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Abstract: Rare earth elements (REEs) are widely used in various industries. The open-pit mining
and chemical extraction of REEs in the weathered crust in southern Jiangxi, China, since the 1970s
have provoked severe damages to the environment. After 2010, different restorations have been
implemented by various enterprises, which seem to have a spatial variability in both management
techniques and efficiency from one mine to another. A number of vegetation indices, e.g., normalized
difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), enhanced vegetation index
(EVI) and atmospherically resistant vegetation index (ARVI), can be used for this kind of monitoring
and assessment but lack sensitivity to subtle differences. For this reason, the main objective of this
study was to explore the possibility to develop new, mining-tailored remote sensing indicators to
monitor the impacts of REE mining on the environment and to assess the effectiveness of its related
restoration using multitemporal Landsat data from 1988 to 2019. The new indicators, termed mining
and restoration assessment indicators (MRAIs), were developed based on the strong contrast of
spectral reflectance, albedo, land surface temperature (LST) and tasseled cap brightness (TCB) of REE
mines between mining and postmining restoration management. These indicators were tested against
vegetation indices such as NDVI, EVI, SAVI and generalized difference vegetation index (GDVI),
and found to be more sensitive. Of similar sensitivity to each other, one of the new indicators was
employed to conduct the restoration assessment of the mined areas. Six typically managed mines with
different restoration degrees and management approaches were selected as hotspots for a comparative
analysis to highlight their temporal trajectories using the selected MRAI. The results show that REE
mining had experienced a rapid expansion in 1988–2010 with a total mined area of about 66.29 km2 in
the observed counties. With implementation of the post-2010 restoration measures, an improvement
of varying degrees in vegetation cover in most mines was distinguished and quantified. Hence, this
study with the newly developed indicators provides a relevant approach for assessing the sustainable
exploitation and management of REE resources in the study area.

Keywords: REE mines; mining and restoration assessment indicators (MRAIs); damage; time trajectory;
effectiveness of management
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1. Introduction

As a strategic resource, rare earth elements (REEs) are essential for high-tech applications
and development across various industries [1–5]. With the increased demand for REE resources in
the national and international markets, the scale of REE mining has been expanding since 1970s,
and it has become one of the leading industries in southern Jiangxi, the origin of two important
rivers, the Ganjiang and the Dongjiang (Figure 1). Due to their particular metallogenic character,
the ion-adsorption type REE deposits are mostly hosted in the weathered crust of granitic massifs.
Their mining is hence different from that of most other metal ore deposits, and the low-cost open-pit
mining has led to severe damages to the ecosystem [6]. Actually, 4 decades of disordered exploitation
and mining without relevant environmental protection have caused not only serious land degradation,
e.g., vegetation stripping, soil erosion, nutrients losses, damage to the cultivated land and river
courses and groundwater pollution, but also waste of REE resources in the mining areas. It is thus of
pressing importance to implement effective measures to restore the damaged land cover and protect
the environment of the mined areas in southern Jiangxi.

Figure 1. Location of the study area in southern Jiangxi (Ganzhou City) and distribution of the rare
earth element (REE) mines.

The purpose of restoration is to recover the normal functions of the devastated ecosystems as
a consequence of mining [7–10]. For this reason, the Chinese central and local governments have
promulgated orders since 2009 to mitigate the degradation and restore ecosystem functions of the REE
mining areas. With this effort, the environment has been improved to a certain degree in some mined
areas, while degradation continues in others. However, neither systematic monitoring of the recovery
status nor assessment on the effectiveness of different management approaches or techniques has
been conducted.
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Remote sensing has been widely applied in environmental monitoring, including in land
degradation analysis, assessment of the mitigation effectiveness and, particularly, assessment of
the policy impacts on the environment [11–16]. Since vegetation degradation and recovery are related
to change in surface albedo [17], it is possible to use vegetation greenness, surface brightness and their
change vector [18] to assess the effectiveness of such management of the mining areas [19,20]. As a topic
increasingly recognized as important, research on the human–environment linkages has become
a hotspot [21–26], and our study on assessment of mining, degradation and restoration is such a case.

