Radiological Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Site
2.2. Aerial Platform and Detection Systems
2.3. Data Processing
2.4. Laboratory Analysis
3. Results
3.1. Radiation Distribution
3.2. Survey Spectral Analysis
3.3. Laboratory Gamma-Ray Spectroscopy
3.4. Electron Microscopy and Energy Dispersive Spectroscopy
3.5. Raman Spectroscopy
4. Discussion
5. Conclusions and Future Work
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability Statement
References
- Jowitt, S.M.; Werner, T.T.; Weng, Z.; Mudd, G.M. Recycling of the rare earth elements. Curr. Opin. Green Sustain. Chem. 2018, 13, 1–7. [Google Scholar] [CrossRef]
- Ridley, J. Ore Deposit Geology; Cambridge University Press: Cambridge, UK, 2013; ISBN 9781107022225. [Google Scholar]
- Gadallah, M.R.; Fisher, R. Exploration Geophysics, 1st ed.; Springer-Verlag Berlin Heidelberg: Heidelberg, Germany, 2009; ISBN 978-3-540-85159-2. [Google Scholar]
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration, 3rd ed.; Blackwell Science: Hoboken, NJ, USA, 2002; ISBN 9780632049295. [Google Scholar]
- Beamish, D. Environmental radioactivity in the UK: The airborne geophysical view of dose rate estimates. J. Environ. Radioact. 2014, 138, 249–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, C.J. Geochemical exploration in Cornwall and Devon: A review. Geochem. Explor. Environ. Anal. 2010, 10, 331–351. [Google Scholar] [CrossRef]
- Moxham, R.M. Airborne radioactivity surveys in geologic exploration. Geophysics 1960, 25, 408–432. [Google Scholar] [CrossRef] [Green Version]
- IAEA. Radioelement Mapping; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Grasty, R. Environmental Monitoring by Airborne Gamma Ray Spectrometry, Experience at the Geological Survey of Canada. Appl. Uranium Explor. Data Tech. Environ. Stud. 1995. [Google Scholar]
- Minty, B.R.S. Fundamental of airborne gamma-ray spectrometry. J. Aust. Geol. Geophys. 1997, 17, 39–50. [Google Scholar]
- Connor, D.; Martin, P.G.; Scott, T.B. Airborne radiation mapping: Overview and application of current and future aerial systems. Int. J. Remote Sens. 2016, 37, 5953–5987. [Google Scholar] [CrossRef]
- Fortin, R.; Hovgaard, J.; Bates, M. Airborne gamma-ray spectrometry in 2017: Solid ground for new development. In Proceedings of the Exploration 17: Sixth Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 22–25 October 2017; pp. 129–138. [Google Scholar]
- Muchiri, N.; Kimathi, S. A review of applications and potential applications of UAV/proceedings of sustainable research and innovation conference. In Proceedings of the Sustainable Research and Innovation Conference, Seville, Spain, 14–16 November 2016; pp. 280–283. [Google Scholar]
- Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. The use of unmanned aerial systems for the mapping of legacy uranium mines. J. Environ. Radioact. 2015, 143, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salek, O.; Matolin, M.; Gryc, L. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry. J. Environ. Radioact. 2018, 182, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Malehmir, A.; Dynesius, L.; Paulusson, K.; Paulusson, A.; Johansson, H.; Bastani, M.; Wedmark, M.; Marsden, P. The potential of rotary-wing UAV-based magnetic surveys for mineral exploration: A case study from central Sweden. Lead. Edge 2017, 36, 552–557. [Google Scholar] [CrossRef]
- Arizona Department of Mines and Mineral Resources Mining Collection AZMILS Data—ABC Group; Phoenix; 2002. Available online: http://docs.azgs.az.gov/OnlineAccessMineFiles/A-B/ABCgroupPinal333a.pdf (accessed on 21 September 2020).
- USGS Wooley Mine (MRDS #10046284) CU. Available online: https://mrdata.usgs.gov/mrds/show-mrds.php?dep_id=10046284 (accessed on 30 March 2020).
- The Diggings Wooley Copper Mine Near Kelvin, Arizona. Available online: https://thediggings.com/mines/15717 (accessed on 1 April 2020).
