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Abstract: Due to grid division, the existing target localization algorithms based on sparse signal
recovery for the frequency diverse array multiple-input multiple-output (FDA-MIMO) radar not only
suffer from high computational complexity but also encounter significant estimation performance
degradation caused by off-grid gaps. To tackle the aforementioned problems, an effective off-grid
Sparse Bayesian Learning (SBL) method is proposed in this paper, which enables the calculation the
direction of arrival (DOA) and range estimates. First of all, the angle-dependent component is split by
reconstructing the received data and contributes to immediately extract rough DOA estimates with
the root SBL algorithm, which, subsequently, are utilized to obtain the paired rough range estimates.
Furthermore, a discrete grid is constructed by the rough DOA and range estimates, and the 2D-SBL
model is proposed to optimize the rough DOA and range estimates. Moreover, the expectation-
maximization (EM) algorithm is utilized to update the grid points iteratively to further eliminate the
errors caused by the off-grid model. Finally, theoretical analyses and numerical simulations illustrate
the effectiveness and superiority of the proposed method.

Keywords: target localization; FDA-MIMO radar; DOA and range estimation; sparse Bayesian
learning

1. Introduction

Target localization has been extensively researched in the past few decades, which
forms a diversity of applications in navigation, radar, remote sensing, communication,
and unmanned driving [1–5]. At present, lidar and radar play important roles in target
localization. Lidar uses laser pulses to scan the actual scene to achieve high-precision
target localization [6,7], and the radar extracts the spatial position information of the
target by receiving the reflected electromagnetic waves. Compared with lidar, radar has
broader application scenarios such as at night, in rain, and in fog. Recently, multiple-input
multiple-output (MIMO) radar has received extensive attention in target localization due to
many potential advantages [8,9]. Different from the phased array radar, MIMO radar has
higher degrees of freedom (DOFs) and spatial resolution [10–13], where multiple antennas
simultaneously transmit different waveforms and receive reflected signals synchronously.
Nevertheless, the MIMO radar fails to estimate the range of the target directly because its
beam pointing is only related to the angle.

Frequency diverse array (FDA) is an institutional array with emerging technology [14–16],
which has massive potential advantages in target parameter estimation. FDA can pro-
vide the angle-range related beam-pattern through small frequency increments across the
transmitters, which is expected to implement joint angle and range estimation. However,
ambiguous estimates [17] may be caused in FDA radar due to the direction of arrival (DOA)
and range coupling in the steering vector matrix, which will result in the deterioration of
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estimation accuracy. Therefore, it is crucial to decouple the parameters of DOA and range
to obtain unambiguous and unique parameter estimations. The authors of [18] introduced a
double-pulse method to obtain DOA and range estimates by emitting pulses with zero and
nonzero frequency increments. In [19], the FDA is divided into two subarrays according to
different frequency increments to estimate the DOA and range. Moreover, some design
strategies have utilized nonlinear frequency increments to decouple the parameters of
DOA and range, such as random frequency increment [20] and logarithmic frequency
increment [21].

The combination of FDA and MIMO radar is another decoupling strategy, which uses
the high DOF of MIMO radar to decouple the DOA and range of FDA-MIMO radar [22–26].
The authors of [27] introduced a method of signal parameters via a rotational invariance
technique (ESPRIT) to estimate the target parameters for FDA-MIMO radar. In [28], a uni-
tary ESPRIT method has been introduced with low complexity that can solve the periodic
ambiguity problem. Additionally, a two-dimensional multiple signal classification (2D-
MUSIC) method was proposed for DOA and range estimation in FDA-MIMO radar [29].
However, the above-mentioned methods based on subspace decomposition require an
accurate signal subspace or noise subspace to achieve high-resolution performance, and
their performance will significantly deteriorate in the case that the snapshots are scarce or
the signal-to-noise ratio (SNR) is low.

In recent years, the rapid development of sparse signal recovery (SSR) technology
provides a new perspective for target localization [30–32]. Compared with the subspace-
based methods, the SSR methods have many prominent merits, e.g., limited number
of snapshots, solved correlation of signals and improved robustness to noise. In the
past few decades, various SSR methods for DOA estimation have been proposed, such
as l1-norm optimization-based algorithm [33,34] and the sparse Bayesian learning (SBL)
method [35–37]. Compared with the l1-norm optimization-based algorithm, the SBL-based
algorithm can still have good performance in the case of high SNR or a coarse sampling
grid. The authors of [38] proposed the off-grid sparse Bayesian inference (OGSBI) method
firstly, which can accurately describe the real observation model even in the case of a
high SNR or a coarse sampling grid. The root off-grid sparse Bayesian learning (ROGSBL)
algorithm has been proposed in [39], which can achieve accurate DOA estimation with
a low computational burden. In order to further reduce the computational burden, the
authors of [40] proposed an enhanced SBL method to achieve off-grid DOA estimation,
which dynamically updates the grid points through the forgetting factor model. Moreover,
sparse Bayesian learning with the mutual coupling (SBLMC) method is proposed in [41] to
eliminate the mutual coupling effect between array antennas.