Multitemporal remote sensing data are an important geo-information source which allow us to
monitor and determine the dynamic trends of vegetation cover [27–36]. In recent years, a number of
studies have been focused on monitoring of land cover change in the mining areas using vegetation
indices, e.g., normalized difference vegetation index (NDVI) [37], soil-adjusted vegetation index
(SAVI) [38] and enhanced vegetation index (EVI) [32,39,40]. Other studies have used thermal
information to monitor coal fires [41] or radar data to examining land subsidence of coal mines [42]. It is
worthwhile to mention that several authors have employed remote sensing to assess the rehabilitation
or revegetation states of the mined areas [43] and have applied unmanned aerial vehicles (UAVs) for
this purpose [44–46]. It is good to see that a limited number of studies were devoted to monitoring of
REE mines [6,47,48]; however, none of them focused specifically on a comprehensive assessment of
spatiotemporal characteristics of land degradation and restoration of the mining areas in southern
Jiangxi. For this reason, the main objective of our study was to conduct monitoring and assessment
research to fill this gap and to provide relevant advice for local governments for restoration management.

While examining the recovery degree of different REE mines using the above-mentioned vegetation
indices, some difficulty was encountered in revealing the subtle difference of restoration, even with
the generalized difference vegetation index (GDVI), which is more sensitive and of wider dynamic range
than other indices in low-vegetation areas [49,50]. Nevertheless, it might be possible to incorporate GDVI
with other biophysical indicators such as surface albedo [17], land surface temperature (LST) [25,51–53]
and tasseled cap brightness (TCB) [54] to derive a more sensitive indicator to characterize the subtle
differences of the REE mines and their restoration. Therefore, one specific objective of this research
was to develop an integrated remote sensing indicator for achieving the monitoring and assessment of
REE mines while taking multiple biophysical indicators into account.

2. Materials and Methods

2.1. Study Area

The study area, Ganzhou City, which encompasses 18 counties with 39,363 km2 in surface area, is
located in southern Jiangxi (Figure 1) and climatically belongs to the subtropical monsoon climatic
zone. This area is mainly covered with forests which are partially conifers (Cunninghamia lanceolata,
Pinus massoniana) and mainly mixed forests with the following dominant species: Schima superba,
Cinnamomum camphora, Acer palmatum, Nothofagaceae Kuprian, Liquidambar formosana, Pinus elliottii,
Pinus massoniana and Cunninghamia lanceolata. Other land cover types include woodlands, croplands,
orchards, water-bodies and artificial land, where landscape is mainly mountains and hills interbedded
with basins. The main river is Ganjiang River running north and its tributaries and subtributaries.
The study area is also the origin of the Dongjiang River running south. The average annual precipitation
is around 1318 mm and the annual mean temperature is 19.8 ◦C. The elevation ranges from 89 to 1971
m with an average of 300–500 m. With concentrated rainfall in spring and summer (March–July), soil
erosion and water loss are a severe problem, especially in the red soil areas. Through this study, 1281
REE mines were identified with a total mined area of about 79 km2 in the whole southern Jiangxi.
However, our research was mainly focused in seven counties (Figure 1) including 1158 mines covering
an area of 66.29 km2.

In terms of natural resource endowment, apart from the tungsten ore reserve, southern Jiangxi has
abundant ion-absorption type REE deposits and is known as the “Rare Earth Kingdom”. However, due
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to long-term disordered mining in this area, the native vegetation cover has been severely damaged
and the original geomorphologic feature has greatly changed since the 1970s. The early mining
techniques included the “pool-leaching” or “heap-leaching” techniques in 1981–1995, which have
caused serious vegetation degradation, soil erosion and pollution. The processing adopted in the later
stage is the “in situ leaching” technique that has been widely applied since 1996 [55]. With this
technique, the surface vegetation was not seriously damaged in a large area, but a great number
of liquid injection holes were excavated in the ore-bearing crust, causing damage to topsoil locally
and subsoil largely. A part of vegetation cover in the mining area was also immediately destroyed,
and the chemical liquid would remain for a long time in soils, causing soil acidification and leading to
an increased risk of landslides as such liquid serves as a lubricator. No matter which kind of technique
was used, the REE exploitation has caused severe damage to the environment.

