Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. Satellite Data and Processing
2.2.2. Field Data
2.3. Biophysical Features of the Mining and Restored Areas
2.4. Pearson Correlation Analysis, Development of the New Mine-Tailored Indicators and Sensitivity Analysis
2.5. Application of MRAI for Mining and Restoration Monitoring
3. Results
3.1. Mirror Effect and Correlation among the Biophysical Indicators
3.2. Sensitivity and Dynamic Ranges of MRAIs
3.3. Spatiotemporal Change of Vegetation Restoration
3.4. Verification of the Detected Changes
4. Discussion
4.1. Recovery Process
4.2. Advantages and Disadvantages of Our Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, J.; Che, L. Current mining situation and potential development of rare earth in China. Chin. Rare Earths 2010, 31, 65–69. (In Chinese) [Google Scholar]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122. [Google Scholar] [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Liu, M.; Wei, X. Long-term outlook for global rare earth production. Resour. Policy 2020, 65, 101569. [Google Scholar] [CrossRef]
- Kamenopoulos, S.N.; Agioutantis, Z. Geopolitical Risk Assessment of Countries with Rare Earth Element Deposits. Min. Metall. Explor. 2020, 37, 51–63. [Google Scholar] [CrossRef]
- Li, H.; Lei, J.; Wu, J. Analysis of land damage and recovery process in rare earth mining area based on multi-source sequential NDVI. Trans. Chin. Soc. Agric. Eng. 2018, 34, 232–240. (In Chinese) [Google Scholar] [CrossRef]
- Li, T.; Lü, Y.; Fu, B.; Comber, A.J.; Harris, P.; Wu, L. Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Sci. Total Environ. 2017, 607, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngugi, M.R.; Neldner, V.J.; Doley, D.; Kusy, B.; Moore, D.; Richter, C. Soil moisture dynamics and restoration of self-sustaining native vegetation ecosystem on an open-cut coal mine. Restor. Ecol. 2015, 23, 615–624. [Google Scholar] [CrossRef]
- Pei, J.; Wang, L.; Wang, X.; Niu, Z.; Kelly, M.; Song, X.P.; Huang, N.; Geng, J.; Tian, H.; Yu, Y.; et al. Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sens. 2019, 11, 2044. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Shao, Q.; Liu, J.; Zhang, H.; Gong, G. Did Ecological Restoration Hit Its Mark? Monitoring and Assessing Ecological Changes in the Grain for Green Program Region Using Multi-source Satellite Images. Remote Sens. 2019, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Dregne, H.; Newcomb, W.W. Expansion and Contraction of the Sahara Desert from 1980 to 1990. Science 1991, 253, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Wu, W. Monitoring Land Degradation in Drylands by Remote Sensing; Marini, A., Talbi, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Wu, W.; De Pauw, E.; Helldén, U. Assessing woody biomass in African tropical savannahs by multiscale remote sensing. Int. J. Remote Sens. 2013, 34, 4525–4549. [Google Scholar] [CrossRef]
- Wu, W.; De Pauw, E.; Zucca, C. Using remote sensing to assess impacts of land management policies in the Ordos rangelands in China. Int. J. Digit. Earth 2013, 6, 81–102. [Google Scholar] [CrossRef]
- Zucca, C.; Wu, W.; Dessena, L.; Mulas, M. Assessing the Effectiveness of Land Restoration Interventions in Dry Lands by Multitemporal Remote Sensing—A Case Study in Ouled DLIM (Marrakech, Morocco). Land Degrad. Dev. 2015, 26, 80–91. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Zhang, C. A Review of Remote Sensing for Environmental Monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef] [Green Version]
- Courel, M.F.; Kandel, R.S.; Rasool, S.I. Surface albedo and the Sahel drought. Nature 1984, 307, 528–531. [Google Scholar] [CrossRef]