However, only a few target localization methods for FDA-MIMO radar adopt SSR
technology except for the double-pulse l1-SVD method [42]. The reason is that the SSR
methods cannot be directly applied to FDA-MIMO radar for target localization due to the
coupling of DOA and range. Moreover, the on-grid model adopted by the double-pulse
l1-SVD method cannot accurately describe the real observation model in the case of high
SNR or a coarse sampling grid, which leads to degraded parameter estimation performance.
Hence, in order to improve the DOA and range estimation accuracy of FDA-MIMO radar
in a complexly practical environment, it is necessary to effectively tackle the problem of
the off-grid gap. The off-grid SBL-based algorithm is very robust to the off-grid gap, so it
provides us with a new perspective.

In this paper, an effective off-grid SBL method is proposed to achieve the DOA and
range estimates. Firstly, the angle-dependent component is split by reconstructing the
received data and contributes to immediately extract rough DOA estimates with the root
SBL algorithm, which, subsequently, are utilized to obtain the paired rough range estimates.
The decoupling strategy in this paper will damage the array aperture of the FDA-MIMO
radar, so we need to further optimize the rough estimation of DOA and range. Furthermore,
a discrete grid is constructed by the rough DOA and range estimates, and the 2D-SBL model
is proposed to optimize the rough estimates of DOA and range. Finally, the expectation-
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maximization (EM) algorithm is utilized to update the grid points iteratively to further
eliminate the errors caused by the off-grid model. Therefore, the proposed method has a
better performance compared with the double-pulse l1-SVD method [42]. Additionally, the
proposed method is one of the methods in SSR, so this method has a better effect than the
subspace algorithms in the case of low SNR or scarce snapshots. The main contributions of
the proposed method are summarized as follows:

1. The proposed method achieves DOA and range estimates of FDA-MIMO radar
through SSR technology, which overcomes the shortcoming of the existing subspace
algorithms. This method has a better effect than the subspace algorithms in the case
of low SNR or scarce snapshots.

2. We proposed a new decoupling strategy to decouple the DOA and range parameters
of FDA-MIMO radar so that the SSR methods can be directly used in FDA-MIMO
radar to achieve target localization. Moreover, the DOA and range estimates of the
targets will be automatically matched.

3. To further eliminate the adverse effects caused by the off-grid gap, we introduced
a grid refinement method in the 2D-SBL framework, where the positions of grid
points will be regarded as adjustable parameters and the grid points will be updated
recursively. After some iterations, the updated grid points will tend to approximate
the real DOA and range, so the off-grid gap can be almost eliminated.

The rest of this paper is organized as follows. In Section 2, we describe the FDA-MIMO
radar model for DOA and range estimation. The proposed DOA and range estimation
method with sparse Bayesian learning is presented in Section 3. In Section 4, we summarize
the complexity of the proposed method and derive the CRB of the FDA-MIMO radar.
Simulation results and conclusion follow in Sections 5 and 6, respectively.

The symbols related to this paper are shown in Table 1.

Table 1. Related notation.

Notations Definitions

lowercase bold italic letters vectors
capital bold italic letters matrices

(·)T transpose operation
(·)† pseudoinverse operation
(·)∗ conjugate operation
(·)H conjugate-transpose operation

diag(·) diagonalization operation
angle(·) extract the phase angle

tr(·) trace of the matrix
◦ Hadamard product
� Khatri-Rao product
⊗ Kronecker product
IN identity matrix of order N

CM×P M× P complex matrix set
CN(0, q) Gaussian distribution with zero mean and q variance

2. Signal Model

Consider a monostatic FDA-MIMO radar consisting of M transmitting antennas and
N receiving antennas as shown in Figure 1. Both the transmitter and receiver are uniform
linear arrays (ULAs), where the spacings between adjacent elements are denoted as dt
and dr, respectively. The frequency of the first antenna in the transmitter is selected as the
reference frequency, and the transmitting frequency of the m-th transmitting antenna is

fm = f1 + (m− 1)∆ f , m = 1, 2, · · · , M (1)
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where f1 represents the reference frequency in the transmitter, and ∆ f is the increment of
the transmitting frequency of the adjacent antennas in the transmitter.

td
1 2 M



rd
1 2 N

  

  

1f 2f Mf

Transmitter

Receiver

Target



Figure 1. Monostatic FDA-MIMO radar.

The narrowband complex signal emitted by the m-th antenna in the transmitter can be
expressed as

sm(t̂) = φm(t̂)ej2π fm t̂, 0 ≤ t̂ ≤ T̂ (2)

where φm(t̂) represents the baseband signal of the m-th antenna in the transmitter, T̂
denotes the duration of the radar pulse. We assume that the baseband waveforms are
orthogonal to each other, and can be expressed as

∫ T̂

0
φm(t̂)φ∗n(t̂− τ)ej2π t̂(m−n)∆ f dt̂ =

{
1, m = n, τ = 0

0, m 6= n, ∀τ
(3)

Suppose there are K far-field targets whose ranges are much larger than the aperture
of the FDA-MIMO radar. The output of the receiver after performing matched filtering can
be expressed as

x(t) = As(t) + n(t) (4)

where x(t) = [x1(t), x2(t), · · · , xMN(t)]
T ∈ CMN×1 is a received signal vector.

s(t) = [s1(t), s2(t), . . . , sK(t)]
T ∈ CK×1 and n(t) = [n1(t), n2(t), · · · , nMN(t)]

