DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning
Abstract
:1. Introduction
- The proposed method achieves DOA and range estimates of FDA-MIMO radar through SSR technology, which overcomes the shortcoming of the existing subspace algorithms. This method has a better effect than the subspace algorithms in the case of low SNR or scarce snapshots.
- We proposed a new decoupling strategy to decouple the DOA and range parameters of FDA-MIMO radar so that the SSR methods can be directly used in FDA-MIMO radar to achieve target localization. Moreover, the DOA and range estimates of the targets will be automatically matched.
- To further eliminate the adverse effects caused by the off-grid gap, we introduced a grid refinement method in the 2D-SBL framework, where the positions of grid points will be regarded as adjustable parameters and the grid points will be updated recursively. After some iterations, the updated grid points will tend to approximate the real DOA and range, so the off-grid gap can be almost eliminated.
2. Signal Model
3. DOA and Range Estimation for FDA-MIMO Radar
3.1. Decoupling the Parameters of DOA and Range
3.2. Rough DOA Estimation
Algorithm 1 Rough DOA Estimation. |
|
3.3. Rough Range Estimation
Algorithm 2 Rough Range Estimation. |
|
3.4. Refined DOA and Range Estimation
Algorithm 3 Refined DOA and Range Estimation. |
|
4. Complexity Analysis and CRB
4.1. Computational Complexity
- The computational complexity of the rough DOA estimation is , where represents the number of iterations to obtain the rough DOA estimates.
- It requires to achieve rough range estimates, where denotes the number of iterations to obtain a range estimation.
- Optimization of DOA and range estimation requires , where P is the number of iterations.
4.2. CRB of FDA-MIMO Radar
5. Simulation Results
5.1. Two-Dimensional Point Cloud of Target Parameters
5.2. RMSE versus SNR
5.3. RMSE versus Snapshots
5.4. RMSE versus Grid Interval
5.5. PSD versus SNR
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Smith, C.M.; Feder, H.; Leonard, J.J. Multiple target tracking with navigation uncertainty. In Proceedings of the 37th IEEE Conference on Decision and Contro, Tampa, FL, USA, 18 December 1998; pp. 760–761. [Google Scholar]
- Sammartino, P.F.; Baker, C.J.; Rangaswamy, M. Moving target localization with multistatic radar systems. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar]
- Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996, 13, 67–94. [Google Scholar] [CrossRef]
- Wan, L.; Sun, Y.; Sun, L.; Ning, Z. Deep Learning Based Autonomous Vehicle Super Resolution DOA Estimation for Safety Driving. IEEE Trans. Intell. Transp. Syst. 2020, in press. [Google Scholar] [CrossRef]
- Perna, S.; Soldovieri, F.; Amin, M. Editorial for Special Issue “Radar Imaging in Challenging Scenarios from Smart and Flexible Platforms”. Remote Sens. 2020, 12, 1272. [Google Scholar] [CrossRef] [Green Version]
- Premachandra, C.; Murakami, M.; Gohara, R. Improving landmark detection accuracy for self-localization through baseboard recognition. Int. J. Mach. Learn Cyber. 2017, 8, 1815–1826. [Google Scholar] [CrossRef]
- Cavanini, L.; Benetazzo, F.; Freddi, A. SLAM-based autonomous wheelchair navigation system for AAL scenarios. In Proceedings of the 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), Senigallia, Italy, 10–12 September 2014; pp. 1–5. [Google Scholar]
- Wang, X.; Yang, L.T.; Meng, D. Multi-UAV Cooperative Localization for Marine Targets Based on Weighted Subspace Fitting in SAGIN Environment. IEEE Internet Things J. 2021, in press. [Google Scholar]
- Hu, Z.; Zeng, Z.; Wang, K. Design and Analysis of a UWB MIMO Radar System with Miniaturized Vivaldi Antenna for Through-Wall Imaging. Remote Sens. 2019, 11, 1867. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wen, F.; Liu, T. Nested MIMO Radar: Coarrays, Tensor Modeling and Angle Estimation. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 573–585. [Google Scholar]
