Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Gradient Analysis Approach
2.2. Impacts of Landscape Pattern on ESV
3. Materials and Methods
3.1. Study Area
3.2. Data Sources
3.3. Methods
3.3.1. Landscape Pattern Metrics
3.3.2. Measurement of ESV
3.3.3. Econometric Model
4. Results
4.1. Landscape Patterns in Wuhan from 2000 to 2015
4.2. ESV in Wuhan from 2000 to 2015
4.3. Econometrics Test Results in Wuhan from 2000 to 2015
5. Discussion
5.1. Buffer characteristics of Landscape Pattern Index and ESV
5.2. Impacts of Landscape Pattern on ESV
5.3. Policy Implications
5.4. Limitations and Future Directions
6. Conclusions
- (1)
- We demonstrated that rapid urbanization in Wuhan has led to significant changes in landscape patterns; PD, LSI, DIVISION, SPLIT, and SHDI exhibited significant increasing trends, whereas AREA_AM, FRAC_AM, and CONTAG exhibited significant decreasing trends. The landscape pattern metrics also exhibited significant spatial heterogeneity.
- (2)
- In 2000, 2005, 2010, and 2015, the ESVs provided by ecosystems in Wuhan were USD 4,532.341, 4,439.352, 4,394.293, and 4,293.343 million, respectively, indicating that the Wuhan ESV capacity declined. Among the subcategory ecosystem service proportions, hydrological regulations and waste treatment were higher, accounting for 24% of the ESV, whereas the raw material production function was the lowest, accounting for approximately 3.5%. The average ESVs in the core area of Wuhan were low, and buffer layers with low average ESVs expanded over time.
- (3)
- Individual and time fixed-effects models were determined to be the optimal types of model. The landscape pattern metrics significantly impacted the ecosystem services; however, these impacts varied substantially. PD, AREA_AM, IJI, DIVISION, and SPLIT were found to be negatively associated with average ESV, while LSI, FRAC_AM, CONTAG, and SHDI were positively associated with average ESV. The significance level was different at different buffer-zone scales. The results of this study can provide important implications for the formulation of ecosystem protection and landscape planning policies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, L.M.; Xiu, C.L.; Feng, X.H.; Liu, D.Q. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio–temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Landscape pattern and ecosystem service value changes: Implications for environmental sustainability planning for the rapidly urbanizing summer capital of the Philippines. Landsc. Urban Plan. 2013, 116, 60–72. [Google Scholar] [CrossRef]
- Jiao, L.M.; Xiao, F.T.; Xu, G.; Lu, Y.N. Spatial-temporal response of green land fragmentation patterns to urban expansion in Wuhan metropolitan area. Res. Sci. 2015, 37, 1650–1660. [Google Scholar]
- Jiao, L.M. Urban land density function: A new method to characterize urban expansion. Landsc. Urban Plan. 2015, 139, 26–39. [Google Scholar] [CrossRef]
- Zhao, R.; Jiao, L.M.; Xu, G.; Xu, Z.B.; Dong, T. The relationship between urban spatial growth and population density change. Acta Geogr. Sin. 2020, 75, 695–707. [Google Scholar]
- Taubenböck, H.; Wegmann, M.; Roth, A.; Mehl, H.; Dech, S. Urbanization in India—Spatiotemporal analysis using remote sensing data. Comput. Environ. Urban Syst. 2009, 33, 179–188. [Google Scholar] [CrossRef]
- Schneider, A.; Woodcock, C.E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely senseddata, pattern metrics and census information. Urban Stud. 2008, 45, 659–692. [Google Scholar] [CrossRef]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landsc. Ecol. 2005, 20, 871–888. [Google Scholar] [CrossRef]