T ∈ CMN×1

represent signal source vector and noise vector, respectively. A = [a(θ1, r1), a(θ2, r2), . . . ,
a(θK, rK)] ∈ CMN×K is the joint transmit-receive steering matrix, and a(θk, rk) = ar(θk)⊗
at(θk, rk), k = 1, 2, . . . , K. The steering vector of the transmitter and receiver can be
represented by

at(θk, rk) =

[
1, e−j4π

∆ f
c rk , . . . , e−j4π

∆ f
c (M−1)rk

]T

◦
[

1, ej2π
dt
λ sin(θk), . . . , ej2π

dt
λ (M−1) sin θk

]T
(5)
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ar(θk) =
[
1, ej2π dr

λ sin θk , . . . , ej2π dr
λ (N−1) sin θk

]T
(6)

The output of matched filter via gathering T snapshots can be expressed as

X = AS + N (7)

where X = [x(1), x(2), · · · , x(T)] ∈ CMN×T , S = [s(1), s(2), · · · , s(T)] ∈ CK×T and
N = [n(1), n(2), · · · , n(T)] ∈ CMN×T .

3. DOA and Range Estimation for FDA-MIMO Radar

In this section, a sparse Bayesian learning method is proposed for DOA and range
estimation of FDA-MIMO radar. Firstly, the angle-dependent component is split by recon-
structing the received data and contributes to immediately extract rough DOA estimates
with the root SBL algorithm, which, subsequently, are utilized to obtain the paired rough
range estimates. Furthermore, a discrete grid is constructed by the rough DOA and range
estimates, and the 2D-SBL model is proposed to optimize the rough estimates of DOA and
range. Finally, the EM algorithm is utilized to update the grid points iteratively to further
eliminate the errors caused by the off-grid model.

3.1. Decoupling the Parameters of DOA and Range

The transmit-receive steering matrix can be rewritten as [43]

A = Ar � At =


At

AtΦr
...

At Φ
N−1
r

 (8)

where Ar = [ar(θ1), ar(θ2), · · · , ar(θK)] ∈ CN×K and At = [at(θ1, r1), ar(θ2, r2), · · · ,
ar(θK, rK)] ∈ CM×K are receiving steering matrix and transmitting steering matrix, respec-
tively. Φr = diag(φr

1, φr
2, · · · , φr

K) with the k-th element of the main diagonal denoted by

φr
k = ej2π

f1
c dr sin(θk).

A M ∗ N dimensional matrix Z can be expressed as

Z =


1 2 · · · M

M + 1 M + 2 · · · 2M
...

...
. . .

...
(N − 1) ∗M + 1 (N − 1) ∗M + 2 · · · M ∗ N

 (9)

Then, arrange the elements of Z in columns to form a vector z = [z1, z2, · · · , zMN ] ∈
CMN×1. Suppose a vector is w = [w1, w2, · · · , wMN ] = [1, 2, · · · , MN] ∈ CMN×1. Combine
elements at the same position in vector w and vector z into a number pair, where the
element in w represents the column index and the element in z represents the row index.
Q ∈ CMN×MN is a selection matrix whose elements meet the following constraints

Q(i, j) =

{
1 i = zv, j = wv

0 else
, v = 1, 2, · · · , MN (10)

A new matrix XQ is defined by

XQ = QX = QAS + QN (11)
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where B = QA

B =


Ar

ArΦt
...

ArΦM−1
t

 (12)

where Φt = diag(φt
1, φt

2, · · · , φt
K), and the k-th element of the main diagonal is

φt
k = ej 2π

c (dt f1 sin(θk)−∆ f 2rk).
According to (8) and (12), the matrix Xa formed by the first N rows of XQ only is

angle-dependent while the matrix Xr formed by the first M rows of X contains DOA
and range.

3.2. Rough DOA Estimation

To utilize the SBL method for DOA estimation, we construct the sparse representation
model by [44]

Xa = Aθ̄SK̄ + Na (13)

where θ̄ = [θ̄1, θ̄2, · · · , θ̄K̄] is established by sampling the spatial domain range [−π/2, π/2]
uniformly, where K̄ � N > K. Aθ̄ = [ar(θ̄1), ar(θ̄2), · · · , ar(θ̄K̄)] ∈ CN×K̄ is an over-

complete dictionary and ar(θ̄k̄) =
[
1, ej2π dr

λ sin θ̄k̄ , . . . , ej2π dr
λ (N−1) sin θ̄k̄

]T
with k̄ = 1, 2, · · · , K̄.

Na is the matrix formed by the first N rows of QN. SK̄ = [sK̄(1), sK̄(2), · · · , sK̄(T)] ∈ CK̄×T

is a sparse matrix, and sK̄(t) = [s1(t), s2(t), · · · , sK̄(t)]
T is a K-order sparse column vector.

It is generally assumed that Gaussian white noise Na follows the probability distribu-
tion [45]

p(Na|βa ) =
T
Π

t=1
CN(na(t)|0 , β−1

a IN) (14)

where βa = σ−2
a , σ2

a represents noise power. In order to facilitate analysis and calculation,
it is further assumed that βa follows an independent gamma distribution as

p(βa; a, b) = Gamma(βa|a, b ) (15)

where Gamma(βa|a, b ) = Γ(βa)
−1baβa−1

a e−bβa and Γ(βa) =
∫ ∞

0 tβa−1e−tdt. a and b are
typically set to 10−4 [44].