- Lambin, E.F.; Strahler, A.H. Indicators of land-cover change for change-vector analysis in multitemporal space at coarse spatial scales. Int. J. Remote Sens. 1994, 15, 2099–2119. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Ge, J. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China. PLoS ONE 2015, 10, e0131352. [Google Scholar] [CrossRef]
- Carabassa, V.; Ortiz, O.; Alcañiz, J.M. RESTOQUARRY: Indicators for self-evaluation of ecological restoration in open-pit mines. Ecol. Indic. 2019, 102, 437–445. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Veldkamp, A.; Verburg, P.H.; Kok, K.; De Koning, G.H.J.; Priess, J.; Bergsma, A.R. The Need for Scale Sensitive Approaches in Spatially Explicit Land Use Change Modeling. Environ. Modeling Assess. 2001, 6, 111–121. [Google Scholar] [CrossRef]
- Wu, W.; Mhaimeed, A.S.; Al-Shafie, W.M.; Ziadat, F.; Dhehibi, B.; Nangia, V.; Pauw, E.D. Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Reg. 2014, 2, 21–31. [Google Scholar] [CrossRef]
- Aspinall, R. Modelling land use change with generalized linear models—A multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. J. Environ. Manag. 2004, 72, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; White, J.C.; Goward, S.N.; Masek, J.G.; Irons, J.R.; Herold, M.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sens. Environ. 2008, 112, 955–969. [Google Scholar] [CrossRef]
- George, M.; Manal, N.; Irna, V.D.M.; Jonathan, L. Evaluating exposure to land degradation in association with repetitive armed conflicts in North Lebanon using multi-temporal satellite data. Environ. Monit. Assess. 2014, 186, 7655–7672. [Google Scholar] [CrossRef]
- Maynard, J.J.; Karl, J.W.; Browning, D.M. Effect of spatial image support in detecting long-term vegetation change from satellite time-series. Landsc. Ecol. 2016, 31, 2045–2062. [Google Scholar] [CrossRef]
- Jana, A.; Maiti, S.; Biswas, A. Seasonal change monitoring and mapping of coastal vegetation types along Midnapur-Balasore Coast, Bay of Bengal using multi-temporal landsat data. Modeling Earth Syst. Environ. 2015, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Töyrä, J.; Pietroniro, A. Towards operational monitoring of a northern wetland using geomatics-based techniques. Remote Sens. Environ. 2005, 97, 174–191. [Google Scholar] [CrossRef]
- Wu, W.; Lambin, E.F.; Courel, M.F. Land use and cover change detection and modelling for North Ningxia, China. In Proceedings of the Mapasia 2002, Bangkok, Thailand, 7–9 August 2002. [Google Scholar]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Gong, J. A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing. Ecol. Indic. 2020, 114, 106310. [Google Scholar] [CrossRef]
- Alharthi, A.; El-Sheikh, M.A.; Elhag, M.; Alatar, A.A.; Eid, E.M. Remote sensing of 10 years changes in the vegetation cover of the northwestern coastal land of Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 2020. [Google Scholar] [CrossRef]
- Huylenbroeck, L.; Laslier, M.; Dufour, S.; Georges, B.; Michez, A. Using remote sensing to characterize riparian vegetation: A review of available tools and perspectives for managers. J. Environ. Manag. 2020, 267, 110652. [Google Scholar] [CrossRef] [PubMed]
- Yonatan, T.; María, M.L. Monitoring tropical forest degradation using remote sensing. Challenges and opportunities in the Madre de Dios region, Peru. Remote Sens. Appl. Soc. Environ. 2020, 19. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; Batchily, K.; Leeuwen, W.V.A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Demirel, N.; Düzgün, E.; Emil, M.K. Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Kuenzer, C.; Hecker, C.; Zhang, J.; Wessling, S.; Wagner, W. The potential of multidiurnal MODIS thermal band data for coal fire detection. Int. J. Remote Sens. 2008, 29. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE. Remote Sens. 2018, 10, 1392. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Heras, M.M.D.L. Assessing vegetation recovery in reclaimed opencast mines of the Teruel coalfield (Spain) using Landsat time series and boosted regression trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Johansen, K.; Erskine, P.D.; McCabe, M.F. Using Unmanned Aerial Vehicles to assess the rehabilitation performance of open cut coal mines. J. Clean. Prod. 2019, 209, 819–833. [Google Scholar] [CrossRef]