- Wan, L.; Liu, K.; Liang, Y.; Zhu, T. DOA and Polarization Estimation for Non-Circular Signals in 3-D Millimeter Wave Polarized Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2021, 20, 3152–3167. [Google Scholar] [CrossRef]
- Wang, X.; Wan, L.; Huang, M. Polarization Channel Estimation for Circular and Non-Circular Signals in Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 1001–1016. [Google Scholar] [CrossRef]
- Wang, X.; Wan, L.; Huang, M. Low-Complexity Channel Estimation for Circular and Noncircular Signals in Virtual MIMO Vehicle Communication Systems. IEEE Trans. Veh. Technol. 2020, 69, 3916–3928. [Google Scholar] [CrossRef]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; pp. 215–217. [Google Scholar]
- Wang, W.Q. Frequency Diverse Array Antenna: New Opportunities. IEEE Antennas Propag. Mag. 2015, 57, 145–152. [Google Scholar] [CrossRef]
- Wang, W.Q. Overview of frequency diverse array in radar and navigation applications. IET Radar Sonar Navig. 2016, 10, 1001–1012. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Liao, G. A Range Ambiguity Resolution Approach for High-Resolution and Wide-Swath SAR Imaging Using Frequency Diverse Array. IEEE J. Sel. Top. Signal Process. 2017, 2, 336–346. [Google Scholar] [CrossRef]
- Wang, W.Q.; Shao, H. Range-Angle Localization of Targets by A Double-Pulse Frequency Diverse Array Radar. IEEE J. Sel. Top. Signal Process. 2014, 8, 106–114. [Google Scholar] [CrossRef]
- Wang, W.Q. Subarray-based frequency diverse array radar for target range-angle estimation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 3057–3067. [Google Scholar] [CrossRef]
- Liu, Y.; Hang, R.; Wang, L. The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing. IEEE J. Sel. Top. Signal Process. 2017, 11, 295–308. [Google Scholar] [CrossRef]
- Khan, W.; Qureshi, I.M.; Saeed, S. The Random Frequency Diverse Array: A New Antenna Structure for Uncoupled Direction-Range Indication in Active Sensing. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 499–502. [Google Scholar] [CrossRef]
- Zhang, J.J.; Papandreousuppappola, A. MIMO Radar with Frequency Diversity. In Proceedings of the 2009 International Waveform Diversity and Design Conference, Kissimmee, FL, USA, 8–13 February 2009; pp. 208–212. [Google Scholar]
- Sammartino, P.F.; Baker, C.J.; Griffiths, H.D. Frequency Diverse MIMO Techniques for Radar. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 201–222. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S. Joint Range and Angle Estimation Using MIMO Radar With Frequency Diverse Array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Sammartino, P.F.; Baker, C.J.; Griffiths, H.D. Range-angle dependent waveform. In Proceedings of the 2010 IEEE Radar Conference, Arlington, VA, USA, 10–14 May 2010; pp. 511–515. [Google Scholar]
- Liu, F.; Wang, X.; Huang, H. Joint Angle and Range Estimation for Bistatic FDA-MIMO Radar via Real-valued Subspace Decomposition. Signal Process. 2021, 185, 108065. [Google Scholar] [CrossRef]
- Li, B.; Bai, W.; Zheng, G. Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar. IEEE Access. 2018, 6, 36376–36382. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Huang, M. A Novel Unitary ESPRIT Algorithm for Monostatic FDA-MIMO Radar. Sensors 2020, 20, 827. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Wang, W.Q.; Gao, K. FDA-MIMO Radar Range-Angle Estimation: CRLB, MSE and Resolution Analysis. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 284–294. [Google Scholar] [CrossRef]
- Wan, L.; Kong, X.; Xia, F. Joint Range-Doppler-Angle Estimation for Intelligent Tracking of Moving Aerial Targets. IEEE Internet Things J. 2018, 5, 1625–1636. [Google Scholar] [CrossRef]
- Chen, P.; Chen, Z.; Zhang, X.; Liu, L. SBL-Based Direction Finding Method with Imperfect Array. Electronics 2018, 7, 426. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Xu, X.; Ye, Z.F. Sparse Bayesian learning for off-grid DOA estimation with Gaussian mixture priors when both circular and non-circular sources coexist. Signal Process. 2019, 161, 124–135. [Google Scholar] [CrossRef]