We assume that sK̄(t) follows a complex Gaussian distribution and ∆a = diag(δa)

where δa = [δa1, δa2, · · · , δaK̄]
T is the set containing the signal variance. Hence, we have

p(SK̄|δa ) =
T
Π

t=1
CN(sK̄(t)|0 , ∆a) (16)

The hyperparameter δa can be further modeled as the following independent
gamma distribution

p(δa) =
K̄
Π

k̄=1
Gamma(δak̄|1, ρ ) (17)

where ρ > 0 is a tiny constant (e.g., ρ = 0.01 [44]).
The prior probability density function of Xa can be expressed as

p(Xa
∣∣SK̄, βa, θ̄) =

T
Π

t=1
CN(xK̄(t)|Aθ̄sK̄(t) , β−1

a IN) (18)

According to Bayesian theory, the posterior probability density distribution of SK̄
concerning Xa can be given by

p(SK̄|Xa, βa, δa , θ̄) =
T
Π

t=1
CN(sK̄(t)|µa(t) , Σa) (19)
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where
µa(t) = βaΣa AH

θ̄
xa(t), t = 1, 2, · · · , T (20)

Σa = (βa AH
θ̄

Aθ̄ + ∆a
−1)
−1

(21)

The EM algorithm is used to estimate the signal variance vector δa and noise power
βa. Specifically, the updated formula can be constructed by [39]

δnew
ak̄ =

√
T2 + 4ρ ∑T

t=1 (Ξat)k̄k̄ − T

2ρ
(22)

βnew
a =

TN + a− 1

b + ∑T
t=1 ‖xa(t)− Aθ̄µa(t)‖2

2 + Ttr(Aθ̄Σa AH
θ̄
)

(23)

where Ξat = µa(t)µa(t)
H + Σa and (Ξat)k̄k̄ represents the element with index (k̄, k̄) in Ξat.

The parameter θ̄ can be updated by maximizing E
{

In p(Xa|SK̄, βa , θ̄)
}

p(SK̄ |Xa ,βa ,δa ,θ̄),
which can be presented by

E
{

In p(Xa|SK̄, βa , θ̄)
}

p(SK̄ |Xa ,βa ,δa ,θ̄)

= −βa ∑T
t=1 ‖xa(t)− Aθ̄µa(t)‖2

2 − βaTtr(Aθ̄Σa AH
θ̄
)

(24)

Calculate the partial derivative of (24) with respect to vθ̄k̄
= ej2πdr sin(θ̄k̄)/λ and set it

to zero:

(a
′

θ̄k̄)
H

aθ̄k̄

T

∑
t=1

(∣∣∣µtk̄
a (t)

∣∣∣2 + εk̄k̄
a

)
+ T ∑

i 6=k̄

εik̄
a aθ̄i −

T

∑
t=1

(µtk̄
a )
∗
� xt−k̄

a

 = 0 (25)

where xa(t) represents the t-th column of Xa, aθ̄k̄ is the k̄-th column of Aθ̄ , µtk̄
a denotes

the k̄-th element of µa(t) and εk̄i
a is the element in Σa whose index is (k̄, i). a

′

θ̄k̄ =
∂aθ̄k̄
∂vθ̄k̄

,

xt−k̄
a = xa(t)− ∑

i 6=k̄
µti

a aθ̄i.

In order to transform (25) into a polynomial form, we define the following equations

φ
(k̄)
a =

T

∑
t=1

(∣∣∣µtk̄
a

∣∣∣2 + εk̄k̄
a

)
(26)

ϕ
(k̄)
a = T ∑

i 6=k
εik̄

a aθ̄i −
T

∑
t=1

(µtk̄
a )
∗
xt−k̄

a (27)

Then, (25) can be rewritten as

[
vθ̄k̄

, 1, v−1
θ̄k̄

, · · · , v−(N−2)
θ̄k̄

]


N(N−1)
2 φ

(k̄)
a

ϕ
(k̄)
a2

2ϕ
(k̄)
a3
...

(N − 1)ϕ
(k̄)
aN


= 0 (28)

where ϕ
(k̄)
an represents the n-th element of ϕ

(k̄)
a . The grid point is updated by selecting the

root closest to 1, which is denoted by vak̄∗ . The updated grid point can be expressed as

θ̄new
k̄∗ = arcsin

(
λ

2πdr
angle(vak̄∗)

)
(29)
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Suppose the number of updated grid points is N in each iteration. The signal variance
and noise accuracy are estimated iteratively by (22) and (23) until the signal variance is
convergent or satisfies the maximum number of iterations. Finally, a one-dimensional
spectral peak search is performed on the updated discrete grid to achieve the rough DOA
estimates. The rough DOA estimation method can be summarized as Algorithm 1.

Algorithm 1 Rough DOA Estimation.

1: Input: The received data X;
2: Obtain XQ according to (11);
3: Xa formed by the first N rows of XQ;
4: Initialization: δa, βa;
5: while ∼ Converge do
6: Calculate µa and Σa by (20) and (21);
7: Update δa according to (22);
8: Update βa according to (23);
9: Refine θ̄ according to (28) and (29);

10: end while
11: Output: µa and θ̄;
12: Achieve rough DOA estimation through 1-D spectrum search on new θ̄.

