion anchors

Large model calculations,
Greatly affected by artificial

factors, Non-real-time
detection, Complex

For the problem of target scale change, building a multi-layer network is the most effective
strategy. As is known to all, the low-level high-resolution feature map of deep neural network can
retain the location information of the object, while the high-level low-resolution feature map can
provide rich semantic clues of the object. There are many methods to improve object detection and
instance segmentation by using multiple scale feature maps. Fully convolutional networks (FCN) [17]
improves semantic segmentation result by summing the partial scores for each category over multiple
scales. Some other methods, such as HyperNet [18], ParseNet [19] and Inside-Outside Net (ION) [20],
concatenate features of multiple layers to make predictions, which is equivalent to summing up
features from different scale feature maps. Both SSD and MS-CNN [21] detect targets on multi-scale
feature maps, without combining features or scores. Feature pyramid networks (FPN) [22] is a network
that merges the lower-layer feature map with the higher-level feature map to get the multi-scale feature
maps. It consists of a Bottom-up pathway and a Top-Down pathway. Based on SSD, [23] proposed
RefineDet, which fuses the higher-level feature map of the backbone network in the SSD with the
lower-layer feature map to obtain multi-scale feature maps for object detection.

(a) (b)

Figure 1. Two remote sensing images in DOTA dataset. (a) The yellow rectangle is the bounding box
of the baseball diamond and the red rectangle is the bounding box of the small vehicle. There is a big
difference in the scale between the two. (b) The red rectangle is the ding box of the swimming pool,
from which it can be seen that the sparse swimming pools is surrounded by complex background.

Recently, attentional mechanism has been widely used in neural network models to improve
the efficiency of the network. The essence of attention mechanism is human brain visual attention
mechanism. According to cognitive neuroscience, attention can be divided into focus attention, which
is active attention, refers to the purposeful and conscious focus on an object, and marked attention,
which is passive attention, refers to the attention driven by external stimuli without active intervention.
In artificial neural network, attention mechanism generally refers to focus attention. Ref. [24] used
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attention mechanism on Recurrent neural network (RNN) model to improve the performance of image
classification. In [25], Bahdanau et al. used an attention-like mechanism to simultaneously translate
and align on a machine translation task, allowing attention mechanism to be applied in Natural
language processing (NLP) field. Intra attention proposed by [26] focuses on all positions in a sequence
to get the response of a certain position in the sequence. Ref. [27] further demonstrated that machine
translation model by self-attention can achieve excellent performance. Ref. [28] designed a non-local
neural network (NLNet) to model pixel-level pairwise relationships with attention mechanism. Based
on NLNet, Ref. [29] proposed Self-Attention Generative Adversarial Network (SAGAN), which allows
attention-driven, long-range dependency modeling for image generation tasks. Ref. [30] achieved
the feature weight of each channel in the feature map through global average pooling, and make the
model pay different attention to each channel in the feature map. Squeeze-and-Excitation Networks
(SENet) is often added to other networks as channel-attention to improve the efficiency.

Inspired by the related works mentioned above, we proposed a novel object detector of remote
sensing images for the difficulties in remote sensing filed. First, we used the shape mask prediction of
Mask R-CNN to locate the target area. Thus, our method can flexibly detect arbitrary-oriented objects,
without any predefined rotation anchor. Second, in order to retain more positional information for
small objects, we designed a refine feature pyramid network, which merges the high-layer semantic
features with the low-layer positional features and obtains the multi-scale feature maps, solving the
problem that the scales of objects in the same image vary greatly. Finally, inspired by the attention
mechanism of the human brain, we designed a multi-layer attention network that enables the network
to accurately detect small objects of interest from complex backgrounds and to focus on learning the
features of small objects, just like focused attention in cognitive neuroscience.

Combined with the above techniques, our method can significantly improve detection
performance. Furthermore, the proposed method can obtain the performance of mAP 69.09% on DOTA
(a large remote sensing dataset), which is better than the previous leading algorithms. The contributions
of this paper are as follows:

(1) For more robust handling of arbitrary-oriented objects, we use the instance segmentation
branch of Mask R-CNN to generate shape masks of the objects, and then use them to determine the
accurate object’s rotation bounding box. Compared with the existing rotation detector, this is a simple
and efficient method for obtaining a rotating bounding box, because it is not necessary to design a
rotation anchor or a rotation branch in advance.

(2) Considering that the scales of objects vary greatly, a refined feature pyramid network is
developed to merge the high-layer sematic features with the low-layer positional features and to get
multi-scale feature maps. Compared with the existing multi-scale feature map methods, our refine
feature pyramid network can effectively reduce the checkerboard effect or aliasing effect in feature
fusing and improve the effectiveness of feature fusion.

(3) For complex background, a multi-layer attention network is designed to reduce the impact of
background noise and to highlight target features. Compared with existing attention networks,
the proposed multi-layer attention network simultaneously focus on the spatial position and
features of objects, which is extremely helpful for the detection of small objects overwhelmed by
complex backgrounds.

