Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Data
2.3. Data Analysis
3. Results
3.1. The Spatio-Temporal Variability of Chl-a Concentration in the Coastal Zone of the SE Baltic Sea
3.2. The Importance of Environmental Factors on the Variation of Chl-a Concentration During Coastal Upwelling
3.3. A Detailed Case Study of the Upwelling event in the Summer of 2008
3.4. The Influence of Upwelling on the Chl-a Concentration of the Curonian Lagoon
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Savchuk, O.P. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 2018, 5, 5. [Google Scholar] [CrossRef]
- HELCOM. HELCOM Thematic Assessment of Eutrophication 2011–2016. Baltic Sea Environment Proceedings No.156. 2018. Available online: http://www.helcom.fi/baltic-sea-trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/ (accessed on 3 June 2020).
- HELCOM. The Fourth Baltic Sea Pollution Load Compilation (PLC-4). Baltic Sea Environment Proceedings No. 93. Helsinki Commission; HELCOM: Helsinki, Finland, 2004; 188p. [Google Scholar]
- Schernewski, G.; Neumann, T. The trophic state of the Baltic Sea a century ago: A model simulation study. J. Mar. Syst. 2005, 53, 109–124. [Google Scholar] [CrossRef]
- Savchuk, O.P.; Wulff, F.; Hille, S.; Humborg, C.; Pollehne, F. The Baltic Sea a century ago—A reconstruction from model simulations, verified by observations. J. Mar. Syst. 2008, 74, 485–494. [Google Scholar] [CrossRef]
- HELCOM. Eutrophication in the Baltic Sea—An Integrated Thematic Assessment of Eutrophication in the Baltic Sea Region. Baltic Sea Environmental Proceedings No. 115B. Helsinki Commission; HELCOM: Helsinki, Finland, 2009; 148p. [Google Scholar]
- Myrberg, K.; Korpinen, S.; Uusitalo, L. Physical oceanography sets the scene for the Marine Strategy Framework Directive implementation in the Baltic Sea. Mar. Policy 2019, 107, 103591. [Google Scholar] [CrossRef]
- Matarrese, R.; Chiaradia, M.; De Pasquale, V.; Pasquariello, G. Chlorophyll-a concentration measure in coastal waters using MERIS and MODIS data. In Proceedings of the IGARSS’04 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AL, USA, 20–24 September 2004; Volume 6, pp. 3639–3641. [Google Scholar]
- Zhang, H.; Qiu, Z.; Sun, D.Y.; Wang, S.; He, Y. Seasonal and Interannual Variability of Satellite-Derived Chlorophyll-a (2000–2012) in the Bohai Sea, China. Remote Sens. 2017, 9, 582. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef]
- Spyrakos, E.; Vilas, L.G.; Palenzuela, J.M.T.; Barton, E.D. Remote sensing chlorophyll a of optically complex waters (rias Baixas, NW Spain): Application of a regionally specific chlorophyll a algorithm for MERIS full resolution data during an upwelling cycle. Remote Sens. Environ. 2011, 115, 2471–2485. [Google Scholar] [CrossRef]
- Nieto, K.; Mélin, F. Variability of chlorophyll-a concentration in the Gulf of Guinea and its relation to physical oceanographic variables. Prog. Oceanogr. 2017, 151, 97–115. [Google Scholar] [CrossRef]
- Pinochet, A.; Garcés-Vargas, J.; Lara, C.; Olguin, F. Seasonal Variability of Upwelling off Central-Southern Chile. Remote Sens. 2019, 11, 1737. [Google Scholar] [CrossRef]
- Nômmann, S.; Sildam, J.; Nôges, T.; Kahru, M. Plankton distribution during a coastal upwelling event off Hiiumaa, Baltic Sea: Impact of short-term flow field variability. Cont. Shelf Res. 1991, 11, 95–108. [Google Scholar] [CrossRef]
- Laanemets, J.; Kononen, K.; Pavelson, J.; Poutanen, E.-L. Vertical location of seasonal nutriclines in the western Gulf of Finland. J. Mar. Syst. 2004, 52, 1–13. [Google Scholar] [CrossRef]
- Lips, I.; Lips, U. Phytoplankton dynamics affected by the coastal upwelling events in the Gulf of Finland in July-August 2006. J. Plankton Res. 2010, 32, 1269–1282. [Google Scholar] [CrossRef]