- Hao, R.F.; Yu, D.Y.; Liu, Y.P.; Liu, Y.; Qiao, J.M.; Wang, X.; Du, J.S. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying landscape pattern and ecosystem service value changes: A case study at the county level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e1110. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Wen, Z.M.; Chen, S.L.; Ding, S.; Zhang, M.X. Quantifying land use/land cover and landscape pattern changes and impacts on ecosystem services. Int. J. Environ. Res. Public Health 2020, 17, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.W.; Chen, X.R.; Chen, W.X.; Ye, X.Y. Identifying the impact of landscape pattern on ecosystem services in the Middle Reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 5063. [Google Scholar] [CrossRef] [PubMed]
- Meentemeyer, V. Geographical perspectives of space, time, and scale. Landsc. Ecol. 1989, 3, 163–173. [Google Scholar] [CrossRef]
- Ou, W.X.; Wang, H.N.; Tao, N. A land cover-based assessment of ecosystem services supply and demand dynamics in the Yangtze River Delta region. Acta Ecol. Sin. 2018, 38, 6337–6347. [Google Scholar]
- Jiao, L.M.; Li, Z.H.; Xu, G.; Zhang, B.E.; Dong, T.; Gu, Y.Y. The characteristics and patterns of spatially aggregated elements in urban areas of Wuhan. Acta Geogr. Sin. 2017, 72, 1432–1443. [Google Scholar]
- Dai, E.F.; Wang, Y.H.; Ma, L.; Yin, L.; Wu, Z. “Urban-rural” gradient analysis of landscape changes around cities in mountainous regions: A case study of the Hengduan mountain region in Southwest China. Sustainability 2018, 10, 1019. [Google Scholar] [CrossRef] [Green Version]
- Vizzari, M.; Sigura, M. Landscape sequences along the urban–rural–natural gradient: A novel geospatial approach for identification and analysis. Landsc. Urban Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J.G. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, R.; Zhuang, D.C.; Lu, Z.L. Spatial gradient differences of ecosystem services supply and demand in the Pearl River Delta region. J. Clean. Prod. 2021, 279, 123849. [Google Scholar] [CrossRef]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Mcdonnell, M.J.; Pickett, S.T.A.; Groffman, P.; Bohlen, P.; Pouyat, R.V.; Zipperer, W.C.; Parmelee, R.W.; Carreiro, M.M.; Medley, K. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1997, 1, 21–36. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.P.; Wang, L.J.; Zhang, J.C. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Santos-Martín, F.; Zorrilla-Miras, P.; Palomo, I.; Montes, C.; Benayas, J.; Maes, J. Protecting nature is necessary but not sufficient for conserving ecosystem services: A comprehensive assessment along a gradient of land-use intensity in Spain. Ecosyst. Serv. 2019, 35, 43–51. [Google Scholar] [CrossRef]
- Balzan, M.V.; Caruana, J.; Zammit, A. Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state. Land Use Policy 2018, 75, 711–725. [Google Scholar] [CrossRef]
- Baro, F.; Gomez-Baggethun, E.; Haase, D. Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosyst. Serv. 2017, 24, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Dai, E.F.; Wu, Z.; Du, X.D. A gradient analysis on urban sprawl and urban landscape pattern between 1985 and 2000 in the Pearl River Delta, China. Front. Earth Sci. 2018, 12, 791–807. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, N.; Wang, X.; Liu, F.; Yang, L.P. A comparative study of urban expansion in Beijing, Tianjin and Tangshan from the 1970s to 2013. Remote Sens. 2016, 8, 496. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Xia, H.P.; Lan, C.Y.; Xin, K. A gradient analysis based on the buffer zones of urban landscape pattern of the constructed area in Guigang City, Guangxi, China. Acta Ecol. Sin. 2006, 26, 655–662. [Google Scholar] [CrossRef]
- Burgess, E.W. The growth of the city: An introduction to a research project. In Urban Ecology; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., Simon, U., ZumBrunnen, C., Eds.; Springer: Boston, MA, USA, 2008; pp. 71–78. [Google Scholar]
- Dong, T.; Jiao, L.M.; Xu, G.; Yang, L.Y.; Liu, J.F. Towards sustainability? Analyzing changing urban form patterns in the United States, Europe, and China. Sci. Total Environ. 2019, 671, 632–643. [Google Scholar] [CrossRef]