3.3. Rough Range Estimation

We denote the rough DOA estimates with the set Section 3.2 θ̂ = [θ̂1, θ̂2, · · · , θ̂K].
r̄ = [r̄1, r̄2, · · · , r̄W ] is established by sampling the spatial range domain [0, c/2∆ f ] uni-
formly, where c/2∆ f is the largest range to avoid ambiguous range estimates. Stack the
complete set of ranges corresponding to DOA into a row vector r̃ = [r̃(θ̂1,1), r̃(θ̂1,2), . . . , r̃(θ̂1,W),
r̃(θ̂2,1), . . . ,r̃(θ̂K ,W−1),r̃(θ̂K ,W)] = [r̃1, r̃2, · · · , r̃P].

Then, the sparse representation model Xr can be expressed as [42]

Xr = Ar̄SP + Nr (30)

where Ar̄ = [at(θ̂1, r̄1), at(θ̂1, r̄2), . . . , at(θ̂1, r̄W), at(θ̂2, r̄1), . . . , at(θ̂K, r̄W−1), at(θ̂K, r̄W)] ∈

CM×KW is over-complete dictionary and at(θ̂k, r̄w) =
[
1, e−j4π

∆ f
c r̄k , . . . , e−j4π

∆ f
c (M−1)r̄k

]T
◦[

1, ej2π
dt
λ sin(θ̂k), . . . , ej2π

dt
λ (M−1) sin θ̂k

]T
with k = 1, 2, · · · , K, w = 1, 2, · · · , W. Nr is a matrix

constructed by the first M rows of N and SP = [sP(1), sP(2), · · · , sP(T)] ∈ CP×T is a sparse
matrix with P = KW.

Similar to the sparse Bayesian formula (18), the prior probability density function of
Xr can be expressed as

p(Xr|SP, βr, r̃ ) =
T
Π

t=1
CN(xr(t)|Ar̄sP(t) , β−1

r IM) (31)

The posterior probability density distribution of SP concerning Xr can be written as

p(SP|Xr, βr, δr , r̃) =
T
Π

t=1
CN(sP(t)|µr(t) , Σr) (32)

where δr = [δr1, δr2, · · · , δrP]
T is the signal variance corresponding to each row element

of SP.
µr(t) = βrΣr AH

r̄ xr(t), t = 1, 2, · · · , T (33)

Σr = (βr AH
r̄ Ar̄ + ∆r

−1)
−1

(34)

where ∆r = diag(δr).
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The EM algorithm is used to estimate the signal variance vector δr and noise power
βr whose update formula can be expressed as

δnew
rp =

√
T2 + 4ρ ∑T

t=1 (Ξrt)k̄k̄ − T

2ρ
(35)

βnew
r =

TM + a− 1

b + ∑T
t=1 ‖xr(t)− Ar̄µr(t)‖2

2 + Ttr(Ar̄Σr AH
r̄ )

(36)

where Ξrt = µr(t)µr(t)
H + Σr, (Ξrt)pp represents the element with index (p, p) in Ξrt.

The parameter r̃ can be updated by maximizing E{In p(Xr|SP, βr , r̃)}p(SP |Xr ,βr ,δr ,r̃),
which can be expressed by

E{In p(Xr|SP, βr , r̃)}p(SP |Xr ,βr ,δr ,r̃)

= −βr ∑T
t=1 ‖xr(t)− Ar̄µr(t)‖2

2 − βrTtr(Ar̄Σr AH
r̄ )

(37)

Calculate the partial derivative of (37) concerning vr̃p = ej2πdt sin(θ̃k)/λ−j4π
∆ f r̄w

c and set
it to zero:

(a
′
rp)

H
(

arp

T

∑
t=1

(∣∣∣µtp
r (t)

∣∣∣2 + ε
pp
r

)
+ T ∑

i 6=p
ε

ip
r ari −

T

∑
t=1

(µ
tp
r )
∗
� xt−p

r

)
= 0 (38)

where xr(t) represents the t-th column of Xr, arp is the p-th column of Ar, µ
tp
r denotes

the p-th element of µr(t) and ε
pi
r is the element in Σr whose index is (p, i). a

′
rp =

∂arp
∂vr̃p

,

xt−p
r = xr(t)− ∑

i 6=p
µti

r ari.

In order to transform (38) into a polynomial form, we define the following equations

φ
(p)
r =

T

∑
t=1

(∣∣∣µtp
r

∣∣∣2 + ε
pp
r

)
(39)

ϕ
(p)
r = T ∑

i 6=k
ε

ip
r ari −

T

∑
t=1

(µ
tp
r )
∗
xt−p

r (40)

Then, (38) can be rewritten as

[
vr̃p , 1, v−1

r̃p
, · · · , v−(M−2)

r̃p

]


M(M−1)
2 φ

(p)
r

ϕ
(p)
r2

2ϕ
(p)
r3
...

(M− 1)ϕ
(p)
rM


= 0 (41)

where ϕ
(p)
rm represents the m-th element of ϕ

(p)
r . f = ‖µr‖F, the index of the first M larger

values of f , can be used to determine the grid points that need to be updated, and the index
of the updated grid point can be written as î = [î1, î2, · · · , îM]. The grid point is updated
by selecting the root closest to 1, which is denoted by vrp∗ . The updated grid point can be
expressed as

r̃new
p∗ =

cdt sin(θ̂k)

2λ∆ f
−

c � angle(vrp∗ )
4π∆ f

i f (k− 1)W ≤ îm ≤ kW (42)

where m = 1, 2, · · · , M, k = 1, 2, · · · , K.
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The signal variance and noise power are estimated iteratively by (35) and (36) until
the signal variance is convergent or meets the maximum number of iterations. Finally,
a one-dimensional spectral peak search is performed on the updated discrete grid r̃ to
achieve the rough range estimates, which are automatically paired with the rough DOA
estimates calculated in Section 3.2. The rough range estimation method can be summarized
as Algorithm 2.