- Kratzer, S.; Ebert, K.; Sørensen, K. Monitoring the Bio-optical State of the Baltic Sea Ecosystem with Remote Sensing and Autonomous In Situ Techniques. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 407–435. ISBN 978-3-642-17220-5. [Google Scholar]
- Dabuleviciene, T.; Kozlov, I.E.; Vaiciūtė, D.; Dailidienė, I. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens. 2018, 10, 1752. [Google Scholar] [CrossRef]
- Fisher, J.I.; Mustard, J.F. High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sens. Environ. 2004, 90, 293–307. [Google Scholar] [CrossRef]
- Krężel, A.; Szymanek, L.; Kozłowski, Ł.; Szymelfenig, M. Influence of coastal upwelling on chlorophyll a concentration in the surface water along the Polish coast of the Baltic Sea. Oceanologia 2005, 47, 433–452. [Google Scholar]
- Kanoshina, I.; Lips, U.; Leppänen, J.-M. The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2003, 2, 29–41. [Google Scholar] [CrossRef]
- Vahtera, E. The Role of Phosphorus as A Regulator of Bloom-Forming Diazotrophic Cyanobacteria in the Baltic Sea. Ph.D. Thesis, Finish Institute of Marine Research, Helsinki, Finland, 2007. ISBN 978-952-10-4193-8. [Google Scholar]
- Kononen, K.; Huttunen, M.; Hällfors, S.; Gentien, P.; Lunven, M.; Huttula, T.; Laanemets, J.; Lilover, M.; Pavelson, J.; Stips, A. Development of a deep chlorophyll maximum of Heterocapsa triquetra Ehrenb. at the entrance to the Gulf of Finland. Limnol. Oceanogr. 2003, 48, 594–607. [Google Scholar] [CrossRef]
- Vahtera, E.; Laanemets, J.; Pavelson, J.; Huttunen, M.; Kononen, K. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J. Mar. Syst. 2005, 58, 67–82. [Google Scholar] [CrossRef]
- Gidhagen, L. Coastal upwelling in the Baltic Sea—Satellite and in situ measurements of sea-surface temperatures indicating coastal upwelling. Estuar. Coast. Shelf Sci. 1987, 24, 449–462. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K.; Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanology 2012, 54, 369–393. [Google Scholar] [CrossRef]
- Leppäranta, M.; Myrberg, A.P.K. Physical Oceanography of the Baltic Sea; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kozlov, I.E.; Dailidienė, I.; Korosov, A.; Klemas, V.; Mingėlaitė, T. MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon. J. Mar. Syst. 2014, 129, 157–165. [Google Scholar] [CrossRef]
- Zemlys, P.; Ferrarin, C.; Umgiesser, G.; Gulbinskas, S.; Bellafiore, D. Investigation of saline water intrusions into the Curonian Lagoon (Lithuania) and two-layer flow in the Klaipėda Strait using finite element hydrodynamic model. Ocean Sci. 2013, 9, 573–584. [Google Scholar] [CrossRef]
- Zalewski, M.; Ameryk, A.; Szymelfenig, M. Primary production and chlorophyll a concentration during upwelling events along the Hel Peninsula (the Baltic Sea). Oceanol. Hydrobiol. Stud. 2005, 34 (Suppl. 2), 97–113. [Google Scholar]
- Kuvaldina, N.; Lips, I.; Lips, U.; Liblik, T. The influence of a coastal upwelling event on chlorophyll a and nutrient dynamics in the surface layer of the Gulf of Finland, Baltic Sea. Hydrobiology 2009, 639, 221–230. [Google Scholar] [CrossRef]
- Lehmann, A.; Myrberg, K. Upwelling in the Baltic Sea—A review. J. Mar. Syst. 2008, 74, S3–S12. [Google Scholar] [CrossRef]
- Vaiciute, D. Distribution Patterns of Optically Active Components and Phytoplankton in the Estuarine Plume in the South Eastern Baltic Sea. Ph.D. Thesis, Klaipeda University, Klaipeda, Lithuania, 2012; 128p. [Google Scholar]
- Zemlys, P.; Ertürk, A.; Razinkovas, A. 2D finite element ecological model for the Curonian lagoon. Hydrobiology 2008, 611, 167–179. [Google Scholar] [CrossRef]
- Dailidienė, I.; Davulienė, L. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. J. Mar. Syst. 2008, 74, S20–S29. [Google Scholar] [CrossRef]
- Olenina, I.; Olenin, S. Environmental Problems of the South-Eastern Baltic Coast and the Curonian Lagoon. In Baltic Coastal Ecosystems; Schernewski, G., Schiewer, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 149–156. [Google Scholar]