- Li, X.W.; Fang, J.Y.; Po, S.L. The comparison of spatial characteristics in urban landuse growth among the central and sub-cities in Shanghai Region. Geogr. Res. 2003, 22, 769–779. [Google Scholar]
- Su, S.; Xiao, R.; Zhang, Y. Multi-scale analysis of spatially varying relationships between agricultural landscape patterns and urbanization using geographically weighted regression. Appl. Geogr. 2012, 32, 360–375. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Yu, H.; Kung, H. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Li, K.; Chi, G.; Wang, L.; Xie, Y.; Wang, X.; Fan, Z. Identifying the critical riparian buffer zone with the strongest linkage between landscape characteristics and surface water quality. Ecol. Indic. 2018, 93, 741–752. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [Green Version]
- Sokolow, A.D. Governmental Response to Urbanization. Three Townships on the Rural-Urban Gradient; Agricultural Economic Reports; USDA: Washington, DC, USA, 1968; Volume 132. [Google Scholar]
- Whittaker, R. Communities and Ecosystems, 2nd ed.; MacMillan: New York, NY, USA, 1975. [Google Scholar]
- Mcdonnell, M.J.; Pickett, S.T.A. Ecosystem structure and function along urban–rural gradients: An unexploited opportunity for ecology. Ecology 1990, 71, 1232–1237. [Google Scholar] [CrossRef]
- Himes, A.; Puettmann, K.; Muraca, B. Trade-offs between ecosystem services along gradients of tree species diversity and values. Ecosyst. Serv. 2020, 44, 101133. [Google Scholar] [CrossRef]
- Diaz-Palacios-Sisternes, S.; Ayuga, F.; Garcia, A.I. A method for detecting and describing land use transformations: An examination of Madrid’s southern urban–rural gradient between 1990 and 2006. Cities 2014, 40, 99–110. [Google Scholar] [CrossRef]
- Klausnitzer, B.; Richter, K. Presence of an urban gradient demonstrated for carabid associations. Oecologia 1983, 59, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Wan, J. Land use and travel burden of residents in urban fringe and rural areas: An evaluation of urban-rural integration initiatives in Beijing. Land Use Policy 2021, 103, 105309. [Google Scholar] [CrossRef]
- Kong, F.; Nakagoshi, N. Spatial–temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan. 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Yeh, C.; Huang, S.L. Investigating spatiotemporal patterns of landscape diversity in response to urbanization. Landsc. Urban Plan. 2009, 93, 151–162. [Google Scholar] [CrossRef]
- Li, Q.; Li, T.; Yang, M.Z.; Ying, W. Spatiotemporal variation of ecosystem services value based on gradient analysis in Wuhan: 2000–2010. Acta Ecol. Sin. 2017, 37, 2118–2125. [Google Scholar]
- Foresman, T.W.; Pickett, S.T.A.; Zipperer, W.C. Methods for spatial and temporal land use and land cover assessment for urban ecosystems and application in the greater Baltimore-Chesapeake region. Urban Ecosyst. 1997, 1, 201–216. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban–rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, L.N.; Liang, C. A GIS-based buffer gradient analysis on spatiotemporal dynamics of urban expansion in Shanghai and its major satellite cities. Procedia Environ. Sci. 2010, 2, 1139–1156. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.G.; Bai, Z.K.; Zhou, W.; Ai, G. Gradient analysis of urban construction land expansion in the Chongqing urban area of China. Urban Plann. Dev. 2015, 141, 05014009. [Google Scholar] [CrossRef] [Green Version]
- Radford, K.G.; James, P. Changes in the value of ecosystem services along a rural–urban gradient: A case study of Greater Manchester, UK. Landsc. Urban Plan. 2013, 109, 117–127. [Google Scholar] [CrossRef]
- Seifu, W.; Elias, E.; Gebresamuel, G.; Khanal, S. Impact of land use type and altitudinal gradient on topsoil organic carbon and nitrogen stocks in the semi-arid watershed of northern Ethiopia. Heliyon 2021, 7, e6770. [Google Scholar] [CrossRef]