2.2. Data and Preprocessing

2.2.1. Satellite Data and Processing

Multitemporal Landsat TM, ETM+ and OLI images from 1988 to 2019 were obtained from
the USGS data server (https://glovis.usgs.gov). Only cloud-free images or those with less than 5% of
cloud coverage were selected. Due to the abundant rainfall and cloudy weather throughout spring
and summer in the study area, October and early November are the period when it is possible to
acquire images with low cloud cover, good quality and acceptable sun-elevation angle (≥40◦). For this
reason, only October and early November images were employed for this study.

Already orthorectified by the provider, NASA, before Landsat images were made publicly
accessible, only atmospheric correction was conducted for these images using the COST model
developed by Chavez [56] in combination with the dark-object subtraction (DOS) [57] approach to
remove the haze effect. The band minimum was applied to estimate the haze value in each band of
Landsat images, and spectral radiance was then converted into surface reflectance for each band after
atmospheric correction [13,56].

Very high resolution imagery, such as QuickBird, GeoEye and SPOT, available on Google Earth
was used as a complementary source for definition of the boundaries and visual verification of mines.

Elevation data (ASTER GDEMV2) with 30 m resolution were obtained from the Geospatial
Data Cloud Platform of the Chinese Academy of Sciences (http://www.gscloud.cn/) and used as
the background information of the study area.

2.2.2. Field Data

The first-hand data were acquired from field investigations conducted in December 2016 to December
2019 to understand the damages caused by mining to environment and the situation of restoration.
Our partner, the 264 Geological Team of Jiangxi Nuclear Industry has conducted rehabilitation management
in 11 abandoned REE mines in the study area. Their knowledge and experience were important to our
study, especially for assessing the results of our analysis on management effectiveness, and their field
pictures were direct proof for validation of our analysis.

2.3. Biophysical Features of the Mining and Restored Areas

The typical biophysical change after open-pit mining, i.e., deforestation through the peeling-off

of the topsoil and vegetation cover, is the decrease or loss of vegetation greenness and increase in
bareness. The major restoration efforts are to recover the mined areas with vegetation plantation such
as grasses, shrubs and trees, but other management options are either to convert the mined areas into
factories or solar power stations or simply to cover them with plastic mulch to prevent further soil
erosion. Thus, restoration and mitigation measures and procedures are different from mine to mine,
and so are the restored greenness and extent in the study areas.

https://glovis.usgs.gov
http://www.gscloud.cn/
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Vegetation indices, surface albedo, brightness and other indicators that are able to capture
the bareness information may all be useful for assessment of the mining impacts and restoration
effectiveness. For this purpose, remote-sensing-based biophysical indicators such as NDVI, GDVI,
EVI, SAVI, atmospherically resistant vegetation index (ARVI) and soil-adjusted and atmospherically
resistant vegetation index (SARVI) [58], surface albedo [17], the first principal component (PC1),
tasseled cap brightness (TCB) [54,59,60] and LST were taken into account (Table 1). Calculation of
vegetation indices is known, but other indicators, e.g., albedo and LST, are less frequently applied.
We present their calculation formulas here.

Table 1. Biophysical indicators used in this study.

Index Full Name Formula Sources

GDVI Generalized Difference
Vegetation Index

(
ρ2

NIR − ρ
2
R

)
/
(
ρ2

NIR + ρ2
R

)
[49]

NDVI Normalized Difference
Vegetation Index

(ρNIR − ρR)/(ρNIR + ρR) [37]

EVI Enhanced Vegetation Index 2.5× ρNIR−ρR
ρNIR+6.0ρR−7.5ρB+1 [39]

SAVI Soil Adjusted Vegetation Index
(1 + L)(ρNIR − ρR)/(ρNIR + ρR + L)
Low vegetation, L = 1; intermediate,

0.5; high, 0.25
[38]

ARVI Atmospherically Resistant
Vegetation Index

(ρNIR − ρRB)/(ρNIR + ρRB)
ρRB = (ρR − γ× ρR − ρB)

γ = 1, ρB = reflectance of blue band
[58]

SARVI
Soil Adjusted

and Atmospherically Resistant
Vegetation Index

(1 + L)(ρNIR − ρRB)/(ρNIR + ρRB + L) [58]

α Albedo [17]

TN
Normalized Land Surface

Temperature
TN =

(LST− LSTmin)/(LSTmax − LSTmin)
[25]