- Gasiūnaitė, Z.; Cardoso, A.; Heiskanen, A.-S.; Henriksen, P.; Kauppila, P.; Olenina, I.; Pilkaitytė, R.; Purina, I.; Razinkovas, A.; Sagert, S.; et al. Seasonality of coastal phytoplankton in the Baltic Sea: Influence of salinity and eutrophication. Estuar. Coast. Shelf Sci. 2005, 65, 239–252. [Google Scholar] [CrossRef]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Springer: Berlin/Heidelberg, Germany, 2008; Volume 197, pp. 197–215. ISBN 978-3-540-73524-3. [Google Scholar]
- Kozlov, I.E.; Kudryavtsev, V.N.; Johannessen, J.A.; Chapron, B.; Dailidienė, I.; Myasoedov, A. ASAR imaging for coastal upwelling in the Baltic Sea. Adv. Space Res. 2012, 50, 1125–1137. [Google Scholar] [CrossRef]
- Uiboupin, R.; Laanemets, J. Upwelling characteristics derived from satellite sea surface temperature data in the Gulf of Finland, Baltic Sea. Boreal Environ. Res. 2009, 14, 297–304. [Google Scholar]
- Gurova, E.; Lehmann, A.; Ivanov, A. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia 2013, 55, 687–707. [Google Scholar] [CrossRef]
- Delpeche-Ellmann, N.; Mingelaitė, T.; Soomere, T. Examining Lagrangian surface transport during a coastal upwelling in the Gulf of Finland, Baltic Sea. J. Mar. Syst. 2017, 171, 21–30. [Google Scholar] [CrossRef]
- Brown, O.B.; Minnett, P.J. MODIS Infrared Sea Surface Temperature Algorithm; Tech. Report ATBD25, FL 33149–1098; University of Miami: Coral Gables, FL, USA, 1999. [Google Scholar]
- NASA OceanColor Website. Available online: https://oceancolor.gsfc.nasa.gov/ (accessed on 3 June 2020).
- Myrberg, K.; Andrejev, O. Main upwelling regions in the Baltic Sea—A statistical analysis based on three-dimensional modelling. Boreal Environ. Res. 2003, 8, 97–112. [Google Scholar]
- Fomferra, N.; Brockmann, C. The BEAM Project Web Page; Brockmann Consult: Hamburg, Germany, 2003; Available online: http://www.brockmann-consult.de/beam/ (accessed on 6 February 2013).
- Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Schalles, J.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Pilkaityte, R.; Bartoli, M.; Razinkovas, A. In situ measurements and satellite remote sensing of case 2 waters: First results from the Curonian Lagoon. Oceanology 2010, 52, 197–210. [Google Scholar] [CrossRef]
- Bresciani, M.; Adamo, M.; De Carolis, G.; Matta, E.; Pasquariello, G.; Vaiciūtė, D.; Giardino, C. Monitoring blooms and surface accumulation of cyanobacteria in the Curonian Lagoon by combining MERIS and ASAR data. Remote Sens. Environ. 2014, 146, 124–135. [Google Scholar] [CrossRef]
- INFORM. INFORM Prototype/Algorithm Validation Report Update. D5.15. 2016, p. 140. Available online: http://inform.vgt.vito.be/files/documents/INFORM_D5.15_v1.0.pdf (accessed on 5 November 2018).
- Pfeifroth, U.; Kothe, S.; Müller, R.; Trentmann, J.; Hollmann, R.; Fuchs, P.; Werscheck, M. Surface Radiation Data Set—Heliosat (SARAH)—Edition 2, Satellite Application Facility on Climate Monitoring. CM SAF 2017. [Google Scholar] [CrossRef]
- Baba, K.; Renwick, J. Aspects of intraseasonal variability of Antarctic sea ice in austral winter related to ENSO and SAM events. J. Glaciol. 2017, 63, 838–846. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Manikandan, S. Measures of central tendency: Median and mode. J. Pharmacol. Pharmacother. 2011, 2, 214–215. [Google Scholar] [CrossRef]
- Boeuf, B.; Fritsch, O. Studying the implementation of the Water Framework Directive in Europe: A meta-analysis of 89 journal articles. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Vaičiūtė, D.; Bučas, M.; Bresciani, M.; Dabulevičienė, T.; Gintauskas, J.; Mėžinė, J.; Tiškus, E.; Umgiesser, G.; Morkūnas, J.; De Santi, F.; et al. Hot moments and Hotspots of cyanobacteria hyperblooms in the Curonian Lagoon (SE Baltic Sea) revealed via remote sensing-based retrospective analysis. Manuscript submitted for publication.