2. Proposed Methods

In this section, we will describe the various parts of our pipeline in detail. Figure 2 shows the
overall framework of our method. Our pipeline consists of two key components: a Refine Feature
Pyramid Network (RFPN) and a Multi-layer Attention Network(MANet), and is based on Mask
R-CNN. Specifically, RFPN can generate a set of multi-scale feature maps by fusing features for each
input image, and then MANet further suppresses background noise and highlight target features
through attention mechanism. Then, obtaining the high-quality regional proposals from RPN for
subsequent Fast R-CNN and mask branch. In the second stage, horizontal bounding box regression,
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class prediction, and shape mask prediction are obtained. Finally, the predicted shape masks are
applied to calculate the object’s rotation bounding box.
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Figure 2. The overall framework of RADet. BB denotes the building block of Refine Feature Pyramid
Network. AL denotes the attention layer of MANet (Multi-layer Attention Network).

2.1. Rotation Bounding Box Prediction Based on Mask

Mask R-CNN is an extension of Faster R-CNN, which can simultaneously achieve object detection
and instance segmentation. This multi-task learning method can effectively improve the performance
of object detection. In this paper, we use the object mask predicted by the mask branch of Mask R-CNN
to obtain the rotation bounding box of the object, to achieve arbitrary-oriented object detection in
remote sensing images.

2.1.1. Instance Label Generation

The instance label of remote sensing image is shown in Figure 3. Unlike natural image datasets
such as COCO and Pascal VOC, which provide pixel level labels, remote sensing image object detection
datasets only provide coordinate labels of object. Therefore, generating instance label is a precondition
for using Mask R-CNN. In this paper, we get the polygon connected by the object’s coordinates,
and regarded the pixels in the polygon as the object, and the pixels outside the polygon as the
non-object, then we get an instance label of the object. Although this approach will bring some noise,
the implementation process is quite simple. This kind of instance labels has little effect on the final
instance segmentation results as demonstrated by experiments.

2.1.2. Rotation Bounding Box Prediction

As we all know, the mask branch of Mask R-CNN will predict a shape mask for each object
in the image. For the predicted shape mask, we calculate its minimum area rectangle and use it as
the object’s rotated bounding box. In this process, we can easily obtain the rotation bounding box
of arbitrary-oriented object without using any rotation anchor. The prediction of rotation bounding
box is:

x, y, h, w, θ = minAreaRect(mask) (1)

x0 = x− sin θ
2 · h−

cos θ
2 · w, y0 = y + cos θ

2 · h−
sin θ

2 · w
x1 = x + sin θ

2 · h−
cos θ

2 · w, y1 = x− cos θ
2 · h−

sin θ
2 · w

(2)

x2 = 2x− x0, y2 = 2y− y0

x3 = 2x− x1, y3 = 2y− y1
(3)

where x, y, h, w, θ denote the rotation bounding box’s center coordinates and its width, height and
angle. minAreaRect(·) represents a function that computes the minimum area rectangle of the shape
mask. (xi, yi) denote the ith coordinates of the rotation bounding box.
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Figure 3. Ground Truth. (Left) Image samples with green polygon. (Right) Binary instance labels.

2.2. Refine Feature Pyramid Network

Now, there are many deep convolutional neural networks with strong ability to extract image
features, such as ResNet [31]. However, due to pooling layers used in deep layers, small object will
lose most of its positional features in deep layers, while the large object still retains good positional and
semantic features in deep layers. Therefore, if the multi-scale feature maps with context information
can be obtained by merging the high-level features with the low-level features, the problem of that
scales of objects vary greatly in the same image can be solved.

Inspired by RefineDet, we designed a Refine Feature Pyramid Network, which can fuse the
higher-layer feature maps with the lower-layer feature maps, and then obtain the multi-scale feature
maps with rich context information. Figure 4 shows the improved building block that constructs our
top-down feature maps. Moreover, similar to the idea of default box settings in SSD, we use single-scale
different-ratio anchors at each level and use different-scale anchors on different levels. In other words,
the large-scale anchors used in high-layer feature maps (small scale) is mainly responsible for large
object detection, and the small-scale anchors used in low-layer feature maps (large scale) is mainly
responsible for small object detection, so as to overcome the problem of that scale of objects varied
greatly in remote sensing images.