- Padró, J.C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcaniz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, G.; Zhang, Z.; Jiang, W.; Ouyang, Z.; Wang, G. Eco-environmental dynamic monitoring and assessment of rare earth mining area in Southern Ganzhou using remote sensing. Acta Ecol. Sin. 2016, 36, 1676–1685. [Google Scholar]
- Zhang, H.; Zhong, B.; Hong, Y.; Wan, H.; Liu, Q. Dynamic Monitoring of Rare Earths Mining Area in Ganzhou during Recent 20 Years based on Remote Sensing. Remote Sens. Technol. Appl. 2015, 30, 376–382. [Google Scholar] [CrossRef]
- Wu, W. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. Environ. 2014, 6, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Al-Shafie, W.M.; Mhaimeed, A.S.; Ziadat, F.; Nangia, V.; Payne, W.B. Soil Salinity Mapping by Multiscale Remote Sensing in Mesopotamia, Iraq. IEEE J. Sel. Top. Appl. Earth Obs. 2017, 7, 4442–4452. [Google Scholar] [CrossRef]
- Gunasekara, N.K.; Al-Wardy, M.M.; Al-Rawas, G.A.; Charabi, Y. Applicability of VI in arid vegetation delineation using shadow-affected SPOT imagery. Environ. Monit. Assess. 2015, 187, 454. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Muhaimeed, A.S.; Al-Shafie, W.M.; Al-Quraishi, A.F.; Nangia, V.; Zhu, M.; Liu, G. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad. Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Karam, F.; Liu, G. Enhancing the performance of regional land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 422–432. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Application of the tasseled cap concept to simulated thematic mapper data. Photogramm. Eng. Remote Sens. 1984, 50, 343–352. [Google Scholar] [CrossRef]
- Ding, J. Historical review of the ionic rare earth mining: In honor of the 60 anniversary of GNMRI. Nonferrrous Met. Sci. Eng. 2012, 3, 14–19. [Google Scholar] [CrossRef]
- Chavez, P.S.J. Image-Based Atmospheric Corrections—Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar] [CrossRef]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Smith, R.B. The Heat Budget of the Earth’s Surface Deduced from Space. Available online: https://yceo.yale.edu/faq-page#t3n88 (accessed on 10 June 2020).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Landsat 8 (L8) Data Users Handbook, Version 5.0. 2019. Available online: https://digitalcommons.unl.edu/usgspubs/110 (accessed on 10 June 2020).
- Orlóci, L. Multivariate Analysis in Vegetation Research; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Zhao, K.; Jin, J.; Wang, G.; Zhu, Y. Reviews on Environmental Assessment and Pollution Prevention of Ion Adsorption Type Rare Earth Ores. Chin. Rare Earths 2019, 40, 115–126. (In Chinese) [Google Scholar] [CrossRef]
- Chen, X.; Cai, Q.Y.; Yu, X.S.; Liu, Y.Z.; Wang, X.F. Vertical distributions of soil environmental factors in ion-type rare earth mining of southern Jiangxi—A case study in Longnan rare earth mining area. Chin. Rare Earths 2015, 36, 23–28. (In Chinese) [Google Scholar]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- MoLR (Ministry of Land and Resources of the People’s Republic of China). Regulations on the Protection of the Geological Environment of Mines. 3 March 2009. Available online: http://www.gov.cn/flfg/2009-03/05/content_1251130.htm (accessed on 3 March 2020).