- Haapala, J. Upwelling and its Influence on Nutrient Concentration in the Coastal Area of the Hanko Peninsula, Entrance of the Gulf of Finland. Estuar. Coast. Shelf Sci. 1994, 38, 507–521. [Google Scholar] [CrossRef]
- Nowacki, J.; Matciak, M.; Szymelfenig, M.; Kowalewski, M. Upwelling characteristics in the Puck Bay (the Baltic Sea). Oceanol. Hydrobiol. Stud. 2009, 38, 3–16. [Google Scholar] [CrossRef]
- Laanemets, J.; Vali, G.; Zhurbas, V.; Elken, J.; Lips, I.; Lips, U. Simulation of mesoscale structures and nutrient transport during summer upwelling events in the Gulf of Finland in 2006. Boreal Environ. Res. 2011, 16 (Suppl. A), 15–26. [Google Scholar]
- Lévy, M. The Modulation of Biological Production by Oceanic Mesoscale Turbulence. In Transport and Mixing in Geophysical Flows: Creators of Modern Physics; Weiss, J.B., Provenzale, A., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 744, pp. 219–261. ISBN 978-3-540-75215-8. [Google Scholar]
- Sproson, D.; Sahlée, E. Modelling the impact of Baltic Sea upwelling on the atmospheric boundary layer. Tellus A Dyn. Meteorol. Oceanogr. 2014, 66, 563. [Google Scholar] [CrossRef]
- Franks, P. Sink or swim, accumulation of biomass at fronts. Mar. Ecol. Prog. Ser. 1992, 82, 1–12. [Google Scholar] [CrossRef]
- Klisch, E.; Hader, D. Effects of solar radiation on phytoplankton. Recent Res. Devel. Photochem. Photobiol. 1999, 3, 113–121. [Google Scholar]
- Hieronymus, J.; Eilola, K.; Hieronymus, M.; Meier, H.E.M.; Saraiva, S.; Karlson, B. Causes of simulated long-term changes in phytoplankton biomass in the Baltic proper: A wavelet analysis. Biogeosciences 2018, 15, 5113–5129. [Google Scholar] [CrossRef]
- Uiboupin, R.; Laanemets, J.; Sipelgas, L.; Raag, L.; Lips, I.; Buhhalko, N. Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic Sea) using remote sensing and in situ data. Oceanologia 2012, 54, 395–419. [Google Scholar] [CrossRef]
- Pilkaityte, R.; Razinkovas, A. Factors Controlling Phytoplankton Blooms in a Temperate Estuary: Nutrient Limitation and Physical Forcing. Hydrobiology 2006, 555, 41–48. [Google Scholar] [CrossRef]
- Krevs, A.; Koreiviene, J.; Paskauskas, R.; Sulijiene, R. Phytoplankton production and community respiration in different zones of the Curonian lagoon during the midsummer vegetation period. Transit. Waters Bull. 2007, 1, 17–26. [Google Scholar] [CrossRef]
- Kowalewski, M. The influence of the Hel upwelling (Baltic Sea) on nutrient concentrations and primary production—The results of an ecohydrodynamic model. Oceanologia 2005, 47, 567–590. [Google Scholar]
- Väli, G.; Zhurbas, V.; Laanemets, J.; Elken, J. Simulation of nutrient transport from different depths during an upwelling event in the Gulf of Finland. Oceanologia 2011, 53, 431–448. [Google Scholar] [CrossRef]