TCB Tasseled Cap Brightness [54,59,60]

PC1 The First Principal Component [25]

Albedo (α), originally meaning “whiteness”, is a measure of the diffuse reflection of solar radiation
out of the total solar radiation on land surface and measured on a scale from 0 to 1. Courel et al.
(1984) revealed that increase in albedo in African savanna was a result of land degradation caused by
drought [17]. In our case, land degradation by mining may also lead to increase in surface albedo. Liang
(2000) developed a series of algorithms for calculating albedo for various satellite sensors [61]. The one
for Landsat data, which was further normalized by Smith (2010) [62], is expressed in Equation (1):

αshort =
0.356ρ1 + 0.130ρ3 + 0.373ρ4 + 0.085ρ5 + 0.072ρ7 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072
(1)

where ρi represents the reflectance of band i; here, i is 1, 3, 4, 5 and 7.
LST was produced in terms of Chander et al. (2009) [63] and USGS (2019) [64] as shown in

Equation (2):

LST =
k2

ln
( k1

Lλ

)
+ 1

(2)

where Lλ is the at-the-sensor spectral radiance (W/(m2sr µm)); k1 and k2 are calibration coefficients.
LST in kelvin (>273.15 K) is big unit in comparison with other vegetation indices. It was thus further
normalized as:

TN = (LST− LSTmin)/(LSTmax − LSTmin) (3)
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where TN is the normalized LST; LSTmin and LSTmax are the minimum and maximum LST of
the observed area, i.e., the mines in our case. TN also takes a value between 0 and 1.

The surface characteristics of REE mines at different stages such as mining disturbance, reclamation
and vegetation restoration show great differences. The time trajectories of the biophysical indicators of
a typical mine with restoration intervention were projected for the period 1988–2019. We noted that
vegetation indices all showed a U-type curve in the mined areas, while other biophysical indicators such
as albedo (α), TCB and LST demonstrated an inverse curvilinear character showing, more concretely,
a mirror effect of the vegetation indices, i.e., a peak in the mined areas before restoration. An example
is shown in Figure 2.

Figure 2. Time trajectories of the biophysical indicators of an REE mine (115◦06′E, 24◦99′N).

2.4. Pearson Correlation Analysis, Development of the New Mine-Tailored Indicators and Sensitivity Analysis

Apart from the time trajectories, a Pearson correlation analysis at the confidence level of 0.01 was
applied to all biophysical indicators (i.e., NDVI, GDVI, SAVI, EVI, SARVI, ARVI, α, TN, TCB and PC1)
to uncover their correlation (Table 2).

In terms of the contrasted difference in correlation together with the mirror effect of vegetation
indices versus other biophysical indicators (Table 2 and Figure 2), it seems possible to develop
a mine-tailored remote sensing indicator or a set of such indicators for assessing the impacts of
mining activities on the environment and the postmining mitigation effectiveness. This indicator will
allow identifying the subtle difference in land cover change between premining and mining states,
and between mined and pos-mining restoration intervention, and to highlight it.

Among the vegetation indices, those with soil adjustment and atmospheric correction were less
sensitive to canopy cover than NDVI [13], and all these indices were less sensitive to multibiome
features and of less dynamic range than GDVI in dryland systems [49,51]. For mining and mined areas,
we randomly selected six typical mines with different mining periods, REE extraction approaches
and restorations (see Table 6 for details) to project the time trajectories of GDVI and NDVI,
and the former shows again wider dynamic range and higher sensitivity than NDVI (Figure 3).
Hence, based on the results shown in both Figures 2 and 3, GDVI seems more suitable for highlighting
the vegetation-related information of the mining and mined areas than other indices.
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Table 2. Pearson correlation coefficients among the biophysical indicators.