- Wei, X.; Zhang, S.; Shimko, J.; Dengler, R.W. Mine drainage: Treatment technologies and rare earth elements. Water Environ. Res. 2019, 91, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Zeng, G.; Ling, B.; Li, Z.; Luo, S.; Sui, X.; Guan, Q. Fluorine removal and calcium fluoride recovery from rare-earth smelting wastewater using fluidized bed crystallization process. J. Hazard. Mater. 2019, 373, 313–320. [Google Scholar] [CrossRef]
- Hedin, B.C.; Capo, R.C.; Stewart, B.W.; Hedin, R.S.; Lopano, C.L.; Stuckman, M.Y. The evaluation of critical rare earth element (REE) enriched treatment solids from coal mine drainage passive treatment systems. Int. J. Coal Geol. 2019, 208, 54–64. [Google Scholar] [CrossRef]
- Deng, Z.; Qin, L.; Wang, G.; Luo, S.; Peng, C. Ammonia Nitrogen Pollution and Progress in Its Treatment of Ionic Rare Earth Mines. Chin. Rare Earths 2019, 40, 120–129. (In Chinese) [Google Scholar] [CrossRef]
- Wei, Z.; Hao, Z.; Li, X.; Guan, Z.; Cai, Y.; Liao, X. The effects of phytoremediation on soil bacterial communities in an abandoned mine site of rare earth elements. Sci. Total Environ. 2019, 670, 950–960. [Google Scholar] [CrossRef]
Index | Full Name | Formula | Sources |
---|---|---|---|
GDVI | Generalized Difference Vegetation Index | [49] | |
NDVI | Normalized Difference Vegetation Index | [37] | |
EVI | Enhanced Vegetation Index | [39] | |
SAVI | Soil Adjusted Vegetation Index | Low vegetation, L = 1; intermediate, 0.5; high, 0.25 | [38] |
ARVI | Atmospherically Resistant Vegetation Index | γ = 1, = reflectance of blue band | [58] |
SARVI | Soil Adjusted and Atmospherically Resistant Vegetation Index | [58] | |
α | Albedo | [17] | |
TN | Normalized Land Surface Temperature | [25] | |
TCB | Tasseled Cap Brightness | [54,59,60] | |
PC1 | The First Principal Component | [25] |
GDVI | NDVI | EVI | SAVI | ARVI | SARVI | α | TN | TCB | PC1 | |
---|---|---|---|---|---|---|---|---|---|---|
GDVI | 1 | 0.966 ** | 0.964 ** | 0.960 ** | 0.788 ** | 0.620 ** | −0.713 ** | −0.529 ** | −0.809 ** | 0.356 ** |
NDVI | 1 | 0.949 ** | 0.948 ** | 0.805 ** | 0.642 ** | −0.683 ** | −0.464 ** | −0.776 ** | 0.348 ** | |
EVI | 1 | 0.992 ** | 0.787 ** | 0.719 ** | −0.547 ** | −0.477 ** | −0.670 ** | 0.500 ** | ||
SAVI | 1 | 0.843 ** | 0.788 ** | −0.532 ** | −0.470 ** | −0.649 ** | 0.544 ** | |||
ARVI | 1 | 0.844 ** | −0.475 ** | −0.383 ** | −0.542 ** | 0.507 ** | ||||
SARVI | 1 | −0.072 | −0.266 ** | −0.170 | 0.766 ** | |||||
α | 1 | 0.434 ** | 0.976 ** | 0.198 * | ||||||
TN | 1 | 0.485 ** | −0.208 * | |||||||
TCB | 1 | 0.107 | ||||||||
PC1 | 1 |
Biophysical Indicators | Specific Sum of Squares | Specific Sum of Squares as a Proportion (%) | Cumulative (%) |
---|---|---|---|
GDVI | 6.359 | 63.588 | 63.588 |
SARVI | 1.798 | 17.984 | 81.572 |
TN | 0.727 | 7.267 | 88.839 |
α | 0.558 | 5.585 | 94.424 |
PC1 | 0.329 | 3.295 | 97.720 |
ARVI | 0.113 | 1.130 | 98.849 |