2x up

1×1 conv ReLU 3×3 conv  ReLU1×1 conv 3×3 conv ReLU

ReLU

3×3 conv

ReLU

3×3 conv

3×3 conv ReLU

Figure 4. The building block of refine feature pyramid network. The ⊕ denotes element-wise addition.
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Specifically, for Resnet, our Refine Feature Pyramid Network only acts on the feature activation
output by the last residual block output at each stage of Resnet, which are denoted as C2, C3, C4 and
C5. We all know that feature maps of the same size can be fused, so the high-level feature maps need
to be up-sampled before being fused with the low-level feature maps. Interpolation and deconvolution
are commonly used up-sampling methods. Ref. [23] used deconvolution to go from a low-resolution
feature maps to a higher-resolution feature maps for fusion. However, unfortunately, deconvolution
will produce uneven overlap (checkerboard artifacts) when up-sampling a feature map, as shown in
Figure 5. The uneven overlap means that the convolution kernel operates more in some places than
others. FPN uses nearest neighbor interpolation to obtain larger-sized feature maps, but it produces
aliasing effects. In fact, convolution can filter out aliased high-frequency signals. Therefore, we use a
combination of nearest neighbor interpolation and convolution instead of deconvolution or simple
interpolation, which will effectively reduce the checkerboard effect or aliasing effect. Moreover, we
use a 1× 1 convolution (which can reduce channel dimensions) and a 3× 3 convolution to further
extract the low-layer detailed location information, and the ReLU layer is applied between the two
convolution layers to obtain the non-linear representation. Then, we fuse the high-level semantic
features with the low-level location features through element-wise addition, and obtain the merged
map through a 3 × 3 convolution and two ReLU layers. This process is repeated until the finest
resolution feature map is generated. Finally, we obtain a set of multi-scale feature maps corresponding
to the merged maps of each layer, which is defined as {P2, P3, P4, P5}. It is worth noting that P5 is
obtained by C5 through a 1× 1 convolution and a 3× 3 convolution, which is the same way as P5
in FPN.

Since all levels of multi-scale feature map is shared by RPN and detection head, we fixed the
feature dimension (denoted as d) of each level feature map and all extra convolutional layers. In this
study, we set d = 256, which can meet the requirement of a fixed number of feature map channels in
each layer, and also reduce memory consumption and maintain good performance.

Figure 5. An example of a checkerboard artifacts. Checkerboard artifacts occurs when a 3 × 3
convolution deconvolution on a 5× 5 feature map with stride = 2.

2.3. Multi-Layer Attention Network

Referring to the human brain’s focus attention mechanism, we design a multi-layer attention
network, which enables the network to focus on processing some key information or information
of interest when faced with a large amount of input information, so as to improve the performance
of network. The proposed multi-layer attention network consists of four identical attention layer,
which are connected after {P2, P3, P4, P5}, and the output is {A2, A3, A4, A5}. As illustrated in
Figure 6, each attention layer contains two parts: position attention block and channel attention block.
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The position attention block is adopted to model the pairwise long-range dependencies, guiding the
network to pay special attention to the location of the target. Then, the channel attention block aims to
model the channel-wise relations, guiding the network to pay more attention to the features of targets,
which are the key to determining which category the target belongs to.

As we all know, object detection is a visual task sensitive to position, i.e., once the position
of the object in the image changes, the network needs to give a meaningful respond accordingly.
However, convolutional neural network favors translation invariance—shift of an object inside an
image should be indiscriminative, which is obviously contrary to the principle of object detection.
The proposed position attention block can effectively model the relationships among widely separated
spatial positions, making the network more sensitive to the position of targets, thus enhancing the
network locating performance. On the other hand, the network distinguishes between objects and
non-objects based on the learned features and classifies the objects correctly. Therefore, our goal is
to enable the network to learn the importance of different features, and strengthen the learning of
important features. To achieve this, we propose a channel attention block inspired by SENet [30].
In deep convolutional neural networks, each channel dimension of the feature map is learned by a
convolution kernel due to the weight-sharing characteristics of the convolution. That is, different
channels of the feature map represent different features learned from images. In fact, different features
contribute differently to the network. To enhance features with high contributions (target features)
and weaken features with low contributions (non-target features), our channel attention block, which
follows the position attention block, will first quantifies the contribution of each feature in the feature
map through global averaging pooling, and then aggregates it to the original input by broadcast
element-wise addition, thus enabling the features with greater contributions to receive more attention.

F A

Position Attention Channel AttentionPosition Attention Channel Attention

1 1 conv

1×1 conv

1 1 conv

Softmax

GAP ReLU

1×1×C

1
×

1
×

C
/

r

1×1×C

F1 (x)

F2 (x)

F3 (x)

1
×

LN

1
×

1
×

C
/

r

1
×

1
×

C
/

r

Wv1 Wv2

+

Figure 6. The overview of attention layer (part of the multi-layer attention network). The ⊕ denotes
the broadcast element-wise addition.

In the position attention block, the input is the image feature of the previous hidden layer
x ∈ RC×H×W , x are then transformed into three feature spaces F1, F2 and F3. First, the attention
map that models long-range dependence between pixels is obtained through F1(x) and F2(x), where
F1(x) = W1x and F2(x) = W2x.

