Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, D.H.; Park, J.H. Developing Inspection Methodology of Solar Energy Plants by Thermal Infrared Sensor on Board Unmanned Aerial Vehicles. Energies 2019, 12, 2928. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, L.; Wu, T.; Zhang, H.; Sun, X. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system. J. Appl. Remote Sens. 2017, 11, 016026. [Google Scholar] [CrossRef]
- United States Census Bureau. National and State Housing Unit Estimates: 2010 to 2019; United States Census Bureau: Suitland, MD, USA, 2019.
- Wood Mackenzie. U.S. Solar Market Insight: Q2 2020; Solar Energy Industries Association: Washington, DC, USA, 2020. [Google Scholar]
- Um, J.S.; Wright, R. A comparative evaluation of video remote sensing and field survey for revegetation monitoring of a pipeline route. Sci. Total Environ. 1998, 215, 189–207. [Google Scholar] [CrossRef]
- Um, J.S.; Wright, R. Video strip mosaicking: A two-dimensional approach by convergent image bridging. Int. J. Remote Sens. 1999, 20, 2015–2032. [Google Scholar] [CrossRef]
- Um, J.-S.; Wright, R. ‘Video Strip Mapping (VSM)’ for Time-sequential Monitoring of Revegetation of a Pipeline Route. Geocarto Int. 1999, 14, 24–35. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; van Aardt, J.; Kunneke, A.; Seifert, T. Influence of Drone Altitude, Image Overlap, and Optical Sensor Resolution on Multi-View Reconstruction of Forest Images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Um, J.-S. Evaluating patent tendency for UAV related to spatial information in South Korea. Spat. Inf. Res. 2018, 26, 143–150. [Google Scholar] [CrossRef]
- Robertson, S. Campus, City, Networks and Nation: Student-Migrant Activism as Socio-spatial Experience in Melbourne, Australia. Int. J. Urban Reg. Res. 2013, 37. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Hwang, Y.-S.; Um, J.-S. Comparative Evaluation of Cool Surface Ratio in University Campus: A Case Study of KNU and UC Davis. KIEAE J. 2015, 15, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-I.; Um, J.-S. Differentiating carbon sinks versus sources on a university campus using synergistic UAV NIR and visible signatures. Environ. Monit. Assess. 2018, 190, 652. [Google Scholar] [CrossRef] [PubMed]
- DJI. Manifold 2 Series User Guide v1.0; DJI: Shenzhen, China, 2019. [Google Scholar]
- DJI Developer. Telemetry. Available online: https://developer.dji.com/onboard-sdk/documentation/guides/component-guide-telemetry.html (accessed on 5 July 2021).
- Um, J.-S. Drones as Cyber-Physical Systems: Concepts and Applications for the Fourth Industrial Revolution, 1st ed.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Um, J.-S. Valuing current drone CPS in terms of bi-directional bridging intensity: Embracing the future of spatial information. Spat. Inf. Res. 2017, 25, 585–591. [Google Scholar] [CrossRef]
- Lee, J.-J.; Hwang, Y.-S.; Park, S.-I.; Um, J.-S. Comparative Evaluation of UAV NIR Imagery versus in-situ Point Photo in Surveying Urban Tributary Vegetation. J. Environ. Impact Assess. 2018, 27, 475–488. [Google Scholar] [CrossRef]
- Park, S.-I.; Hwang, Y.-S.; Um, J.-S. Estimating blue carbon accumulated in a halophyte community using UAV imagery: A case study of the southern coastal wetlands in South Korea. J. Coast. Conserv. 2021, 25, 38. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, X.; Ai, G.; Zhang, Y.; Zuo, Y. Generating a High-Precision True Digital Orthophoto Map Based on UAV Images. ISPRS Int. J. Geo-Inf. 2018, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Glenn, R.; Overbeck, J.R.; Heim, R. Color Indexed Elevation Maps for Flood-Vulnerable Coastal Communities in Western Alaska; State of Alaska, Department of Natural Resources, Division of Geological: Fairbanks, AK, USA, 2019. [Google Scholar]
- Liebermann, S.; Um, J.-S.; Hwang, Y.; Schlüter, S. Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts. Energies 2021, 14, 3030. [Google Scholar] [CrossRef]
- Kraak, M.-J.; Fabrikant, S.I. Of maps, cartography and the geography of the International Cartographic Association. Int. J. Cartogr. 2017, 3, 9–31. [Google Scholar] [CrossRef]
- Tobler, W. Resolution, Resampling, and All That. In Building Data Bases for Global Science; Taylor and Francis: London, UK, 1988. [Google Scholar]
- ICA. Multilingual Dictionary of Technical Terms in Cartography; Franz Steiner Verlag: Wiesbaden, Germany, 1973.