GDVI NDVI EVI SAVI ARVI SARVI α TN TCB PC1

GDVI 1 0.966
**

0.964
**

0.960
**

0.788
**

0.620
**

−0.713
**

−0.529
**

−0.809
**

0.356
**

NDVI 1 0.949
**

0.948
**

0.805
**

0.642
**

−0.683
**

−0.464
**

−0.776
**

0.348
**

EVI 1 0.992
**

0.787
**

0.719
**

−0.547
**

−0.477
**

−0.670
**

0.500
**

SAVI 1 0.843
**

0.788
**

−0.532
**

−0.470
**

−0.649
**

0.544
**

ARVI 1 0.844
**

−0.475
**

−0.383
**

−0.542
**

0.507
**

SARVI 1 −0.072 −0.266
** −0.170 0.766

**

α 1 0.434
**

0.976
** 0.198 *

TN 1 0.485
**

−0.208
*

TCB 1 0.107
PC1 1

* and ** indicate that the confidence level is 0.01 and 0.05, respectively.

Figure 3. Time trajectories of the generalized difference vegetation index (GDVI) (a) and normalized
difference vegetation index (NDVI) (b) of six typical mines. Time trajectory comparison of the mean
GDVI and the mean NDVI (c), showing GDVI to have a wider dynamic range and higher sensitivity
than NDVI in the mining areas (see Figure 5 for location of these mines and Table 6 for selection details).
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To justify this selection, an importance ranking based on the correlation coefficients in Table 2
using the approach of Orloci (1978) [65] was conducted, and the weighted importance is reported in
Table 3.

Table 3. Importance ranking of the biophysical indicators based on Table 2.

Biophysical Indicators Specific Sum of Squares Specific Sum of Squares
as a Proportion (%) Cumulative (%)

GDVI 6.359 63.588 63.588
SARVI 1.798 17.984 81.572

TN 0.727 7.267 88.839
α 0.558 5.585 94.424

PC1 0.329 3.295 97.720
ARVI 0.113 1.130 98.849
NDVI 0.064 0.639 99.488
EVI 0.034 0.343 99.831
TCB 0.016 0.165 99.996
SAVI 0.000 0.004 100.000

Ranking was conducted following the approach proposed by Orloci (1978).

The nonvegetal part can be revealed by α, TCB and TN, which are negatively correlated with
GDVI. In view of this, the new remote sensing indicators were established as follows:

MRAI1 = GDVI/(α+ TN) (4)

MRAI2 = GDVI/(α+ TCB) (5)

MRAI3 = GDVI/(α+ TN + TCB) (6)

MRAI4 = GDVI/(TN + TCB) (7)

The indicators in this set were termed mining and restoration assessment indicators (MRAIs).
To evaluate their sensitivity, the approach proposed by Gitelson (2004) [66] was followed. Wu (2014)
used this approach to assess the sensitivity of GDVI and confirmed the efficiency of this approach [49].
The sensitivity is expressed in Equation (8):

Sr(MRAI) =
[

d(MRAI)
d(VI)

]
× [

∆(MRAI)
∆(VI)

]
−1

(8)

where Sr(MRAI) is the relative sensitivity of MRAI versus the referenced vegetation index (VI); d(MRAI)
d(VI)

is the first derivative of MRAI against VI or the infinitesimal change in MRAI in response to that of
VI, or rather, the differences between two adjacent pixels of MRAI and VI, showing the tiny change;
and ∆(MRAI) = MRAIMAX −MRAIMIN and ∆(VI) = VIMAX −VIMIN are the ranges of MRAI and VI
of the observed mines in our case. If Sr > 1, MRAI is more sensitive than the referenced VI; if Sr = 1,
they have the same sensitivity; if Sr < 1, MRAI is less sensitive than the referenced VI.

2.5. Application of MRAI for Mining and Restoration Monitoring

After sensitivity analysis, one MRAI, i.e., MRAI1, was selected for mining
and restoration monitoring.

To compare the spatiotemporal changes and the management effectiveness at different stages of
the REE mines, four observation points in time were selected, i.e., 1988 as premining, 1989–2000 as
mining, 2010 as mining and mined state and 2019 as restoration state. Please be aware of the fact that
those mines that had been exploited before 1988 were largely considered “no change” in the 1988–2010
period before restoration was conducted. Four concentrated REE mining areas in the study area



Remote Sens. 2020, 12, 3558 9 of 19

were chosen for a detailed analysis of mining activities and vegetation greenness changes using
MRAI1 as remote sensing indicator. The approach used was a differencing technique followed by
a thresholding processing realized by density slicing or classification in order to identify the degradation
and restoration and their subtle change degree in space and time [12,14].