Ai,j = so f t max(Sij) =
exp(Sij)

N
∑

j=1
exp(Sij)

(4)

where Sij = F1(xi)
T ⊗ F2(xj), and Ai,j indicates the pairwise relationship between position i and

position j. Here, C, H and W are respectively the number of channels, height and width of the feature
map of the previous hidden layer. Then, the obtained attention map is applied to the feature space F3

to obtain the response z ∈ RC×H×W of each query position at all positions on the feature map, where,

zi=
N

∑
j=1

Ai,j ⊗ F3(xj), F3(x) = W3x (5)
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In the above formula, W1 ∈ RC′×C, W2 ∈ RC′×C, W3 ∈ RC×C is the weight matrix learned by
1× 1 convolution. i is the index of query position. N = H ×W and N denotes number of feature
locations. ⊗ denotes matrix multiplication. Because the feature spaces interact with each other through
matrix multiplication, there will be a large memory footprint, especially for feature maps with large
sizes. Therefore, we can improve memory efficiency by reducing the number of feature map channels.
However, in order to ensure the same number of input and output channels in each attention layer,
we can reduce C′ to C′ = C/k, k = 1, 2, 4, 8, 16. We found that when k = 8, the memory consumption
is minimal and the performance loss is minimal. Therefore, in order to balance the efficiency and
performance of the model, we set C′ = C/8

The input of the channel attention block is the output of the position attention block. To make
better use of the spatial location information learned by the location attention block, we first
generate channel-wise statistics via a global average pooling, which squeezes the global spatial
information into a channel descriptor. This process can be expressed by the Formula (6). Then,
to fully capture channel-wise dependencies, we designed a transform architecture (Eqation (7)) that
can meet two criteria: (1) it can learn a non-linear interaction between channels. (2) it can learn a
non-mutual-exclusive relationship between channels.

sc =
1

H ×W

H

∑
m=1

W

∑
n=1

zc(m, n) (6)

where zc, H and W denotes channel c, height and width of the feature map z.

y = Wv2(ReLU(LN(Wv1z))) (7)

where LN denotes layer normalization that can ease normalization of the two-layer architecture for
the transform block, and Wv1 ∈ R

C
r ×C, Wv2 ∈ RC× C

r . To make the channel attention block lighter, we
reduced the dimension of the first fully connected (FC) layer by ratio r. In fact, there will be certain
redundancy features in the FC layer. Therefore, setting r too small will affect the network performance
and have a high memory consumption. When r is set too large, some important features may be lost,
but the memory efficiency is high. In this paper we set r = 4, which can achieve the balance between
efficiency and performance of the model.

In addition, to further enhance the features of each position, we use residual connections between
inputs and outputs of each attention layer. Therefore, the final output of the channel attention block is
oi = yi ⊕ xi, where ⊕ denotes the broadcast element-wise addition.

2.4. Loss Function

When training RPN, we assign a binary category label to each anchor. We assign a positive label
to the anchors that meet two conditions: 1) the anchor has a highest Intersection-over-Union (IOU)
overlap with a ground-truth box; Or 2) the IOU overlap between an anchor and the ground-truth box
is greater than 0.7. When the IOU overlap with any ground-truth box is less than 0.3, the anchor is
considered to be the background (non-object), and we assign a negative label to it. It is worth noting
that anchors that are neither positive samples nor negative samples don not contribute to objective
training. We minimize the objective function following the multi-task loss function of mask R-CNN,
which is defined as follows:

L = Lrpn + λ1 · Lcls + λ2 · Lreg + λ3 · Lmask (8)

where Lrpn, Lcls, Lreg and Lmask are the same as defined in [11], λ1, λ2 and λ3 are the balance parameters
between each task loss. In this paper, we set λ1 = λ2 = λ3 = 1.0. Here, the mask branch of Mask
R-CNN has a Km2 dimensional output for each ROI, encoding K binary mask of resolution m×m,
one of each of K classes. To achieve this, we apply per-pixel sigmoid on each output of mask branch,



Remote Sens. 2020, 12, 389 10 of 20

and the Lmask is defined as the average binary cross-entropy loss. When an ROI is associated with
ground-truth class k, the output mask only belongs to k class will contributes to the loss.

In addition, Lreg is defined as:

Lreg = Lreg(t, t∗) = ∑
i∈{x,y,w,h}

smoothL1(t− t∗) (9)

In which smoothL1(x) =
{

0.5x2, i f |x|<1
|x|−0.5, otherwise

For the bounding box regression, we adopt the parameterization of four coordinates, defined
as follows:

tx = (x− xa)/wa, ty = (y− ya)/ha,
tw = log(w/wa), th = log(h/ha),
t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,
t∗w = log(w∗/wa), t∗h = log(h∗/ha)

(10)

where x, y, w and h denotes box’s center coordinates and its width and height. Variables x, xa and x∗

are for the predicted box, anchor box, and ground-truth box respectively (likewise for y, w, h).

3. Experiments and Results

In this section, we will introduce the dataset and implementation details used in our experiments.
All experiments in this paper were implemented by Pytorch on a server with Nvidia Geforce GTX
2080Ti GPU and 11 G memory.