NDVI | 0.064 | 0.639 | 99.488 |
EVI | 0.034 | 0.343 | 99.831 |
TCB | 0.016 | 0.165 | 99.996 |
SAVI | 0.000 | 0.004 | 100.000 |
Range | Mean | StDev | |
---|---|---|---|
MRAI1 | [−2.86, 3.95] | 1.43 | 0.55 |
MRAI2 | [−6.87, 5.64] | 1.21 | 0.51 |
MRAI3 | [−2.18, 2.05] | 0.78 | 0.31 |
MRAI4 | [−2.37, 2.50] | 0.97 | 0.39 |
Period | Severe Degradation | Slight Degradation | No Change | Slight Recovery | Significant Recovery | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | % | Area | % | Area | % | Area | % | Area | % | |
(ha) | (ha) | (ha) | (ha) | (ha) | ||||||
1988–2000 | 629.62 | 9.50 | 658.39 | 9.93 | 5264.43 | 79.42 | 46.72 | 0.72 | 29.83 | 0.45 |
2000–2010 | 1786.93 | 26.96 | 1206.82 | 18.21 | 3278.35 | 49.45 | 227.32 | 3.43 | 129.58 | 1.95 |
2010–2019 | 435.87 | 6.58 | 462.23 | 6.97 | 3594.99 | 54.23 | 1421.62 | 21.45 | 714.29 | 10.78 |
Site | Longitude | Latitude | Surface Area (ha) | County | Major Features |
---|---|---|---|---|---|
A | 115.339 | 25.13 | 8.03 | Anyuan | “Heap leaching” technique, land leveling and grass plantation in 2014 |
B | 115.679 | 24.85 | 442.76 | Xunwu | “Pool leaching” technique, land leveling in 2016, solar power plant in the south, west and northeast in 2017, and large areas of grass plantation in others |
C | 115.725 | 24.90 | 92.55 | Xunwu | “Pool leaching” technique, land leveling and tree plantation in 2009 |
D | 115.067 | 24.99 | 87.48 | Dingnan | “In situ mineral leaching” technique, a combination of grass and tree plantation in 2012 |
E | 115.049 | 24.98 | 54.94 | Dingnan | “Pool leaching” technique, land leveling in 2010, grass plantation in 2013, factory construction in some areas in 2018 |
F | 114.846 | 24.83 | 320.55 | Longnan | “Pool leaching” technique, a combination of tree and grass plantation in 2010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, L.; Wu, W.; Huang, X.; Ou, P.; Lin, Z.; Zhiling, W.; Song, Y.; Lang, T.; Huangfu, W.; Zhang, Y.; et al. Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sens. 2020, 12, 3558. https://doi.org/10.3390/rs12213558
Xie L, Wu W, Huang X, Ou P, Lin Z, Zhiling W, Song Y, Lang T, Huangfu W, Zhang Y, et al. Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sensing. 2020; 12(21):3558. https://doi.org/10.3390/rs12213558
Chicago/Turabian StyleXie, Lifeng, Weicheng Wu, Xiaolan Huang, Penghui Ou, Ziyu Lin, Wang Zhiling, Yong Song, Tao Lang, Wenchao Huangfu, Yang Zhang, and et al. 2020. "Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China" Remote Sensing 12, no. 21: 3558. https://doi.org/10.3390/rs12213558
APA StyleXie, L., Wu, W., Huang, X., Ou, P., Lin, Z., Zhiling, W., Song, Y., Lang, T., Huangfu, W., Zhang, Y., Zhou, X., Fu, X., Li, J., Jiang, J., Zhang, M., Zhang, Z., Qin, Y., Peng, S., Shao, C., & Bai, Y. (2020). Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sensing, 12(21), 3558. https://doi.org/10.3390/rs12213558