- Zhou, T.; Koomen, E.; van Leeuwen, E.S. Residents’ preferences for cultural services of the landscape along the urban–rural gradient. Urban For. Urban Gree. 2018, 29, 131–141. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Weng, Y. Spatiotemporal changes of landscape pattern in response to urbanization. Landsc. Urban Plan. 2007, 81, 341–353. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Chen, W.X.; Zeng, J.; Zhong, M.X.; Pan, S.P. Coupling analysis of ecosystem services value and economic development in the Yangtze River Economic Belt: A case study in Hunan Province, China. Remote Sens. 2021, 13, 1552. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Ban, Y.F.; Haas, J. Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data. Remote Sens. Appl. Soc. Environ. 2018, 13, 234–246. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Z.; Mei, Y.; Li, W. Assessment of ecosystem service quality and its correlation with landscape patterns in Haidian District, Beijing. Int. J. Environ. Res. Public Health 2019, 16, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, Z.; Zou, X.; Zuo, P.; Song, Q.; Wang, C.; Wang, J. Impact of landscape patterns on ecological vulnerability and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecol. Indic. 2017, 72, 142–152. [Google Scholar] [CrossRef]
- Chen, W.X.; Chi, G.Q.; Li, J.F. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.; Tao, M.; Huang, C.; Sun, J.; Wang, S. Assessing the ecological balance between supply and demand of blue-green infrastructure. J. Environ. Manag. 2021, 288, 112454. [Google Scholar] [CrossRef]
- Serraino, M.; Lucchi, E. Energy efficiency, heritage conservation, and landscape integration: The case study of the San Martino Castle in Parella (Turin, Italy). Energy Procedia 2017, 133, 424–434. [Google Scholar] [CrossRef]
- Cabral, A.I.R.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ 2018, 637–638, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Batar, A.; Watanabe, T.; Kumar, A. Assessment of land-use/land-cover change and forest fragmentation in the Garhwal Himalayan region of India. Environments 2017, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Luo, Y.; Wang, M.; Su, S.L.; Pi, J.H.; Li, G. Essential fragmentation metrics for agricultural policies: Linking landscape pattern, ecosystem service and land use management in urbanizing China. Agric. Syst. 2020, 182, 102833. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Zhuang, D.; Zhang, Z.; Deng, X. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D 2003, 46, 373–384. [Google Scholar]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Wuhan Institute of Urban Planning and Design. Ecoframework Planning of Wuhan Urban Development Area; Wuhan Institute of Urban Planning and Design: Wuhan, China, 2011. [Google Scholar]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E.; FRAGSTATS: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2012. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 2 December 2020).
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; Darge, R.C.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.E.; Naeem, S.; Oneill, R.V.; Paruelo, J.M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Res. 2008, 23, 911–919. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Ye, Y.; Bryan, B.A.; Zhang, J.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of land change on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Chen, K.Q.; Long, H.L.; Liao, L.W.; Tu, S.S.; Li, T.T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Ibrahim, J.G.; Zhu, H.; Garcia, R.I.; Guo, R. Fixed and random effects selection in mixed effects models. Biometrics 2011, 67, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Mundlak, Y. On the pooling of time series and cross section data. Econometrtca 1978, 46, 69–85. [Google Scholar] [CrossRef]