3.1. Datasets

We evaluate our approach on two public remote sensing datasets: DOTA and NWPUVHR-10.
The datasets used for the experiments in this paper are briefly introduced as follows:

DOTA [15] is a large dataset for object detection in aerial images. It can be used for developing
and evaluating object detectors in remote sensing field and contains 2806 aerial images from different
sensors and platforms. Each image ranges in size from 800× 800 to 4000× 4000 pixels and contains a
wide variety of scales, directions, and shapes. These DOTA images are then annotated by aviation
image interpreters using 15 common object categories. The fully annotated DOTA benchmark contains
188,282 instances, each of which is labeled with an arbitrary quadrilateral. DOTA has two detection
tasks: horizontal boundary box (HBB) and directional boundary box (OBB). To ensure that the training
data and test data distributions approximately match, half of the original image were selected as
the training set, 1/6 as the verification set, and 1/3 as the test set. We divided the DOTA images
into sub-images of size 1024× 1024, with an overlap of 200 pixels, and scaled it to 1333× 800. We
then removed the blank sample that did not contain any object. With all these processes, we obtain
10,276 patches for training, 3626 patches for validating and 10,833 patches for testing.

NWPUVHR-10 [32,33] dataset is a public detection dataset with 10 class geospatial objects
for detection, which is only used for research purposes. The dataset contains a total of
800 very-high-resolution (VHR) remote sensing images culled from the Google earth and Vaihingen
datasets, which are then manually annotated by experts using 10 common object categories.
The 10 categories are airplane, ship, storage-tank, baseball-diamond, tennis-court, basketball-court,
ground-track-field, harbor, bridge and vehicle. The NWPUVHR-10 dataset contains two sub-datasets:
a positive dataset of 650 images and a negative dataset of 150 images. For the positive dataset,
each image contains at least one object to be detection. Hence, we only use the positive dataset of
NWPUVHR-10 dataset. Each image in the positive dataset is about 1000 pixels. In this paper, the split
ratios of the training dataset, validation dataset and test dataset are 60%, 20% and 20%, respectively.
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3.2. Implementation Detatils

3.2.1. Rpn

RPN is used to generate object proposals for subsequent fast R-CNN and mask branches. We
adapt the RPN by replacing the singe-scale feature map with our multi-scale feature maps, and assign
anchors of different sizes at different stages. Specifically, on five stages {A2, A3, A4, A5, A6}, the area
of the anchors is set to {322, 642, 1282, 2562, 5122}pixels, respectively. It is worth noting that A6 is
obtained by A5 through max pooling. Meanwhile, different aspect ratios {1 : 2, 1 : 1, 2 : 1} of anchors
are adopted at each stage.

3.2.2. Training

Since Mask R-CNN is our baseline network, we set hyper-parameters mainly following Mask
R-CNN. Our base network is ResNet 101 and is initialized with its pre-trained weights on ImageNet.
All new layers are initialized with kaimingnormal. In training stage of all the experiments, we used
SGD as the optimizer, with a batch size of 2 (the number of GPUs is 1 and each GPU calculates 2 images),
momentum of 0.9 and weight decay of 0.0001. We train our model for 12 epochs with a learning
rate of 0.0025, and use a linear warmup learning strategy to accelerate the network convergence.
The warmup step is 500, and the learning rate will decrease to 0.00025 and 0.00003 at the 8th and 11th
epoch. The mini-batch size of RPN and Fast R-CNN are set to 256 and 512 per image with 1:3 sample
ratio of positives and negatives.

3.2.3. Inference

In the inference stage, first, RPN generates many object proposals. After NMS with a threshold of
0.7, 1000 object proposals are fed into Fast R-CNN. Then, Fast R-CNN further fine-tunes the target
position according to the object proposals generated in the first stage, obtains object’s category and
horizontal candidate boxes by regression, and removes the redundant candidate boxes through the
NMS with a threshold of 0.5. The kept candidate boxes are input to the mask branch to generate the
shape mask maps of objects. Finally, the objects’ rotation bounding box is generated based on the
predicted shape mask.

3.2.4. Evaluation Indicators

To quantitatively evaluate the performance of the proposed method, we use the Average Precision
(AP), precision-recall curve (PRC), and mean Average Precision (mAP) as the evaluation indicators for
the experiments in this paper. AP, PRC and mAP are three well-known and widely applied indicators
to evaluate the performance of object detection methods [34]. PRC can be obtained through four
evaluation components: true positive (TP), false positive (FP), false negative (FN) and true negative
(TN) [35]. TP and FP indicate the number of targets detected correctly and the number of targets
detected incorrectly, respectively. FN represents the number of targets not detected. Based on these
four evaluation components, the formulas for recall and accuracy are defined below:

Precision =
TP

(TP + FP)
(11)

Recall =
TP

(TP + FN)
(12)

AP is the average precision of the target in the range of recall = 0 to recall = 1, and is generally the
area under PRC. mAP is the average value of AP values for all classes, and the larger the mAP value,
the better the object detection performance.
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3.3. Peer Methods Comparison

The proposed RADet with Refine Feature Pyramid Network and Multi-layer Attention Network
is compared with other object detectors on two datasets: DOTA and NWPUVHR-10. The results show
that Our model achieves competitive performance and outperforms other models.