Algorithm 2 Rough Range Estimation.

1: Input: The received data X, rough DOA estimates θ̂;
2: Xr formed by the first M rows of X;
3: Initialization: δr, βr;
4: while ∼ Converge do
5: Calculate µr and Σr by (33) and (34);
6: Update δr according to (35);
7: Update βr according to (36);
8: Refine r̃ according to (41) and (42);
9: end while

10: Output: Output: µr and r̃;
11: Achieve rough range estimation through 1-D spectrum search on new r̃.

3.4. Refined DOA and Range Estimation

The DOA and range roughly estimated from Sections 3.2 and 3.3 are denoted by
(θ̂k, r̂k), k = 1, 2, · · · , K. Then, X can be rewritten as follows [37]

X = G(ψ, η)S̃ + N (43)

where S̃ = [s̃(1), s̃(2), · · · , s̃(T)] ∈ CK×T , G(ψ, η) is the steering matrix in the off-grid
sparse signal model and can be expressed as

G(ψ, η) = A(θ̂, r̂) + Badiag(ψ) + Brdiag(η) (44)

where Ba = [bt(θ̂1, r̂1), bt(θ̂2, r̂2), · · · , bt(θ̂K, r̂K)], Br = [br(θ̂1, r̂1), br(θ̂2, r̂2), · · · , br(θ̂K, r̂K)],

bt(θ̂k, r̂k) =
∂a(θ̂k ,r̂k)

∂θ̂k
, br(θ̂k, r̂k) =

∂a(θ̂k ,r̂k)
∂r̂k

, ψ = {ψk}K
k=1, ψk denotes the angle offset of θ̂k

and η = {ηk}K
k=1, ηk represents the range offset of r̂k.

Similar to the sparse Bayesian formula (18), the prior probability density function of
X can be expressed as

p(X
∣∣S̃, β, ψ , η) =

T
Π

t=1
CN(x(t)|Gs̃(t) , β−1 IMN) (45)

where β = σ−2 and σ2 represent noise power.
The posterior probability density distribution of S̃ concerning X can be written as

p(S̃|X, β, δ , ψ, η) =
T
Π

t=1
CN(s̃(t)|µ(t) , Σ) (46)

where δ = [δ1, δ2, · · · , δK]
T is the signal variance.

µ(t) = βΣGHx(t), t = 1, 2, · · · , T (47)

Σ = (βGH G + ∆−1)
−1

(48)

where ∆ = diag(δ).
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The EM algorithm is adopted to estimate the signal variance vector δ and noise power
β whose updated formula can be expressed as

δnew
k =

√
T2 + 4ρ ∑T

t=1 (Ξt)kk − T

2ρ
(49)

βnew =
TMN + a− 1

b + ∑T
t=1 ‖x(t)−Gµ(t)‖2

2 + Tβ−1 ∑K
k=1 τk

(50)

where Ξt = µ(t)µ(t)H + Σ, τk = 1− δ−1
k (Σ)kk and (�)kk represents the element with index

(k, k) in the matrix.
The grid offset of DOA can be obtained by maximizing E

{
In p(X

∣∣S̃, β , ψ, η)
}

p(S̃|X,β,δ ,ψ,η)
which can be given by

E
{

In p(X
∣∣S̃, β , ψ, η)

}
p(S̃|X,β,δ ,ψ,η)

≡ −E

{
1
T

T

∑
t=1

∥∥x(t)−
{

Aθ̂ + Badiag(ψ)
}

s̃(t)
∥∥2

2

}

= − 1
T

T

∑
t=1

∥∥x(t)−
(

Aθ̂ + Badiag(ψ)
)
µ(t)

∥∥2
2

− tr
{(

Aθ̂ + Badiag(ψ)
)
Σ
(

Aθ̂ + Badiag(ψ)
)H
}

= −ψTPtψ + 2vT
t ψ + const

(51)

where
Pt = Re

{
BT

a B∗a ◦
(

UUH + TΣ
)}

(52)

vt = Re

{
1
T

T

∑
t=1

diag
{

µ(t)∗
}

BH
a
(
x(t)− Aθ̂µ(t)

)}
− Re

{
diag(BH

a Aθ̂Σ)
}

(53)

where Aθ̂ = A(θ̂, r̂) + Brdiag(η), U = [µ(1), µ(2), · · · , µ(T)]. Set the derivative of the
parameter ψ in (51) to zero, and ψ can be updated as:

ψ = P†
t vt (54)

The η can be obtained by maximizing (55)

E
{

In p(X
∣∣S̃, β , ψ, η)

}
p(S̃|X,β,δ ,ψ,η)

≡ −E

{
1
T

T

∑
t=1
‖x(t)− {Ar̂ + Brdiag(η)}s̃(t)‖2

2

}

= − 1
T

T

∑
t=1
‖x(t)− (Ar̂ + Brdiag(η))µ(t)‖2

2

− tr
{
(Ar̂ + Brdiag(η))Σ(Ar̂ + Brdiag(η))H

}
= −ηTPtη+ 2vT

r η+ const

(55)

where
Ar̂ = A(θ̂, r̂) + Badiag(ψ) (56)