- Lv, J.J.; Ma, T.; Dong, Z.W.; Yao, Y.; Yuan, Z.H. Temporal and spatial analyses of the landscape pattern of Wuhan city based on remote sensing images. Int. J. Geo-Inf. 2018, 7, 340. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.F.; Zhou, X.W. Projections of future land use changes: Multiple scenarios-based impacts analysis on ecosystem services for Wuhan city, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Zheng, W.; Ke, X.; Zhou, T.; Yang, B. Trade-offs between cropland quality and ecosystem services of marginal compensated cropland—A case study in Wuhan, China. Ecol. Indic. 2019, 105, 613–620. [Google Scholar] [CrossRef]
- Wang, B.; Gao, P.; Niu, X.; Sun, J. Policy-driven China’s Grain to Green Program: Implications for ecosystem services. Ecosyst. Serv. 2017, 27, 38–47. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Gu, X. Changes resulting from a land consolidation project (LCP) and its resource-environment effects: A case study in Tianmen City of Hubei Province, China. Land Use Policy 2014, 40, 74–82. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, R.; Ma, W.; Zhou, D.; Wang, X.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- He, S.W.; Yu, S.; Li, G.D.; Zhang, J.F. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- National Bureau of Statistics PRC. Wuhan Statistical Yearbook; China Statistics Press: Beijing, China, 2020. [Google Scholar]
- Wickham, J.; Riitters, K.H. Influence of high-resolution data on the assessment of forest fragmentation. Landsc. Ecol. 2019, 34, 2169–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Category | Subcategory | Forestland | Grassland | Cultivated Land | Wetland | Water Area | Unused Land | Construction Land |
---|---|---|---|---|---|---|---|---|
Supplying services | Food production | 106.483 | 138.751 | 322.676 | 116.163 | 171.018 | 6.454 | 3.227 |
Raw material | 961.576 | 116.163 | 125.844 | 77.442 | 112.937 | 12.907 | 0 | |
Regulating services | Gas regulation | 1393.962 | 484.015 | 232.327 | 777.650 | 164.565 | 19.361 | −780.877 |
Climate regulation | 1313.293 | 503.375 | 312.996 | 4372.265 | 664.713 | 41.948 | 0 | |
Hydrological regulation | 1319.746 | 490.468 | 248.461 | 4336.770 | 6056.635 | 22.587 | −2423.300 | |
Waste treatment | 555.003 | 425.933 | 448.520 | 4646.540 | 4791.744 | 83.896 | −793.784 | |
Supporting services | Soil formation and retention | 1297.159 | 722.795 | 474.334 | 642.126 | 132.297 | 54.855 | 6.454 |
Biodiversity protection | 1455.270 | 603.405 | 329.130 | 1190.676 | 1106.780 | 129.071 | 109.710 | |
Cultural services | Recreation and culture | 671.167 | 280.728 | 54.855 | 1513.352 | 1432.683 | 77.442 | 3.227 |
Total ESV | 9073.660 | 3765.633 | 2549.143 | 17672.985 | 14633.373 | 448.520 | −3875.343 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|
Cultivated land | 1335.110 | 1300.575 | 1213.313 | 1178.165 |
Forestland | 722.118 | 716.493 | 706.551 | 700.760 |
Grassland | 27.224 | 25.561 | 29.239 | 28.933 |
Water area | 2290.105 | 2389.151 | 2399.735 | 2403.493 |
Construction land | −253.817 | −305.906 | −406.938 | −463.885 |
Unused land | 0.479 | 0.456 | 0.317 | 0.282 |
Wetland | 411.123 | 313.022 | 452.076 | 445.594 |
In total | 4532.341 | 4439.352 | 4394.293 | 4293.343 |
Category | Subcategory | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|
Supplying services | Food production | 208.163 | 204.220 | 194.313 | 189.833 |
Raw material | 162.766 | 160.748 | 156.187 | 153.828 | |
Regulating services | Gas regulation | 228.838 | 210.913 | 187.780 | 171.928 |
Climate regulation | 477.870 | 452.820 | 476.028 | 469.397 | |
Hydrological regulation | 1128.758 | 1108.706 | 1074.553 | 1034.598 | |
Waste treatment | 1088.254 | 1077.613 | 1081.372 | 1062.655 | |
Supporting services | Soil formation and retention | 393.014 | 382.879 | 371.226 | 363.688 |
Biodiversity protection | 500.791 | 497.514 | 498.231 | 494.165 | |