3. Results

The intermediate and final results obtained following the above approaches and processing
procedure are presented in this section.

3.1. Mirror Effect and Correlation among the Biophysical Indicators

It was revealed that vegetation indices have U-type time trajectories while nonvegetation
biophysical indicators show anti-U curvilinear features, constituting a mirror effect of these two
groups of indicators in the mining and mined areas (Figure 2).

Pearson correlation analysis illustrated that while the vegetation indices are positively correlated
with each other, all of them are negatively correlated with α, TN, TCB and PC1 (Table 2). GDVI has
the best negative correlation with these nonvegetation indicators, and TCB seems the best approximation
of α, followed by TN.

Table 3 presents the result of ranking analysis based on the correlation coefficients of biophysical
indicators (Table 2) and demonstrates that GDVI accounts for the most important weight (63.58%);
hence, it is appropriate to select it as vegetation index to constitute the MRAIs.

3.2. Sensitivity and Dynamic Ranges of MRAIs

As presented in Figure 4, the sensitivity of all these MRAIs, i.e., Sr(MRAIs), in unmanaged
and different vegetation restoration periods of the REE mines is higher than 1, indicating that all of
the indicators in the set have higher sensitivity than vegetation indices. Thus, this set of MRAIs can be
used for assessing the effects of mining and restoration management.

Figure 4. Sensitivity of mining and restoration assessment indicators (MRAIs) versus vegetation indices
(VIs): (a) Sr(MRAI1); (b) Sr(MRAI2); (c) Sr(MRAI3); (d) Sr(MRAI4). Each sensitivity was the average of
ten measurements in their corresponding mines at different stages (see Supplementary Materials).
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The dynamic ranges of these indicators of REE mines for Landsat images of 2019 are shown in
Table 4; their indications, taking MRAI1 as an example, are listed as follows: when MRAI1 < 1.0,
it represents an unmanaged state; when 1.0 < MRAI1 ≤ 1.5, it represents a poor restoration; when
1.5 < MRAI1 ≤ 2.0, it implies a general case of restoration; and when MRAI1 > 2.0, it means a good
restoration. Actually, thanks to the wide dynamic range and high sensitivity, the ranges can be much
more finely divided.

Table 4. The ranges of MRAIs in REE mines.

Range Mean StDev

MRAI1 [−2.86, 3.95] 1.43 0.55
MRAI2 [−6.87, 5.64] 1.21 0.51
MRAI3 [−2.18, 2.05] 0.78 0.31
MRAI4 [−2.37, 2.50] 0.97 0.39

3.3. Spatiotemporal Change of Vegetation Restoration

As previously mentioned, 1158 REE mines with a total surface area of about 66.29 km2 in the seven
counties were identified by multitemporal satellite images though the mining period of these mines
was different from one to another. The spatiotemporal changes in land degradation (e.g., vegetation
loss and soil erosion) and restoration of mines are shown in Table 5 and Figure 5, taking the four most
serious counties where REE mines are dominantly distributed (circles a, b, c and d) as an example.

Table 5. Results of vegetation restoration in the seven counties detected by using MRAI1 indicator.

Period

Severe
Degradation

Slight
Degradation No Change Slight Recovery Significant

Recovery

Area
%

Area
%

Area
%

Area
%

Area
%(ha) (ha) (ha) (ha) (ha)

1988–2000 629.62 9.50 658.39 9.93 5264.43 79.42 46.72 0.72 29.83 0.45
2000–2010 1786.93 26.96 1206.82 18.21 3278.35 49.45 227.32 3.43 129.58 1.95
2010–2019 435.87 6.58 462.23 6.97 3594.99 54.23 1421.62 21.45 714.29 10.78

Here, “No Change” includes the mined area or degradation in the pre-1988 period. Before restoration, such area
remained unchanged.

From 1988 to 2010, land degradation, or rather, mining area, had increased by 4281.76 ha (red
and brown color in Figure 5), but from 2010 to 2019, newly mined area was reduced to 898.1 ha
and rehabilitated green areas had a significant increase by 2135.9 ha, especially in Xunwu, Dingnan,
Longnan, and Anyuan (green color in Figure 5). In addition, mining activity and restoration showed
a spatial heterogeneity and variability in different counties.