- Rinaldi, E.; Orasi, A.; Morucci, S.; Colella, S.; Inghilesi, R.; Bignami, F.; Santoleri, R. How can operational oceanography products contribute to the European Marine Strategy Framework Directive? The Italian case. J. Oper. Oceanogr. 2016, 9, s18–s32. [Google Scholar] [CrossRef]
- Schernewski, G.; Baltranaitė, E.; Kataržytė, M.; Balčiūnas, A.; Čerkasova, N.; Mėžinė, J. Establishing new bathing sites at the Curonian Lagoon coast: An ecological-social-economic assessment. J. Coast. Conserv. 2017, 23, 899–911. [Google Scholar] [CrossRef]
- Inácio, M.; Schernewski, G.; Nazemtseva, Y.; Baltranaitė, E.; Friedland, R.; Benz, J. Ecosystem services provision today and in the past: A comparative study in two Baltic lagoons. Ecol. Res. 2018, 33, 1255–1274. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef]
- Orlandi, M.; Silvio Marzano, F.; Cimini, D. Remote sensing of water quality indexes from Sentinel-2 imagery: Development and validation around Italian river estuaries. EGUGA 2018, 20, 19808. [Google Scholar]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; Da Silva, M.C.; Garcés, E.; Heiskanen, A.-S.; Humborg, C.; Ignatiades, L.; et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef]
- Zhang, Q.; Fisher, T.R.; Trentacoste, E.M.; Buchanan, C.; Gustafson, A.B.; Karrh, R.; Murphy, R.R.; Keisman, J.; Wu, C.; Tian, R.; et al. Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management. Water Res. 2020, 188, 116407. [Google Scholar] [CrossRef]
- Park, J.; Kim, K.T.; Lee, W.H. Recent Advances in Information and Communications Technology (ICT) and Sensor Technology for Monitoring Water Quality. Water 2020, 12, 510. [Google Scholar] [CrossRef]
WFD Classes | Chl-a in the Coastal Waters of the SE Baltic Sea, mg m−3 | Chl-a in the Curonian Lagoon, mg m−3 |
---|---|---|
Excellent (reference conditions) | <2.0 | <26.4 |
High | 2.0–2.4 | 26.5–31.7 |
Good | 2.5–4.8 | 31.8–46.6 |
Moderate | 4.9–7.1 | 46.7–67.0 |
Poor | 7.2–9.5 | 67.1–91.9 |
Bad | >9.5 | >91.9 |
Upwelling Duration | Date | Upwelling Zone | Reference Zone | Upwelling Zone | Reference Zone | t Value | Df | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
yy mm dd | mm dd | SST, °C | SST, °C | Chl-a, mg m−3 | Chl-a, mg m−3 | ||||||
2004 05 12–17 | 05 13 | 4.85 | ±0.75 | 9.68 | ±0.59 | 2.51 | ±0.96 | 3.93 | ±1.09 | 11.21 | 38.97 |
05 14 | 4.16 | ±0.71 | 9.35 | ±0.56 | 0.69 | ±0.66 | 1.26 | ±0.40 | 6.86 | 35.79 | |
05 16 | 5.56 | ±0.69 | 9.34 | ±0.49 | 1.66 | ±0.79 | 2.50 | ±0.73 | 11.05 | 55.57 | |
05 17 | 7.98 | ±0.21 | 13.13 | ±0.87 | 1.12 | ±0.76 | 2.00 | ±2.44 | 3.65 | 51.23 | |
2005 06 09–10 | 06 09 | 8.59 | ±1.32 | 13.36 | ±0.43 | 3.26 | ±1.59 | 4.08 | ±1.35 | 3.95 | 52.07 |
2005 06 18–21 | 06 19 | 11.10 | ±0.96 | 15.82 | ±0.35 | 2.62 | ±0.88 | 4.64 | ±2.74 | 3.14 | 47.65 |
2006 05 07–11 | 05 08 | 6.56 | ±0.67 | 8.46 | ±0.38 | 1.98 | ±0.59 | 2.70 | ±1.00 | 5.06 | 31.55 |
2006 06 14–17 | 06 16 | 11.52 | ±1.06 | 15.37 | ±0.56 | 1.88 | ±0.42 | 2.03 | ±0.46 | 0.15 | 54.60 * |
2006 07 01–03 | 07 01 | 17.40 | ±0.54 | 20.94 | ±0.34 | 2.08 | ±0.57 | 3.61 | ±0.58 | 15.80 | 49.53 |