3.3.1. Results on Dota

In addition to the official baseline given by DOTA, we also compared our results with R-DFPN [16],
R2CNN [13], RRPN [14] and the method proposed by Yang et al. in [36]. The performance of these
methods is shown in Table 2. As can be seen from Table 2, compared to other methods, due to the
addition of the proposed Multi-layer Attention Network, RADet has a significant effect on improving
the detection performance of small objects surrounded by complex backgrounds such as bridge, ship,
swimming pool, small vehicle, and large vehicle. Moreover, with the proposed Refine Feature Pyramid
Network, the detection performance of objects that may exist on the same image and have large scale
differences, such as baseball diamond and small vehicle, and harbor and ship, can also be improved
simultaneously. In conclusion, our method is better than the existing published results, reaching
69.09% mAP.

Some detection examples of RADet on DOTA dataset are shown in Figure 7. In Figure 7, it can be
seen that the false alarm rate of the proposed RADet are very low, while recall rate is high. Figure 7
also shows that the proposed RADet can well deal with complex background noise, and can also detect
targets with large scale changes.

Table 2. Overall performance evaluation of different methods on DOTA datasets. The short names
for categories are defined as: PL-Plane, BD-Baseball diamond, BR-Bridge, GTF-Ground track field,
SV-Small vehicle, LV-Large vehicle, SH-Ship, TC-Tennis court, BC-Basketball court, ST-Storage tank,
SBF-Soccer-ball field, RA-Roundabout, HA-Harbor, SP-Swimming pool, and HC-Helicopter. Ours *
indicates the RADet with ResNext101. Bold numbers in Tables means the best results.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FR-O [15] 79.09 69.12 17.17 63.49 34.20 37.16 36.20 89.19 69.60 58.96 49.40 52.52 46.69 44.80 46.30 52.93
R-DFPN [16] 80.92 65.82 33.77 58.94 55.77 50.94 54.78 90.33 66.34 68.66 48.73 51.76 55.10 51.32 35.88 57.94
R2CNN [13] 80.94 65.67 35.34 67.44 59.52 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN [14] 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.84 53.08 51.94 53.58 61.01

Yang et al. [36] 81.25 71.41 36.53 67.44 61.16 50.91 56.60 90.67 68.09 72.39 55.06 55.60 62.44 53.35 51.47 62.29
Ours 79.66 77.36 47.64 67.61 65.06 74.35 68.82 90.05 74.72 75.67 45.60 61.84 64.88 68.00 53.67 67.66

Ours * 79.45 76.99 48.05 65.83 65.46 74.40 68.86 89.70 78.14 74.97 49.92 64.63 66.14 71.58 62.16 69.09

3.3.2. Results on Nwpuvhr-10

On the NWPUVHR-10 dataset, we evaluate our method using AP, mAP and PRC as evaluation
indicators. Table 3 shows the overall performance comparison results of our method and other classical
object detection algorithms on the NWPUVHR-10 dataset. There is no doubt that our method also
achieves the first place on the NWPUVHR-10 dataset, with 90.24% mAP. In Figure 8, it can be seen
that our method achieved the best detection results in more than half of the categories, such as
airplane, vehicle, basketball court, ground track field, baseball diamond and tennis court. In short,
by comprehensively analyzing the AP values, mAP values and PRCs, we can see that our RADet has
achieved the best detection performance.



Remote Sens. 2020, 12, 389 13 of 20

Table 3. Overall performance evaluation of different methods on NWPUVHR-10 datasets. Bold
numbers in Tables means the best results.

Method SSD512 [12] Faster R-CNN [6] FPN [7] Ours

Tennis-court 33.85 79.77 86.69 90.74
Vehicle 45.45 81.02 89.39 89.98
Harbor 32.95 79.37 69.52 78.01

Basketball-court 61.85 79.96 90.60 97.46
Ground-track-field 99.31 90.67 90.42 99.53

Bridge 45.45 59.93 79.49 77.05
Ship 53.90 81.82 81.40 81.39

Airplane 90.91 90.91 90.91 100.00
Storage-tank 93.06 97.89 98.95 97.90

Baseball-diamond 90.35 90.24 90.12 90.36
mAP 64.71 83.25 86.75 90.24

(a) SV, SP, TC and BD (b) SV, TC, SP and BC (c) LV (d) RA

(e) GTF, SP, TC and SBF (f) SV and LV (g) ST (h) PL

(i) SP and HA (j) SP (k) HC (l) BR

Figure 7. Examples of RADet’s detection results on DOTA dataset. (a) Detection results of Small vehicle
(SV), Swimming pool (SP), Tennis court (TC) and Baseball diamond (BD). (b) Detecton results of Small
vehicle (SV), Tennis court (TC), Swimming pool (SP) and Basketball court (BC). (c) Detection results
of Large vehicle (LV). (d) Detection results of Roundabout (RA). (e) Detection results of Ground track
field (GTF), Swimming pool (SP), Tennis court (TC) and Soccer-ball field (SBF). (f) Detection results
of Small vehicle (SV) and Large vehicle (LV). (g) Detection results of Storage tank (ST). (h) Detection
results of Plane (PL). (i) Detection results of Swimming pool (SP) and Harbor (HA). (j) Detection results
of Swimming pool (SP). (k) Detection results of Helicopter (HC). (l) Detection results of Bridge (BR).
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(a) Tennis court (b) Vehicle