3.4. Verification of the Detected Changes

To ensure the accuracy of the MRAI1 analysis, eight typical REE mines, namely A–F, V1 and V2
(as shown in Figure 5), were selected for verification in reference to field observation and Google
Earth (Figures 6–8). The geographical information, REE extraction technique and the restoration
management are all presented for each mine in Table 6. The comparison shows that the assessment
results of the management effectiveness of the mined areas were well consistent with the actual situation
observed in the field and on Google Earth (Figures 7 and 8), indicating that the new remote sensing
indicator, MRAI1, was able to achieve the monitoring and assessment of the mining and restoration
effects on the environment in space and time. On the other hand, from the local detailed analysis, we
can see that in the same mining area, the new indicator MRAI1 can well reflect the tiny differences in
management effectiveness.
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Figure 5. Spatiotemporal changes of vegetation restoration in four areas (a–d) with high mining
concentration. A–F are typical mines selected for detailed analysis; V1 and V2 are example sites for
verification managed by the 264 Geological Team (see Figures 7 and 8).
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Figure 6. Comparison of our results from the six mining sites with Google Earth images from the mining
to restoration stages ((A–F) is six typical mines, see details in Table 6) (high-resolution images: ©Google).

Figure 7. REE mine management in Ganlin Village in Ganzhou City (V1: 114◦55′42.73”E, 25◦44′4.28”N).
(a) “Slight recovery” detected by Landsat data from 2010 to 2019; (b) eroded landscape after exploitation
(10 August 2004, ©Google); (c) landscape observed in the field after management (9 July 2019), i.e.,
cultivated with grasses and trees; and (d) effect of restoration management seen on 26 April 2020
(©Google), i.e., 14 months after the management was conducted in January 2019.
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Figure 8. Restoration of REE mine close to Fengshan Village (V2: 115◦0′35.97”E, 25◦42′49.90”N).
(a) Slight recovery detected by Landsat data because of the restoration engineering conducted in
November 2018; (b) damaged landscape before management (29 February 2016, ©Google); (c) observed
landscape in the field in July 2019; and (d) restoration seen on Google Earth (26 August 2019, ©Google).

Table 6. The features of the six typical managed REE mines.

Site Longitude Latitude Surface Area (ha) County Major Features

A 115.339 25.13 8.03 Anyuan
“Heap leaching” technique,
land leveling and grass
plantation in 2014

B 115.679 24.85 442.76 Xunwu

“Pool leaching” technique,
land leveling in 2016, solar
power plant in the south,
west and northeast in 2017,
and large areas of grass
plantation in others

C 115.725 24.90 92.55 Xunwu
“Pool leaching” technique,
land leveling and tree
plantation in 2009

D 115.067 24.99 87.48 Dingnan

“In situ mineral leaching”
technique, a combination of
grass and tree plantation
in 2012

E 115.049 24.98 54.94 Dingnan

“Pool leaching” technique,
land leveling in 2010, grass
plantation in 2013, factory
construction in some areas
in 2018

F 114.846 24.83 320.55 Longnan
“Pool leaching” technique,
a combination of tree
and grass plantation in 2010

The forest types A–F are coniferous and mixed forests (see Section 2.1).
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4. Discussion

4.1. Recovery Process

The land surface of REE mines has experienced significant changes from premining and mining
to recovery in the past decades, and such changes were mainly associated with implementation
of different policies. Driven by the policy of “invigorating the domestic economy and opening to
the outside world” of Deng Xiaoping in 1987–1988 [14], innumerous local private companies were set
up nationwide. As a result, REE mining experienced a disorderly expansion for economic reasons
by a great number of private enterprises in southern Jiangxi. Our change detection using the MRAI1
indicator illustrated that the vegetation cover in the four counties considered decreased dramatically,
showing a clear degradation by 4281 ha in which previous vegetation cover had become bare soil with
an increased albedo and brightness in 1988–2010. This is indicative of an expanding mining process
including the striping off of topsoil and forests to exploit REE deposits in the weathered crust and, at
the same time, the setting up of a series of leaching ponds for application of the “pool leaching” or
“heap leaching” technology, or digging/drilling of holes and ditches elsewhere to apply the “in situ
leaching” technology for REE extraction after 1996 [1,55,67,68]. Vegetation degradation, soil erosion
and groundwater pollution as a consequence of mining activities resulted in negative impacts on
the ecosystems [68,69]. These are local phenomena in response to the macroscopic policy of the state.