Pr = Re
{

BT
r B∗r ◦

(
UUH + TΣ

)}
(57)

vr = Re

{
1
T

T

∑
t=1

diag
{

µ(t)∗
}

BH
r (x(t)− Ar̂µ(t))

}
− Re

{
diag(BH

r Ar̂Σ)
}

(58)
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Set the derivative of the parameter η in (55) to zero, and η can be updated as:

η = P†
r vr (59)

Actually, ψk and ηk are the grid offsets corresponding to the k-th target DOA and
range, respectively. The grid can be updated as follows

θ̂new
k = θ̂k + ψk (60)

r̂new
k = r̂k + ηk (61)

The EM algorithm is used to update the steering vector-matrix A(θ̂, r̂) in G(ψ, η) until

τ <
‖δ(i+1)−δ(i)‖2
‖δ(i)‖2

or satisfies the maximum number of iterations, where τ > 0 is a small

constant, [·](i) represents the value of the i-th iteration. Finally, the refined DOA and range
estimates can be obtained based on the grid points after iteration. The refined DOA and
range estimation method can be summarized as Algorithm 3.

Algorithm 3 Refined DOA and Range Estimation.

1: Input: The received data X, rough DOA estimates θ̂ and rough range estimates r̂;
2: Initialization: δ, β;
3: while ∼ Converge do
4: Calculate µ and Σ by (47) and (48);
5: Update δ according to (49);
6: Update β according to (50);
7: Refine θ̂ according to (60);
8: Refine r̂ according to (61);
9: end while

10: Output: θ̂ and r̂;
11: The refined DOA and range estimates can be obtained from θ̂ and r̂, respectively.

4. Complexity Analysis and CRB
4.1. Computational Complexity

To demonstrate the performance of the proposed method, we provide the computa-
tional burden of the proposed method as follows:

1. The computational complexity of the rough DOA estimation is O(Pa(K̄2NT + 2NK̄2 +

K̄T + N2K̄ + TNK̄)), where Pa represents the number of iterations to obtain the rough
DOA estimates.

2. It requires O(Pr(K2W2MT + 2MK2W2 + K2W2T + M2KW + TMKW)) to achieve
rough range estimates, where Pr denotes the number of iterations to obtain a
range estimation.

3. Optimization of DOA and range estimation requires O(P(K2MNT + 2MNK2 + TK2 +

M2N2K + TMNK)), where P is the number of iterations.

To sum up, the computational complexity of the proposed method is O((Pa(K̄2NT +
2NK̄2 + K̄T + N2K̄ + TNK̄)) + Pr(K2W2MT + 2MK2W2 + K2W2T + M2KW + TMKW) +
P(K2MNT + 2MNK2 + TK2 + M2N2K + TMNK)).

4.2. CRB of FDA-MIMO Radar

In this subsection, we analyze the CRB of the angle and range of the FDA-MIMO
radar. Define θ = [θ1, θ2, · · · , θK] and r = [r1, r2, · · · , rK]. According to [46], we derive the
CRB matrix with regard to DOA and range in FDA-MIMO radar, respectively:

CRBθ =
σ2

2T

[
Re
(

DH
θ ΠADθ ◦ PT

)]−1
(62)
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CRBr =
σ2

2T

[
Re
(

DH
r ΠADr ◦ PT

)]−1
(63)

where Dθ =
[

∂a(θ1,r1)
∂θ1

, ∂a(θ1,r1)
∂θ2

, · · · , ∂a(θK ,rK)
∂θK

]
and Dr =

[
∂a(θ1,r1)

∂r1
, ∂a(θ1,r1)

∂r2
, · · · , ∂a(θK ,rK)

∂rK

]
with k = 1, 2, · · · , K. Additionally, P =

[
Ps Ps
Ps Ps

]
and ΠA = IMN − A(AH A)

−1 AH where

Ps = SHS/T.

5. Simulation Results

In this section, numerical simulations under different conditions are presented to
evaluate the estimation performance of the proposed method, where M = N = 8. Unless
otherwise specified, the reference frequency f1 and frequency increment ∆ f are set to
10 GHz and 30 KHz in the transmitter, respectively. The antenna spacing is dt = dr =

c
2 fmax

,
where fmax is the maximum carrier frequency in the transmitter and c denotes the speed of
light. Suppose that there are two targets located in (−23.44

◦
, 853 m) and (47.75

◦
, 2555 m).

The grids of the angle and range are [−90
◦

: 1
◦

: 90
◦
] and [0 : 40 : 4000] m in the proposed

method, respectively.

5.1. Two-Dimensional Point Cloud of Target Parameters

In the first simulation, Figure 2 shows the location of the estimated targets in the
spatial domain, where SNR= 20 dB and T = 50. The X-axis and Y-axis denote DOA
and range, respectively. It can be seen from Figure 2 that the target can be explicitly
distinguished, which demonstrates the effectiveness of the proposed method.
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Figure 2. Two-dimensional point cloud image of estimated targets.