- ASPRS. ASPRS Accuracy Standards for Large-Scale Maps (Approval by the ASPRS Professional Practicing Division, March, 1990); The American Society for Photogrammetry and Remote Sensing: Bethesda, MA, USA, 1990. [Google Scholar]
- Mesas-Carrascosa, F.J.; Rumbao, I.C.; Berrocal, J.A.B.; Porras, A.G.-F. Positional Quality Assessment of Orthophotos Obtained from Sensors Onboard Multi-Rotor UAV Platforms. Sensors 2014, 14, 22394–22407. [Google Scholar] [CrossRef] [PubMed]
- NSDI. Geospatial Positioning Accuracy Standards Part 3: National Standard for Spatial Data Accuracy; NSDI: Reston, VA, USA, 1998. [Google Scholar]
UAV (DJI Matrice 200 V2) | Camera (DJI Zenmuse XT2) | ||
---|---|---|---|
Maximum flight altitude | 3000 m (flight altitude applied for this experiment, 80 m) | Sensor | CMOS, 1/1.7” (height: 5.82 mm * width: 7.76 mm), Effective Pixels: 12 M |
Weight | 4.69 kg | Focal length | 8 mm |
Hovering accuracy Vertical, ±0.1 m | Horizontal, ±0.3 m | Video resolution | 4K UHD: 3840 × 2160 |
Sampling Frequency of GPS Signal | 2.4000~2.4835 GHz/ 5.725~5.850 GHz | Still imagery resolution | 4000 × 3000 |
Hovering accuracy (GPS) | Vertical, ±0.5 m or ±0.1 m (Downward Vision System) Horizontal, ±1.5 m or ±0.3 m (Downward Vision System) | Spectral band | Blue (450~495 nm) Green (495~570 nm) Red (620~750 nm) |
Maximum flight speed | 61.2 km/h (P-mode) | F-Stop (Full frame rate) | F/1.8 (30 Hz) |
Category | Sampling Frequency | Category | Sampling Frequency |
---|---|---|---|
Acceleration | 400 Hz | Angular Rate | 400 Hz |
Velocity | 200 Hz | Barometer Altitude | 200 Hz |
GNSS | 50 Hz | Compass | 100 Hz |
Remote Controller: | 50 Hz | Gimbal | 50 Hz |
Motor | 50 Hz | ||
Flight Status | 50 Hz | Battery | 50 Hz |
Frame Intervals | 3-D Points for Bundle Block Adjustment | 2-D Key Points Observations for Bundle Block Adjustment | Matched 2-D Keypoints per Image | Mean Reprojection Error (Pixels) | Overlap (%) | ||
---|---|---|---|---|---|---|---|
Min | Max | Mean | |||||
Path flight | 573,980 | 1,637,172 | 4177 | 22,867 | 12,891 | 0.224 | 80.0 |
2.5 s | 195,749 | 559,825 | 8453 | 20,819 | 14,732 | 0.295 | 89.3 |
4 s | 113,709 | 296,627 | 6022 | 18,301 | 12,359 | 0.288 | 83.2 |
5.5 s | 73,496 | 184,724 | 3367 | 18,672 | 10,866 | 0.277 | 77.3 |
Category | Frame Intervals | GCP Points | Min | Max | Mean | STDEV |
---|---|---|---|---|---|---|
Building boundary (Allowable RMSE: 0.028 m) | Path flight | 11 | 0.013 | 0.028 | 0.017 | 0.004 |