With an increasing awareness of the hazardous damage to the environment caused by mining,
the central government promulgated the “Regulations on the Protection of the Geological Environment
of Mines” (MoLR 2009) [70], with an order of “who mined who governs”. Hence, restoration
management of the abandoned mines became an obligation for mining enterprises in southern Jiangxi
in 2010. For this reason, a number of pilot projects have been implemented [67] and different treatments,
including chemical and biological approaches, have been tested and proposed [68,71–75]; for the time
being, biological rehabilitation is dominant because of the purpose of ecological restoration.

The common vegetation recovery management is plantation of conifers (e.g., Cunninghamia lanceolata,
Pinus massoniana), grasses (e.g., Paspalum wettsteinii Hack) and orchards (e.g., navel orange and other
local specialty fruits) in the mined areas located in hills and mountains that showed spatial differences in
levels of recovery within our detection results (Figure 5). Thanks to these efforts, 2135 ha of abandoned
mines have been managed and have, to a certain degree, recovered in the period of 2010–2019 (Table 5).
However, in 2019, about 67% of the total area of the observed REE mines was still in a state of degradation
or remained unmanaged (Table 5). This is probably the results of the following cases: (1) restoration of
some mined areas was still at the stage of land leveling and vegetation was not yet planted; (2) for large
mined areas surrounding the cities, the management action was to build factories and solar power plants,
which was not regarded as an ecological restoration and led such areas to be classified as unmanaged
mines by MRAIs; (3) restoration management had not yet been conducted for the newly mined area after
2010. Clearly, much reclamation work remains to be conducted in this region.

4.2. Advantages and Disadvantages of Our Approaches

It is clear that with their sensitivity and wide dynamic ranges, the integrated MRAIs can help
distinguish the subtle differences between premining and mining and between mined and postmining
management, of which the latter was actually graded into two levels for facilitating visualization in
maps, though it may be divided into many more levels. Actually, Li et al. (2018) and Zhang et al.
(2015) used NDVI to identify the REE mines locally [6,48], and Peng et al. (2016) employed ecological
quality index to analyze these areas in southern Jiangxi [47]. Largely speaking, their studies were
relevant but had less sensitivity and accuracy than our approach, because some of them even failed
to distinguish clouds from mines or required more indicators to compose the quality index. From
this viewpoint, our approach based on MRAIs seems more robust and practical, requiring less data
and having superior applicability. As a matter of fact, our new indicators contain both vegetation
and nonvegetation characteristics and are capable of catching more features of land surface change



Remote Sens. 2020, 12, 3558 15 of 19

than other single indicators or indices. As such, aside from REE mines, it will be possible to apply
them in studies of other kinds of open-pit mining areas such as copper, limestone, iron and coal mines.

However, as with other remote sensing approaches, MRAIs were unable to identify completely
mined areas where “in situ leaching” technique had been applied due to the fact that drilling operations
kept the surface vegetation cover to certain extent. This problem can be resolved if UAV technology
is employed, as it is able to provide higher resolution and hyperspectral data [44]. The limitation of
our approach lies in that most of the MRAIs developed, except for MRAI2, may not be applicable if
remote sensing data do not possess the thermal band that allows us to derive LST. In this case, MRAI2
is the only choice.

5. Conclusions

This paper presented the development of a set of mine-tailored remote sensing indicators (MRAIs)
and their application to detection of the spatial and temporal changes of the REE mining and mined
areas and assessment of the effectiveness of restoration management in southern Jiangxi. Our study
showed that these new indicators are applicable for achieving such research goals with reliability. We
believe that these indicators not only are suitable for research on REE mines, but also have potential
for assessment of other kinds of open-pit mines.

This study considered the state of surface vegetation cover, albedo, brightness and surface
temperature to assess mining and the effectiveness of the postmining management after different policy
implementations. The research still remains at the surface layer, and a more holistic and comprehensive
assessment integrating MRAIs with soil and groundwater samples will be required as a next step, as
the multidimensional assessment may provide more relevant advice for local authorities for sustainable
exploitation and restoration of REE mines.
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