- Malioutov, D.; Cetin, M.; Willsky, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 2005, 8, 3010–3022. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Chen, T. Direction-of-Arrival Estimation Using a Sparse Representation of Array Covariance Vectors. IEEE Trans. Signal Process. 2011, 59, 4489–4493. [Google Scholar] [CrossRef]
- Liu, S.; Tang, L.; Bai, Y.; Zhang, X. A Sparse Bayesian Learning-Based DOA Estimation Method With the Kalman Filter in MIMO Radar. Electronics 2020, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.; Gao, H.; Zhou, S.; Yang, L.; Ren, F. Robust Sparse Bayesian Learning-Based Off-Grid DOA Estimation Method for Vehicle Localization. Sensors 2020, 20, 302. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Zhou, L.; Dai, J. Sparse Bayesian Approach for DOD and DOA Estimation with Bistatic MIMO Radar. IEEE Access. 2019, 7, 155335–155346. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid Direction of Arrival Estimation Using Sparse Bayesian Inference. IEEE Trans. Signal Process. 2013, 61, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Bao, X.; Xu, W. Root Sparse Bayesian Learning for Off-Grid DOA Estimation. IEEE Signal Process. Lett. 2017, 24, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Wen, F.; Huang, D.; Wang, K.; Zhang, L. DOA estimation for monostatic MIMO radar using enhanced sparse Bayesian learning. J. Eng. 2018, 5, 268–273. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-Grid DOA Estimation Using Sparse Bayesian Learning in MIMO Radar With Unknown Mutual Coupling. IEEE Trans. Signal Process. 2019, 67, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wang, X.; Wan, L. An Accurate Sparse Recovery Algorithm for Range-Angle Localization of Targets via Double-Pulse FDA-MIMO Radar. Wirel. Commun. Mob. Comput. 2020, 3, 1–12. [Google Scholar]
- Cui, C.; Jian, X.; Gui, R. Search-Free DOD, DOA and Range Estimation for Bistatic FDA-MIMO Radar. IEEE Access. 2018, 6, 15431–15445. [Google Scholar] [CrossRef]
- Wang, H.; Wan, L.; Dong, M. Assistant Vehicle Localization Based on Three Collaborative Base Stations via SBL-Based Robust DOA Estimation. IEEE Internet Things J. 2019, 6, 5766–5777. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian Compressive Sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D. Angle estimation in bistatic MIMO radar using improved reduced dimension Capon algorithm. J. Syst. Eng. Electron. 2013, 24, 84–89. [Google Scholar] [CrossRef]
Notations | Definitions |
---|---|
lowercase bold italic letters | vectors |
capital bold italic letters | matrices |
transpose operation | |
pseudoinverse operation | |
conjugate operation | |
conjugate-transpose operation | |
diagonalization operation | |
extract the phase angle | |
trace of the matrix | |
∘ | Hadamard product |
⊙ | Khatri-Rao product |
⊗ | Kronecker product |
identity matrix of order N | |
complex matrix set | |
Gaussian distribution with zero mean and q variance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, X.; Huang, M.; Lan, X.; Sun, L. DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning. Remote Sens. 2021, 13, 2553. https://doi.org/10.3390/rs13132553
Liu Q, Wang X, Huang M, Lan X, Sun L. DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning. Remote Sensing. 2021; 13(13):2553. https://doi.org/10.3390/rs13132553
Chicago/Turabian StyleLiu, Qi, Xianpeng Wang, Mengxing Huang, Xiang Lan, and Lu Sun. 2021. "DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning" Remote Sensing 13, no. 13: 2553. https://doi.org/10.3390/rs13132553
APA StyleLiu, Q., Wang, X., Huang, M., Lan, X., & Sun, L. (2021). DOA and Range Estimation for FDA-MIMO Radar with Sparse Bayesian Learning. Remote Sensing, 13(13), 2553. https://doi.org/10.3390/rs13132553