2.5 s | 11 | 0.011 | 0.027 | 0.019 | 0.006 | |
4 s | 11 | 0.016 | 0.044 | 0.025 | 0.009 | |
5.5 s | 11 | 0.017 | 0.046 | 0.027 | 0.010 | |
Photovoltaic panel location (Allowable RMSE: 0.028 m) | Path flight | 17 | 0.001 | 0.064 | 0.019 | 0.015 |
2.5 s | 17 | 0.004 | 0.039 | 0.024 | 0.010 | |
4 s | 17 | 0.012 | 0.073 | 0.030 | 0.015 | |
5.5 s | 17 | 0.017 | 0.078 | 0.035 | 0.015 | |
The altitude of the building boundary (Allowable RMSE: 0.028 m) | Path flight | 11 | 0.003 | 0.056 | 0.023 | 0.010 |
2.5 s | 11 | 0.019 | 0.053 | 0.026 | 0.018 | |
4 s | 11 | 0.021 | 0.082 | 0.041 | 0.019 | |
5.5 s | 11 | 0.022 | 0.095 | 0.052 | 0.018 |
Category | Frame Intervals | GCP Points | Min | Max | Mean | STDEV |
---|---|---|---|---|---|---|
Distance between photovoltaic panels and building boundary/structure (Allowable RMSE: 0.028 m) | Path flight | 17 | 0.006 | 0.055 | 0.019 | 0.014 |
2.5 s | 17 | 0.005 | 0.062 | 0.023 | 0.012 | |
4 s | 17 | 0.011 | 0.067 | 0.029 | 0.012 | |
5.5 s | 17 | 0.005 | 0.079 | 0.030 | 0.022 | |
Distance between photovoltaic panel array (Allowable RMSE: 0.028 m) | Path flight | 12 | 0.009 | 0.018 | 0.012 | 0.003 |
2.5 s | 12 | 0.011 | 0.038 | 0.019 | 0.009 | |
4 s | 12 | 0.026 | 0.075 | 0.059 | 0.017 | |
5.5 s | 12 | 0.002 | 0.106 | 0.053 | 0.032 | |
Detected photovoltaic panel size (Allowable RMSE: 0.053 m2) | Path flight | 286 | 0.001 | 0.031 | 0.022 | 0.004 |
2.5 s | 286 | 0.011 | 0.027 | 0.019 | 0.004 | |
4 s | 286 | 0.011 | 0.048 | 0.019 | 0.005 | |
5.5 s | 286 | 0.018 | 0.037 | 0.027 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.-S.; Schlüter, S.; Park, S.-I.; Um, J.-S. Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sens. 2021, 13, 2745. https://doi.org/10.3390/rs13142745
Hwang Y-S, Schlüter S, Park S-I, Um J-S. Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sensing. 2021; 13(14):2745. https://doi.org/10.3390/rs13142745
Chicago/Turabian StyleHwang, Young-Seok, Stephan Schlüter, Seong-Il Park, and Jung-Sup Um. 2021. "Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel" Remote Sensing 13, no. 14: 2745. https://doi.org/10.3390/rs13142745
APA StyleHwang, Y. -S., Schlüter, S., Park, S. -I., & Um, J. -S. (2021). Comparative Evaluation of Mapping Accuracy between UAV Video versus Photo Mosaic for the Scattered Urban Photovoltaic Panel. Remote Sensing, 13(14), 2745. https://doi.org/10.3390/rs13142745