5.2. RMSE versus SNR

In this part, we compare the proposed method and three typical methods including ES-
PRIT [27], unitary-ESPRIT [28], and double-pulse l1-SVD [42]. Moreover, CRB is provided
as the performance evaluation metric. The root mean square error (RMSE) is introduced
and can be defined by

RMSEθ =
1
K

K

∑
k=1

√√√√ 1
V

V

∑
v=1

(θv,k − θk)
2 (64)

RMSEr =
1
K

K

∑
k=1

√√√√ 1
V

V

∑
v=1

(rv,k − rk)
2 (65)
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where θv,k and rv,k denote the estimates of θk and rk in the v-th Monte Carlo trial, respec-
tively. V = 100 is the number of Monte Carlo trials.

In Figures 3 and 4, we provide the RMSE results of DOA and range with different
SNR conditions, where T = 50. In the double-pulse l1-SVD method, we set the DOA
grid interval within [−90◦, 90◦] to 0.5◦, and the range grid interval within [0, 4000] m to
10m. Figures 3 and 4 depict the RMSE results of the DOA and range estimates under
different SNR conditions, respectively. Specifically, the double-pulse l1-SVD method is
limited by its lower error bound because it fails to solve the off-grid gap problem, and
the RMSE results does not improve with the increase in SNR when the error lower bound
is reached. Additionally, we can conclude that the proposed method outperforms the
methods in [27,28,42]. The fundamental reason for this is that the proposed method not
only overcomes the problem that the performance of subspace method will significantly
deteriorate in the case of low SNR or scarce snapshots, but also manages to solve the
off-grid gap caused by the discrete grids.
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Figure 3. RMSE of DOA estimation versus SNR.
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CRB

Figure 4. RMSE of range estimation versus SNR.

5.3. RMSE versus Snapshots

In this simulation, we evaluate the DOA and range estimation performance versus
snapshots to further verify the effectiveness of the proposed method. The snapshots
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vary from 50 to 550 with an SNR = 0 dB. Similarly, we introduced CRB to measure the
performance of the proposed method. According to Figures 5 and 6, the RMSE results of
all methods improve with the increase in snapshots. In particular, the proposed method
is superior to the other methods in DOA and range estimation accuracy with different
numbers of snapshots. Among all the methods, since the double-pulse l1-SVD method
suffers from the off-grid gap, its RMSE results no longer decrease with the increase in
snapshots, when the snapshots reach the lower bound of the error.
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Figure 5. RMSE of DOA estimation versus snapshots.
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Figure 6. RMSE of range estimation versus snapshots.

5.4. RMSE versus Grid Interval

In order to further verify the robustness of the proposed method with respect to
the off-grid gap, we give the RMSE results of the proposed method with different off-
grid gaps. The double-pulse l1-SVD method, which also belongs to the family of SSR
methods, is selected to compare with the proposed method. Figures 7 and 8 depict the
RMSE results of the DOA and range estimates with different grid intervals, respectively,
where T = 50. Under different grid intervals, the proposed method can obtain better
estimation performance than the double-pulse l1-SVD method, which benefits from the
fact that the proposed method solve the problem of the off-grid gap. In addition, according
to Figures 7 and 8, the RMSE results of the proposed method improve with the increase
in SNR. Since the double-pulse l1-SVD method suffers from the off-grid gap, its RMSE
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results no longer decrease with the increase in SNR. The reason for this is that the double-
pulse l1-SVD method fails to accurately construct the real observation model with a coarse
sampling grid and encounters the degradation of estimation performance.
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Figure 7. RMSE of DOA estimation versus grid interval.
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Figure 8. RMSE of range estimation versus grid interval.

5.5. PSD versus SNR

The probability of successful detection (PSD) is adopted to measure the performance
of the proposed method, which can be defined by

PSD =
H
V
× 100 (66)

where H denotes the number of successful estimation.
In this subsection, the DOA estimation is considered to be successful when

∣∣θv,k − θk
∣∣

≤ 0.15◦ while the range estimation is successful when
∣∣rv,k − rk

∣∣ ≤ 4m. Figures 9 and 10
depict the PSD of DOA and range estimation in different SNR conditions, respectively,
where T = 50. It is clearly shown that the proposed method outperforms the other methods
at different SNR as the proposed method can first reach 100% PSD with the increase in the
SNR. Additionally, the double-pulse l1-SVD method fails to accurately construct the real
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observation model with a coarse sampling grid, so the error lower bound of this method
does not meet the criteria for successful detection.
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Figure 9. PSD of DOA estimation versus SNR.
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Figure 10. PSD of range estimation versus SNR.

6. Conclusions

In this paper, an effective off-grid SBL method is proposed, which enables the cal-
culation the DOA and range estimates. Firstly, the angle-dependent component is split
by reconstructing the received data and allows the immediate extraction of rough DOA
estimates with the root SBL algorithm, which, subsequently, are utilized to obtain the paired
rough range estimates. Furthermore, a discrete grid is constructed by the rough DOA and
range estimates, and the 2D-SBL model is proposed to optimize the rough estimates of
DOA and range. Finally, the EM algorithm is utilized to update the grid points iteratively
to further eliminate the errors caused by the off-grid model. Moreover, the proposed
method belongs to the SSR method, which overcomes the shortcomings of the subspace
method in that the performance is significantly attenuated in the case of a low SNR or
scarce snapshots. Massive simulation results have verified that the proposed method can
carry out DOA and range estimation accurately. In future work, we will further improve
the performance of the proposed method and implement it through a hardware system to
apply it to actual scenarios.
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