07 02 | 17.01 | ±0.88 | 21.04 | ±0.48 | 2.52 | ±0.83 | 4.05 | ±1.12 | 8.99 | 49.13 | |
2007 06 07–17 | 06 07 | 14.96 | ±1.24 | 18.70 | ±0.45 | 1.90 | ±0.94 | 2.17 | ±0.62 | 4.03 | 52.08 |
06 11 | 14.83 | ±1.52 | 20.03 | ±0.40 | 2.39 | ±0.76 | 2.76 | ±1.29 | 1.91 | 41.40 * | |
06 16 | 12.41 | ±1.83 | 18.04 | ±0.39 | 1.15 | ±0.50 | 1.50 | ±0.44 | 3.30 | 47.30 | |
2008 05 19 / 2008 06 10 | 06 03 | 10.66 | ±1.34 | 14.86 | ±0.48 | 2.25 | ±0.83 | 3.88 | ±1.32 | 6.32 | 42.00 |
06 04 | 9.26 | ±1.20 | 14.23 | ±0.59 | 2.41 | ±0.82 | 3.60 | ±1.41 | 4.83 | 40.06 | |
06 05 | 9.71 | ±0.74 | 14.77 | ±0.63 | 1.86 | ±1.04 | 2.62 | ±1.22 | 2.46 | 42.13 | |
06 06 | 11.91 | ±0.62 | 18.68 | ±1.09 | 1.26 | ±0.43 | 2.29 | ±0.58 | 6.25 | 45.96 | |
06 07 | 12.26 | ±1.20 | 17.16 | ±0.56 | 1.82 | ±0.67 | 3.16 | ±0.97 | 6.16 | 52.92 | |
2008 07 25 / 2008 08 03 | 07 24 | 18.64 | ±0.36 | 19.93 | ±0.18 | 7.09 | ±3.07 | 10.28 | ±3.17 | 14.41 | 39.13 |
07 25 | 18.70 | ±0.32 | 20.19 | ±0.24 | 4.10 | ±1.79 | 10.51 | ±3.33 | 15.44 | 32.07 | |
07 26 | 18.85 | ±0.34 | 20.40 | ±0.19 | 5.01 | ±3.71 | 10.25 | ±5.56 | 9.44 | 30.32 | |
07 27 | 18.55 | ±0.36 | 20.48 | ±0.17 | 3.04 | ±1.4 | 5.46 | ±1.24 | 9.09 | 56.61 | |
07 28 | 17.72 | ±0.61 | 20.45 | ±0.17 | 3.08 | ±0.70 | 5.54 | ±1.27 | 8.16 | 42.07 | |
07 29 | 17.06 | ±0.09 | 20.29 | ±0.14 | 2.78 | ±1.95 | 4.31 | ±1.56 | 5.49 | 50.54 | |
07 31 | 17.84 | ±0.76 | 20.44 | ±0.15 | 3.66 | ±0.98 | 3.82 | ±1.19 | 1.51 | 42.25 * | |
2008 09 23–26 | 09 24 | 10.32 | ±0.91 | 15.78 | ±0.44 | 1.03 | ±0.36 | 0.94 | ±0.34 | 1.05 | 56.59 * |
2010 06 22–29 | 06 26 | 12.27 | ±0.67 | 14.99 | ±0.30 | 1.95 | ±0.68 | 3.51 | ±1.54 | 3.65 | 40.67 |
Environmental Variable n = 22 | Mean | Minimum | Maximum | F Value |
---|---|---|---|---|
* Upwelling SST, °C | 14.2 | 8.6 | 18.9 | 3.45 |
* Solar radiation, W m−2 | 311 | 141 | 349 | 2.83 |
* Wind speed, m s−1 | 4.3 | 2 | 7.8 | 1.92 |
Nemunas river discharge, m3 s−1 | 400 | 268 | 735 | 0.23 |
Wind direction | predominant N-NW winds | 0.36 | ||
Deviance explained | 77.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabuleviciene, T.; Vaiciute, D.; Kozlov, I.E. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sens. 2020, 12, 3661. https://doi.org/10.3390/rs12213661
Dabuleviciene T, Vaiciute D, Kozlov IE. Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sensing. 2020; 12(21):3661. https://doi.org/10.3390/rs12213661
Chicago/Turabian StyleDabuleviciene, Toma, Diana Vaiciute, and Igor E. Kozlov. 2020. "Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations" Remote Sensing 12, no. 21: 3661. https://doi.org/10.3390/rs12213661
APA StyleDabuleviciene, T., Vaiciute, D., & Kozlov, I. E. (2020). Chlorophyll-a Variability during Upwelling Events in the South-Eastern Baltic Sea and in the Curonian Lagoon from Satellite Observations. Remote Sensing, 12(21), 3661. https://doi.org/10.3390/rs12213661