Cultural services | Recreation and culture | 343.886 | 343.939 | 354.603 | 353.250 |
Total ESV | 4532.341 | 4439.352 | 4394.293 | 4293.343 |
Variable | Pooled OLS | Individual and Time-Period Random Effects | Individual and Time-Period Fixed Effects |
---|---|---|---|
PD | −0.726 *** (0.194) | −0.020 (0.104) | −0.726 *** (0.194) |
LSI | 1.676 ** (0.488) | 0.308 *** (0.092) | 1.676 ** (0.488) |
AREA_AM | −0.382 ** (0.141) | −0.268 *** (0.058) | −0.382 ** (0.141) |
FRAC_AM | 3.471 * (1.649) | 2.590 ** (0.958) | 3.471 * (1.649) |
CONTAG | 0.305 (0.421) | −1.404 *** (0.258) | 0.305 (0.421) |
IJI | −0.226 (0.188) | −0.772 *** (0.129) | −0.226 (0.188) |
DIVISION | −1.688 (0.986) | −1.766 *** (0.149) | −1.688 (0.986) |
SPLIT | −0.085 (0.107) | −0.182 ** (0.066) | −0.085 (0.107) |
SHDI | 0.547 ** (0.211) | 0.466 ** (0.135) | 0.547 ** (0.211) |
R-squared | 0.802 | 0.760 | 0.509 |
Constant | −2.303 (1.882) | 0.878 (1.024) | −2.303 (1.882) |
N | 352 | 352 | 352 |
Fixed effects VS random effects | Hausmann test | chi2(10)=(b-B)’[(V_b-V_B)^(-1)](b-B) =72.83 | Prob>chi2=0.000 |
Fixed effects VS mixed effects | F test | F=14.40 | p=0.000 |
Variable | Pooled OLS | Individual and Time-Period Random Effects | Individual and Time-Period Fixed Effects |
---|---|---|---|
PD | 0.100 (0.126) | −0.167 (0.128) | −0.609 * (0.243) |
LSI | 0.454 ** (0.137) | 0.243 (0.139) | 1.163 (0.772) |
AREA_AM | −0.096 (0.209) | −0.259 * (0.100) | −0.571 (0.415) |
FRAC_AM | −3.356 (1.682) | 1.808 (1.428) | 2.960 (2.338) |
CONTAG | −2.725 *** (0.679) | −1.606 *** (0.418) | 0.561 (0.734) |
IJI | −1.239 ** (0.332) | −1.127 *** (0.225) | −0.432 (0.349) |
DIVISION | −1.831 *** (0.392) | −2.287 *** (0.293) | −2.823 (1.990) |
SPLIT | −0.263 (0.145) | −0.088 (0.120) | −0.023 (0.210) |
SHDI | 0.461 (0.275) | 0.852 ** (0.257) | 1.290 *** (0.478) |
R-squared | 0.741 | 0.689 | 0.399 |
Constant | 8.002 *** (2.008) | 2.484 (1.512) | −0.824 (2.618) |
N | 176 | 176 | 176 |
Fixed effects VS random effects | Hausmann test | chi2(10)=(b-B)’[(V_b-V_B)^(-1)](b-B) =27.30 | Prob>chi2=0.002 |
Fixed effects VS mixed effects | F test | F=13.17 | p=0.000 |
Variable | Pooled OLS | Individual and Time-Period Random Effects | Individual and Time-Period Fixed Effects |
---|---|---|---|
PD | 0.320* (0.152) | −0.083 (0.178) | −0.825** (0.262) |
LSI | 0.312 ** (0.103) | 0.543 *** (0.144) | 2.525 ** (0.707) |
AREA_AM | 0.088 (0.171) | −0.436 *** (0.118) | −0.764 ** (0.237) |
FRAC_AM | −4.637 ** (1.459) | −0.460 (1.505) | 0.434 (2.045) |
CONTAG | −3.961 *** (0.544) | −1.858 *** (0.454) | 1.483 * (0.654) |
IJI | −1.203 *** (0.271) | −0.903 ** (0.282) | −0.027 (0.368) |
DIVISION | 0.505 (0.765) | −1.748 ** (0.659) | −3.380 * (1.469) |
SPLIT | −0.218 * (0.098) | −0.381 ** (0.116) | −0.513 ** (0.149) |
SHDI | −0.564 (0.358) | 0.301 (0.322) | 0.897 ** (0.375) |
R-squared | 0.848 | 0.782 | 0.668 |
Constant | 8.793 *** (1.516) | 4.532 *** (1.523) | 0.703 1.963 |
N | 120 | 120 | 120 |
Fixed effects VS random effects | Hausmann test | chi2(10)=(b-B)’[(V_b-V_B)^(-1)](b-B) =54.87 | Prob>chi2=0.000 |
Fixed effects VS mixed effects | F test | F=13.27 | p=0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zeng, J.; Chu, Y.; Liang, J. Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sens. 2021, 13, 2551. https://doi.org/10.3390/rs13132551
Chen W, Zeng J, Chu Y, Liang J. Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sensing. 2021; 13(13):2551. https://doi.org/10.3390/rs13132551
Chicago/Turabian StyleChen, Wanxu, Jie Zeng, Yumei Chu, and Jiale Liang. 2021. "Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach" Remote Sensing 13, no. 13: 2551. https://doi.org/10.3390/rs13132551
APA StyleChen, W., Zeng, J., Chu, Y., & Liang, J. (2021). Impacts of Landscape Patterns on Ecosystem Services Value: A Multiscale Buffer Gradient Analysis Approach. Remote Sensing, 13(13), 2551. https://doi.org/10.3390/rs13132551