(c) Harbor (d) Basketball court

(e) Ground track field (f) Bridge

(g) Ship (h) Airplane

(i) Storage tank (j) Baseball diamond
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Figure 8. The P-R curves of RADet and other classical object detection algorithms on NWPUVHR 10
dataset. (a) P-R curves on Tennis court category. (b) P-R curves on Vehicle category. (c) P-R curves on
Harbor category. (d) P-R curves on Basketball court category. (e) P-R curves on Ground track field
category. (f) P-R curves on Bridge category. (g) P-R curves on Ship category. (h) P-R curves on Airplane
category. (i) P-R curves on Storage tank category. (j) P-R curves on Baseball diamond category.
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3.4. Ablation Study

3.4.1. Quantitative Analysis

To verify the effectiveness of the proposed approach, we do two sets of ablation experiments on
the test set of the DOTA dataset. All results were obtained by submitting the prediction results to
the official DOTA evaluation server. In both sets of ablation experiments, we used AP and mAP as
evaluation indicators. Table 4 shows the results of our model on the DOTA dataset in two different
up-sampling methods of the Refine Feature Pyramid Network. Table 5 summarizes the results of our
model with different settings on our DOTA dataset.

Baseline setting. We chose mask R-CNN with FPN as our baseline. For fairness, all our
experiments use ResNet101 as the base model, and all the experimental data and parameter settings
are strictly consistent.

Effect of Refine Feature Pyramid Network. We replace the FPN in the baseline with the proposed
Refine Feature Pyramid Network, which can increase the total mAP by 0.54%. As discussed in
Section 2.2, our resize-convolution can effectively reduce the checkerboard effect generated during
the up-sampling process, which can also be proved by the results in Table 4. Compared with
Refine Feature Pyramid Network using deconvolution, the Refine Feature Pyramid Network using
resize-convolution can increase mAP by 0.78% , which shows that resize-convolution can effectively
reduce the checkerboard effect analyzed in Section 2.2.

Table 4. Results of ablative study of different component for up-sampling in our proposed Refine
Feature Pyramid Network on the DOTA dataset.

Method Deconvolution Resize-convolution mAP

RFPN with different component X 64.86
X 65.64

Table 5. Results of ablative study of different component in RADet. The +RFPN means that we replace
the FPN in baseline with our proposed Refine Feature Pyramid Network, and +MANet means that we
add our proposed Multi-layer Attention Network to baseline. The short names here are the same as
that in Table 2. Bold numbers in Tables means the best results.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Baseline 79.78 74.88 44.13 63.22 63.60 67.25 68.56 90.01 69.44 67.76 44.65 64.09 63.84 64.89 50.34 65.10
+ RFPN 79.84 75.91 43.08 65.22 65.11 72.93 69.09 90.69 68.97 68.86 43.58 63.10 64.62 67.59 46.02 65.64 (↑ 0.54)

+ MANet 80.03 75.32 43.58 62.47 64.13 72.77 68.74 90.19 70.29 73.51 51.26 61.24 64.44 68.04 43.75 65.98 (↑ 0.88)
+ RFPN + MANet 79.66 77.36 47.64 67.61 65.06 74.35 68.82 90.05 74.72 75.67 45.60 61.84 64.88 68.00 53.67 67.66 (↑ 2.56)

Effect of Multi-layer Attention Network. To further effectively suppress the influence of
background noise and highlight the object feature, we propose Multi-layer Attention Network.
The results in Table 5 show that our Multi-layer Attention Network can significantly improve the
detection results of small objects such as swimming pool and storage tank that may be surrounded by
complex background. Adding our proposed Multi-layer Attention Network to the baseline can increase
the total mAP of the model by 0.88% to 65.98%, and increase the AP of the storage tank category by
5.75%, and the AP of the swimming pool category by 3.15%. In addition, adding Multi-layer Attention
Network to our model using Refine Feature Pyramid Network can also improve the performance
of the model, which further demonstrate the effectiveness and portability of Multi-layer Attention
Network.

3.4.2. Qualitative Analysis

Qualitative analysis of Resize-convolution. It can be seen from Figure 9b that using deconvolution
for up-sampling will produce serious uneven overlap (checkerboard artifacts), which will affect the
detection performance of the final network, as shown in Table 4. Similarly, as shown in Figure 9c
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using only nearest neighbor interpolation for up-sampling also produces some aliasing effects. Our
resize-convolution (combination of nearest neighbor interpolation and convolution) works best,
as shown in Figure 9d, because 3× 3 convolution can filter out some aliased high-frequency signals.

(a) (b) (c) (d)

Figure 9. The heatmaps of different component for up-sampling. (a) Input image. (b) The heatmap
after up-sampling with deconvolution. (c) is the heatmap after up-sampling with nearest neighbor
interpolation. (d) is the heatmap after up-sampling with nearest neighbor interpolation and convolution
(resize-convolution).