- Connor, D.T.; Martin, P.G.; Pullin, H.; Hallam, K.R.; Payton, O.D.; Yamashiki, Y.; Smith, N.T.; Scott, T.B. Radiological comparison of a FDNPP waste storage site during and after construction. Environ. Pollut. 2018, 243, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.G.; Connor, D.; Payton, O.D.; Leal-Olloqui, M.; Keatley, A.C.; Scott, T.B. Development and validation of a high-resolution mapping platform to aid in the public awareness of radiological hazards. J. Radiol. Prot. 2018, 38, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Connor, D.T.; Martin, P.G.; Smith, N.T.; Payne, L.; Hutton, C.; Payton, O.D.; Yamashiki, Y.; Scott, T.B. Application of airborne photogrammetry for the visualisation and assessment of contamination migration arising from a Fukushima waste storage facility. Environ. Pollut. 2018, 234, 610–619. [Google Scholar] [CrossRef] [PubMed]
- Minty, B.R.S.; Luyendyk, A.P.J.; Brodie, R.C. Calibration and data processing for airborne gamma-ray spectrometry. J. Aust. Geol. Geophys. 1997, 17, 51–62. [Google Scholar]
- Li, X.; Feng, R.; Guan, X.; Shen, H.; Zhang, L. Remote Sensing Image Mosaicking: Achievements and Challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 8–22. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, D.; Xiao, J.; Wang, X.; Yu, Y.; Xu, J. Tracking of vector roads for the determination of seams in aerial image mosaics. IEEE Geosci. Remote Sens. Lett. 2012, 9, 328–332. [Google Scholar] [CrossRef]
- Martin, P.G.; Payton, O.D.; Fardoulis, J.S.; Richards, D.A.; Yamashiki, Y.; Scott, T.B. Low altitude unmanned aerial vehicle for characterising remediation effectiveness following the FDNPP accident. J. Environ. Radioact. 2016, 151, 58–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, P.G.; Kwong, S.; Smith, N.T.; Yamashiki, Y.; Payton, O.D.; Russell-Pavier, F.S.; Fardoulis, J.S.; Richards, D.A.; Scott, T.B. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 12–19. [Google Scholar] [CrossRef]
- Connor, D.T.; Wood, K.; Martin, P.G.; Goren, S.; Megson-Smith, D.; Verbelen, Y.; Chyzhevskyi, I.; Kirieiev, S.; Smith, N.T.; Richardson, T.; et al. Radiological Mapping of Post-Disaster Nuclear Environments Using Fixed-Wing Unmanned Aerial Systems: A Study From Chornobyl. Front. Robot. AI 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
Window | Peak Energy (keV) | Minimum Window Energy (keV) | Maximum Window Energy (keV) | Radionuclide |
---|---|---|---|---|
*K | 1460 | 1370 | 1570 | K-40 |
U | 352 | 300 | 410 | Bi-214 |
U | 609 | 550 | 660 | Bi-214 |
U | 1120 | 1050 | 1200 | Bi-214 |
*U | 1765 | 1660 | 1860 | Bi-214 |
U | 2204 | 2140 | 2300 | Bi-214 |
Th | 239 | 200 | 320 | Pb-212 |
Th | 583 | 480 | 680 | Tl-208 |
Th | 911 | 810 | 1000 | Ac-228 |
*Th | 2614 | 2410 | 2810 | Tl-208 |
Element | Wt% | At% | Error (%) |
---|---|---|---|
C | 8.9 | 43.5 | 4.8 |
O | 8.7 | 24.4 | 10.5 |
Na | 2.3 | 6.1 | 6.1 |
Al | 1.1 | 1.7 | 12.0 |
Si | 2.7 | 4.3 | 8.12 |
U | 63.3 | 11.9 | 2.7 |
Ca | 2.4 | 2.7 | 8.7 |
Fe | 1.3 | 1.0 | 13.5 |
Cu | 4.7 | 3.4 | 5.1 |
S | 2.9 | 2.5 | 3.4 |
Mn | <1.0 | <1.0 | <1.0 |
Mg | <1.0 | <1.0 | <1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, P.G.; Connor, D.T.; Estrada, N.; El-Turke, A.; Megson-Smith, D.; Jones, C.P.; Kreamer, D.K.; Scott, T.B. Radiological Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 3562. https://doi.org/10.3390/rs12213562
Martin PG, Connor DT, Estrada N, El-Turke A, Megson-Smith D, Jones CP, Kreamer DK, Scott TB. Radiological Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle. Remote Sensing. 2020; 12(21):3562. https://doi.org/10.3390/rs12213562
Chicago/Turabian StyleMartin, Peter G., Dean T. Connor, Natalia Estrada, Adel El-Turke, David Megson-Smith, Chris P. Jones, David K. Kreamer, and Thomas B. Scott. 2020. "Radiological Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle" Remote Sensing 12, no. 21: 3562. https://doi.org/10.3390/rs12213562
APA StyleMartin, P. G., Connor, D. T., Estrada, N., El-Turke, A., Megson-Smith, D., Jones, C. P., Kreamer, D. K., & Scott, T. B. (2020). Radiological Identification of Near-Surface Mineralogical Deposits Using Low-Altitude Unmanned Aerial Vehicle. Remote Sensing, 12(21), 3562. https://doi.org/10.3390/rs12213562