Qualitative analysis of Multi-layer Attention Network. Due to the complexity of real-world data
such as remote sensing images, there will be a lot of noise information near the objects. Extensive noise
will overwhelm the object information and the boundary between objects will be blurred, as shown in
Figure 10b, leading to missed detection and increasing false alarms. It can be seen from Figure 10c
that our proposed Multi-layer Attention Network can effectively suppress background noise and
highlight object information, which is helpful to improve the final detection performance of the model.
In addition, it can be seen from Figure 10d that due to the position attention block, the proposed RADet
can pay attention to some information around the swimming pool, such as small vehicles and houses,
which greatly helps the precise positioning of the swimming pool.

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d1)

(d2)

(e1)

(e2)

Figure 10. Visualizations of Multi-layer Attention Network. (a1,a2) The input images. (b1,b2) The input
feature maps of Multi-layer Attention Network. (c1,c2) The output feature maps of Multi-layer
Attention Network. (d1,d2) The heatmaps of the input feature maps of Multi-layer Attention Network.
(e1,e2) The heatmaps of the output feature maps of Multi-layer Attention Network.

4. Discussion

4.1. Effectiveness of Refine Feature Pyramid Network and Multi-Layer Attention Network on Faster R-Cnn

To further verify the effectiveness of the proposed Refine Feature Pyramid Network (RFPN) and
Multi-layer Attention Network (MANet), we added it to Faster R-CNN and performed experiments on
the DOTA test set. The experimental results are shown in Table 6. The larger the mAP, the better the
detection performance of the model. As can be seen from Table 6, the mAP of Faster R-CNN increased
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to 61.79% (increased by 1.33%) after adding the Refine Feature Pyramid Network, and increased to
61.82% (increased by 1.36%) after adding Multi-layer Attention Network, which further proves the
effectiveness of the proposed Refine Feature Pyramid Network and Multi-layer Attention Network.
In fact, although RFPN and MANet can improve the overall detection performance of the model,
from the perspective of the AP of each class, RFPN and MANet have weakened the performance of
Faster R-CNN in detecting large targets to some extent.

Table 6. The efficientiveness of RFPN and MANet on Faster R-CNN. The short names here are the
same as that in Table 2.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Faster R-CNN [6] 80.32 77.55 32.86 68.13 53.66 52.49 50.04 90.41 75.05 59.59 57.00 49.81 61.69 56.46 41.85 60.46
Faster R-CNN + RFPN 79.29 75.95 47.97 58.54 54.88 50.10 52.14 79.93 59.96 68.77 42.63 64.04 66.04 69.14 57.44 61.79

Faster R-CNN + MANet 79.65 74.29 49.63 55.59 55.02 50.16 52.29 79.60 66.57 68.59 39.50 63.15 65.50 71.87 55.84 61.82

4.2. Sensitivity Analysis of Nms Threshold for Radet

Non-maximum suppression (NMS) is the most commonly used post-processing method in
object detection field. NMS can eliminate redundant boxes, leaving the best object detection position.
Therefore, there is a necessary correlation between the non-maximum suppression threshold and the
final detection performance of the object detection algorithm. Figure 11 analyzes the effect of NMS
threshold used in post-processing of the proposed RADet on AP of each category and mAP of the
algorithm. In Figure 11, it can be seen that when the NMS threshold is too high or too low, both AP
and mAP show a downward trend, i.e., the detection effect of the algorithm shows a tendency to
deteriorate. This is because that when the NMS threshold is too high, fewer redundant boxes are
removed and the possibility of false detection is high; when the NMS threshold is too low, many
redundant boxes are removed, the recall rate is low, and the possibility of missed detection is high.

Figure 11. The impact of nms threshold on mAP value of RADet and AP values of different categories.

5. Conclusions

In this paper, we propose an end-to-end multi-category detector designed for arbitrary-oriented
objects in remote sensing images. Our method is improved based on Mask R-CNN and obtain the
rotation bounding box of the objects through the shape mask predicted by the network. In addition,
considering that the scales of objects in remote sensing images vary greatly, we adopt the backbone of
the pyramid structure to obtain multi-scale feature maps and further improve the up-sampling method
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to reduce the checkerboard effect produced by deconvolution. Based on this, we propose a Refine
Feature Pyramid Network, which can overcome the difficulty of large differences in object’s scale and
effectively reduce the checkerboard effect. Moreover, the proposed RADet weakens the influence of
noise from complex background and highlights the object features through the proposed Multi-layer
Attention Network, which can further improve the detection performance of small objects surrounded
by complex backgrounds. Our method achieved the best detection performance on two public remote
sensing image datasets: DOTA and NWPUVHR-10.

There is no doubt that there is still room for improvement in our approach. Since our method
obtains the object’s rotation bounding box based on the predicted shape mask, once the shape mask
of the object is not well predicted, it will affect the quality of the rotation bounding box. In addition,
like most two-stage target detectors, our method does not implement real-time detection. Therefore,
in the future, we are interested in the following directions: 1) Further improve the mask branch to
obtain a better shape mask. 2) Implement RADet in anchor free mode, to make RADet lighter and
more flexible.
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